搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

托卡马克圆截面等离子体磁流体平衡、稳定性与运行比压极限

沈勇 董家齐 石中兵 何宏达 赵开君 彭晓东 曲洪鹏 李佳 孙爱萍

引用本文:
Citation:

托卡马克圆截面等离子体磁流体平衡、稳定性与运行比压极限

沈勇, 董家齐, 石中兵, 何宏达, 赵开君, 彭晓东, 曲洪鹏, 李佳, 孙爱萍

Study of circular cross-section plasmas on the HL-2A tokamak: MHD equilibrium, stability and operational β limit

Shen Yong, Dong Jia-qi, Shi Zhong-bing, He Hong-da, Zhao Kai-jun, Peng Xiao-dong, Qu Hong-peng, Li Jia, Sun Ai-ping
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 圆形截面等离子体是最基本的托卡马克等离子体形态,是磁约束聚变实验研究的基础位形.本文基于HL-2A装置限制器位形放电实验,研究了托卡马克圆形截面等离子磁流体动力学(MHD)平衡和MHD不稳定性.研究表明,当q0=0.95时,m/n=1/1内扭曲模总是不稳定的.轴安全因子q0和边缘安全因子qa的组合决定了等离子体的平衡位形,也影响着平衡的MHD稳定性,但其不稳定性增长率与比压(β)的大小相关联.在qa>2和q0稍大于1的条件下,可以容易地实现内扭曲模和表面扭曲模的稳定.但当q0超过1较多时,等离子体又变得不稳定, 且等离子体(扭曲)不稳定性强度随q0的继续增高而增强.随着极向比压(βp)的增加,MHD不稳定性会增强,MHD平衡位形横向拉长, Shafranov位移增加,这反过来又有抑制不稳定性的作用.计算发现, HL-2A圆形截面等离子体的运行比压极限约为βNc≅2.0. 较高的q0不利于MHD稳定性,引起比压极限降低.当q0=1.3时,我们得到最大βN约为1.8.最后,基于现有的圆形横截面等离子体,讨论了影响运行β的一些关键因素以及可期实现的高比压和理想比压极限之间的关系问题.
    Circular cross-section plasma is the most basic form of tokamak plasma and the fundamental configuration for magnetic confinement fusion experiments. This article is based on the HL-2A limiter discharge experiments to study the magnetohydrodynamic (MHD) equilibrium and MHD instability of tokamak plasmas in circular cross-section. The results showed that when q0=0.95, the internal kink mode of m/n=1/1 is always unstable. The increase in plasma β (=the ratio of thermal pressure to magnetic pressure) can lead to the appearance of external kink modes. The combination of axial safety factor q0 and edge safety factor qa determines the equilibrium configuration of the plasma and also affects the MHD stability of the equilibrium, but its growth rate is also related to the size of β. Under the condition of qa>2 and q0 slightly greater than 1, it is easy to achieve the stabilization of internal and surface kink modes. However the plasma becomes unstable again and the instability intensity increases as q0 continues to increase when q0 exceeds 1. As the poloidal specific pressure (βp) increases, the MHD instability develops, the equilibrium configuration of MHD elongates laterally, and the Shafranov displacement increases, which in turn has the effect for suppressing instability. Calculations have shown that the maximum β value imposed by the ideal MHD mode in a plasma with free boundary in tokamak experiments is proportional to the normalized current IN (=Ip(MA)/a (m)B0(T)), and the maximum specific pressure is calibrated as β(max)~2.01IN. The operational β limit of HL-2A circular cross-section plasma is approximately βNc≈2.0. A too high q0 is not conducive to MHD stability and leads to a decrease in the β limit. When q0=1.3, we obtain a maximum β_N of approximately 1.8. Finally, based on the existing circular cross-section plasma, some key factors affecting the operational β and the relationship between achievable high β and the calculated ideal β limits were discussed.
  • [1]

    Buttery R J, Park J M, McClenaghan J T, Weisberg D, Canik J, Ferron J, Garofalo A, Holcomb C T, Leuer J, Snyder P B, The Atom Project Team 2021 Nucl. Fusion 61 046028.

    [2]

    SarazinY, Hillairet J, Duchateau J L, Gaudimont K, Varennes R, Garbet X, Ghendrih Ph, Guirlet R, Pégourié B, Torre A 2020 Nucl. Fusion 60 016010.

    [3]

    Hender T C, Wesley J C, Bialek J 2007 Nucl. Fusion 47 S128.

    [4]

    Suzuki Y, Watanabe K Y, Sakakibara S 2020 Phys. Plasmas 27 102502.

    [5]

    Liu Y, Chapman I T, Saarelma S, Gryaznevich M P, Hender T C, Howell D F, JET-EFDA contributors 2009 Plasma Phys. Control. Fusion 51 115005.

    [6]

    Wolf R C, Biel W, Bock M F M de, Finken K H, Günter S, Hogeweij G M D, Jachmich S, Jakubowski M W, Jaspers R J E, Krämer-Flecken A, Koslowski H R, Lehnen M, Liang Y, Unterberg B, Varshney S K, Hellermann M von, Yu Q, Zimmermann O, Abdullaev S S, Donné A J H, Samm U, Schweer B, Tokar M, Westerhof E, the TEXTOR Team 2005 Nucl. Fusion 45 1700.

    [7]

    Zhao K J, Lan T, Dong J Q, Yan L W, Hong W Y, Yu C X, Liu A D, Qian J, Cheng J, Yu D L, Yang Q W, Ding X T, Liu Y, Pan C H 2006 Phys. Rev. Lett. 96 255004.

    [8]

    Chen W, Ding X T, Yang Q W, Liu Yi, Ji X Q, Zhang Y P, Zhou J, Yuan G L, Sun H J, Li W, Zhou Y, Huang Y, Dong J Q, Feng B B, Song X M, Shi Z B, Liu Z T, Song X Y, Li L C, Duan X R, Liu Y (HL-2A team) 2010 Phys. Rev. Lett. 105 185004.

    [9]

    Zhong W L, Shen Y, Zou X L, Gao J M, Shi Z B, Dong J Q, Duan X R, Xu M, Cui Z Y, Li1, X. Q. Ji Y G, Yu D L, Cheng J, Xiao G L, Jiang M, Yang Z C, Zhang B Y, Shi P W, Liu Z T, Song X M, Ding X T, Liu Y (HL-2A Team1) 2016 Phys. Rev. Lett. 117 045001.

    [10]

    Xu M, Duan X R, Liu Yi, Song X M, Liu D Q, Wang Y Q, Lu B, Yang Q W, Zheng G Y, Ding X T, Dong J Q, Hao G Z, Zhong W L, Shi Z B, Yan L W, Zou X L, Liu Y Q, Chen W, Xiao G L, Zhang Y P, Jiang M, Hou Y M, …, the HL-2A Team 2019 Nucl. Fusion 59 112017.

    [11]

    Piovesan P, Igochine V, Turco F, Ryan D A, Cianciosa M R, Liu Y Q, Marrelli L, Terranova D, Wilcox R S, Wingen A, Angioni C, Bock C, Chrystal C, Classen I, Dunne M, Ferraro N M, Fischer R, Gude A, Holcomb C T, Lebchy A, Luce T C, Maraschek M, McDermott R, Odstrčil T, Paz-Soldan C, Reich M, Sertoli M, Suttrop W, Taylor N Z, Weiland M, Willensdorfer M, The ASDEX Upgrade Team, The DIII-D Team and The EUROfusion MST1 Team 2009 Plasma Phys. Control. Fusion 59 014027.

    [12]

    Igochine V, Piovesan P, Classen I G J, Dunne M, Gude A, Lauber P, Liu Y, Maraschek M, Marrelli L, Dermott R Mc, Reich M, Ryan D, Schneller M, Strumberger E, Suttrop W, Tardini G, Zohm H, The ASDEX Upgrade Team and The EUROfusion MST1 Team 2017 Nucl. Fusion 57 116027.

    [13]

    Todd A M M, Manickam J, Okabayashi M, Chance M S, Grimm R C, Greene J M, Johnson J L 1979 Nucl. Fusion 19 743.

    [14]

    Bernard L C, Helton F J, Moore R W, Todd T N 1983 Nucl. Fusion 23 1475.

    [15]

    Li Z-J, Chen W, Sun A-P, Yu L-M, Wang Z, Chen J-L, Xu J-Q, Li J-Q, Shi Z-B, Jiang M, Li Y-G, He X-X, Yang Z-C, Li J 2024 Acta Phys. Sin. 73 065202 (in Chinese) [李正吉, 陈伟, 孙爱萍, 于利明, 王卓, 陈佳乐, 许健强, 李继全, 石中兵, 蒋敏, 李永高, 何小雪, 杨曾辰, 李鉴2024 73 065202]

    [16]

    Zhu X-L, Chen W, Wang F, Wang Z-X 2023 Acta Phys. Sin. 72 215210 (in Chinese) [朱霄龙, 陈伟, 王丰, 王正汹2023 72 215210]

    [17]

    Shen Y, Dong J Q , He H D, Li J, Wu N, Zhao K J, Deng W 2024 J. Phys. Soc. Jpn. 93 104501.

    [18]

    Shen Y, Dong J Q , Pend X D, He H D, Li J X 2025 Phys. Rev. E 111 025208.

    [19]

    Lao L L, John H St, Stambaugh R D, Kellman A G, Pfeiffer W 1985 Nucl. Fusion 25 1611.

    [20]

    Gruber R, Troyon F, Berger D, Bernard L C, Rousset S, Schreiber R, Kerner W, Schneider W, Roberts K V 1981 Comput. Phys. Commun. 21 323.

    [21]

    Bernard L C, Helton F J, Moore R W 1981 Comput. Phys. Commu. 24 377.

    [22]

    Lao L L, Strait E J, Taylor T S, Chu M S, Ozeki T, Howl W, Stambaugh R D, Burrell K H, Chance M S, DeBoo J C, Gohil P, Greene J M, Groebner R J, Kellman A G, Mahdavi M Ali, Osborne T H, Porter G, Turnbull A D 1989 Plasma Phys. Control. Fusion 31 509.

    [23]

    Aydemir A Y, Kim J Y, Park B H, Seol J 2015 Phys. Plasmas 22, 032304.

    [24]

    Bondeson A, Vlad G, and Léutjens H 1992 Phys. Fluids B 4 1889.

    [25]

    Turnbull AD, Pearlstein LD, Bulmer .H, Lao LL, Haye RJ La 1999 Nucl. Fusion 39 1557.

    [26]

    Kerner W, Gruber R, Troyon F 1980 Phys. Rev. Lett. 44 536.

    [27]

    Troyon F, Gruber R, Saurenmann H, Semenzato S, Succi S 1984 Plasma Phys. Control. Fusion, 26, 209.

    [28]

    Troyon F and Gruber R 1985 Phys. Lett. 110A 29.

    [29]

    Bondeson A, Liu D-H, Söldner F X, Persson M, Baranov Yu F, Huysmans G T A 1999 Nucl. Fusion 39 1523.

    [30]

    Shen Y, Dong J-Q, He H-D, Pan W, Hao G-Z 2023 Acta Phys. Sin. 72 035203 (in Chinese) [沈勇, 董家齐, 何宏达, 潘卫, 郝广周 2023 72 035203]

    [31]

    Liu Y, Kirk A, Keeling D L, Kogan L, Du X D, Li L, Piron L, Ryan D A, Turnbull A D 2021 Nucl. Fusion 61 116022.

    [32]

    Wang S, Liu Y Q, Xia G L, Song X M, Hao G Z, Li L, Li B, Zhang N, Dong G Q, Bai X, Zheng G Y 2021 Plasma Phys. Control. Fusion 63 055019.

    [33]

    Haye R J La, Politzer P A, Brennan D P 2008 Nucl. Fusion 48 015005.

    [34]

    Taylor T S, John H St, Turnbull A D, Lin-Liu V R, Burrell K H, Chan V, Chu M S, Ferron J R, Lao L L, Haye R J La, Lazarus E A, Miller R L, Politzer P A, Schissel, Strait E J 1994 Plasma Phys. Control. Fusion 36 B229.

    [35]

    Turnbull A D, Brennan D P, Chu M S, Lao L L, Snyder P B 2005 Fusion Sci. Technol. 48 875.

    [36]

    Li G Q, Xu X Q, Snyder P B, Turnbull A D, Xia T Y, Ma C H, Xi P W 2014 Phys. Plasmas 21 102511.

  • [1] 沈勇, 董家齐, 何宏达, 潘卫, 郝广周. 托卡马克理想导体壁与磁流体不稳定性.  , doi: 10.7498/aps.72.20222043
    [2] 孙梓源, 王元震, 刘悦. 预测HL-2A托卡马克台基结构的MHD稳定性数值研究.  , doi: 10.7498/aps.71.20221098
    [3] 毕海亮, 魏来, 范冬梅, 郑殊, 王正汹. 旋转圆柱等离子体中撕裂模和Kelvin-Helmholtz不稳定性的激发特性.  , doi: 10.7498/aps.65.225201
    [4] 郑殊, 张甲鹏, 段萍, 魏来, 王先驱. 黏滞等离子体中双撕裂模不稳定性的数值模拟研究.  , doi: 10.7498/aps.62.025205
    [5] 魏新华, 周国成, 曹晋滨, 李柳元. 无碰撞电流片低频电磁模不稳定性:MHD模型.  , doi: 10.7498/aps.54.3228
    [6] 石秉仁, 隋国芳, 郭干城. 离子动力参数区托卡马克电阻性内扭曲模稳定性分析.  , doi: 10.7498/aps.45.801
    [7] 杨维纮, 胡希伟. 柱等离子体中广义磁流体方程组的简化形式与本征模解.  , doi: 10.7498/aps.41.910
    [8] 黄朝松, 李钧. 等离子体交换不稳定性的模耦合理论.  , doi: 10.7498/aps.41.783
    [9] 吴汉明. 自约束球形等离子体的平衡与稳定性.  , doi: 10.7498/aps.38.1833
    [10] 陈雁萍, R. J. HASTIE, 柯孚久, 蔡诗东, 陈骝. 高能俘获粒子对内扭曲模的稳定效应.  , doi: 10.7498/aps.37.546
    [11] 徐学桥, 霍裕平. 托卡马克中宏观束-等离子体扭曲模不稳定性研究.  , doi: 10.7498/aps.35.1259
    [12] 顾永年. 小环径比锐边界等离子体的扭曲模不稳定性.  , doi: 10.7498/aps.33.554
    [13] 石秉仁. 高比压环流器等离子体位形的稳定性.  , doi: 10.7498/aps.31.1308
    [14] 王中天. 非圆截面等离子体MHD不稳定性的研究.  , doi: 10.7498/aps.30.573
    [15] 周玉美, 蔡诗东. 磁化等离子体里高频模和低频模耦合的参量不稳定性.  , doi: 10.7498/aps.29.916
    [16] 庆承瑞, 周玉美. 环形非圆截面等离子体自由界面的磁流体平衡方程解.  , doi: 10.7498/aps.29.106
    [17] 顾永年, 邱乃贤. 椭圆截面等离子体柱的扭曲不稳定性.  , doi: 10.7498/aps.29.1367
    [18] 王中天. 内扭曲模稳定性的充分判据.  , doi: 10.7498/aps.28.135
    [19] 马腾才. 带有三角变形椭圆截面的环状轴对称等离子体柱的MHD平衡与稳定性.  , doi: 10.7498/aps.28.833
    [20] 霍裕平. 等离子体的静态稳定性.  , doi: 10.7498/aps.26.149
计量
  • 文章访问数:  10
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 上网日期:  2025-05-06

/

返回文章
返回
Baidu
map