Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Study of circular cross-section plasmas on the HL-2A tokamak: MHD equilibrium, stability and operational β limit

Shen Yong Dong Jia-qi Shi Zhong-bing He Hong-da Zhao Kai-jun Peng Xiao-dong Qu Hong-peng Li Jia Sun Ai-ping

Citation:

Study of circular cross-section plasmas on the HL-2A tokamak: MHD equilibrium, stability and operational β limit

Shen Yong, Dong Jia-qi, Shi Zhong-bing, He Hong-da, Zhao Kai-jun, Peng Xiao-dong, Qu Hong-peng, Li Jia, Sun Ai-ping
Article Text (iFLYTEK Translation)
PDF
Get Citation
  • Circular cross-section plasma is the most basic form of tokamak plasma and the fundamental configuration for magnetic confinement fusion experiments. This article is based on the HL-2A limiter discharge experiments to study the magnetohydrodynamic (MHD) equilibrium and MHD instability of tokamak plasmas in circular cross-section. The results showed that when q0=0.95, the internal kink mode of m/n=1/1 is always unstable. The increase in plasma β (=the ratio of thermal pressure to magnetic pressure) can lead to the appearance of external kink modes. The combination of axial safety factor q0 and edge safety factor qa determines the equilibrium configuration of the plasma and also affects the MHD stability of the equilibrium, but its growth rate is also related to the size of β. Under the condition of qa>2 and q0 slightly greater than 1, it is easy to achieve the stabilization of internal and surface kink modes. However the plasma becomes unstable again and the instability intensity increases as q0 continues to increase when q0 exceeds 1. As the poloidal specific pressure (βp) increases, the MHD instability develops, the equilibrium configuration of MHD elongates laterally, and the Shafranov displacement increases, which in turn has the effect for suppressing instability. Calculations have shown that the maximum β value imposed by the ideal MHD mode in a plasma with free boundary in tokamak experiments is proportional to the normalized current IN (=Ip(MA)/a (m)B0(T)), and the maximum specific pressure is calibrated as β(max)~2.01IN. The operational β limit of HL-2A circular cross-section plasma is approximately βNc≈2.0. A too high q0 is not conducive to MHD stability and leads to a decrease in the β limit. When q0=1.3, we obtain a maximum β_N of approximately 1.8. Finally, based on the existing circular cross-section plasma, some key factors affecting the operational β and the relationship between achievable high β and the calculated ideal β limits were discussed.
  • [1]

    Buttery R J, Park J M, McClenaghan J T, Weisberg D, Canik J, Ferron J, Garofalo A, Holcomb C T, Leuer J, Snyder P B, The Atom Project Team 2021 Nucl. Fusion 61 046028.

    [2]

    SarazinY, Hillairet J, Duchateau J L, Gaudimont K, Varennes R, Garbet X, Ghendrih Ph, Guirlet R, Pégourié B, Torre A 2020 Nucl. Fusion 60 016010.

    [3]

    Hender T C, Wesley J C, Bialek J 2007 Nucl. Fusion 47 S128.

    [4]

    Suzuki Y, Watanabe K Y, Sakakibara S 2020 Phys. Plasmas 27 102502.

    [5]

    Liu Y, Chapman I T, Saarelma S, Gryaznevich M P, Hender T C, Howell D F, JET-EFDA contributors 2009 Plasma Phys. Control. Fusion 51 115005.

    [6]

    Wolf R C, Biel W, Bock M F M de, Finken K H, Günter S, Hogeweij G M D, Jachmich S, Jakubowski M W, Jaspers R J E, Krämer-Flecken A, Koslowski H R, Lehnen M, Liang Y, Unterberg B, Varshney S K, Hellermann M von, Yu Q, Zimmermann O, Abdullaev S S, Donné A J H, Samm U, Schweer B, Tokar M, Westerhof E, the TEXTOR Team 2005 Nucl. Fusion 45 1700.

    [7]

    Zhao K J, Lan T, Dong J Q, Yan L W, Hong W Y, Yu C X, Liu A D, Qian J, Cheng J, Yu D L, Yang Q W, Ding X T, Liu Y, Pan C H 2006 Phys. Rev. Lett. 96 255004.

    [8]

    Chen W, Ding X T, Yang Q W, Liu Yi, Ji X Q, Zhang Y P, Zhou J, Yuan G L, Sun H J, Li W, Zhou Y, Huang Y, Dong J Q, Feng B B, Song X M, Shi Z B, Liu Z T, Song X Y, Li L C, Duan X R, Liu Y (HL-2A team) 2010 Phys. Rev. Lett. 105 185004.

    [9]

    Zhong W L, Shen Y, Zou X L, Gao J M, Shi Z B, Dong J Q, Duan X R, Xu M, Cui Z Y, Li1, X. Q. Ji Y G, Yu D L, Cheng J, Xiao G L, Jiang M, Yang Z C, Zhang B Y, Shi P W, Liu Z T, Song X M, Ding X T, Liu Y (HL-2A Team1) 2016 Phys. Rev. Lett. 117 045001.

    [10]

    Xu M, Duan X R, Liu Yi, Song X M, Liu D Q, Wang Y Q, Lu B, Yang Q W, Zheng G Y, Ding X T, Dong J Q, Hao G Z, Zhong W L, Shi Z B, Yan L W, Zou X L, Liu Y Q, Chen W, Xiao G L, Zhang Y P, Jiang M, Hou Y M, …, the HL-2A Team 2019 Nucl. Fusion 59 112017.

    [11]

    Piovesan P, Igochine V, Turco F, Ryan D A, Cianciosa M R, Liu Y Q, Marrelli L, Terranova D, Wilcox R S, Wingen A, Angioni C, Bock C, Chrystal C, Classen I, Dunne M, Ferraro N M, Fischer R, Gude A, Holcomb C T, Lebchy A, Luce T C, Maraschek M, McDermott R, Odstrčil T, Paz-Soldan C, Reich M, Sertoli M, Suttrop W, Taylor N Z, Weiland M, Willensdorfer M, The ASDEX Upgrade Team, The DIII-D Team and The EUROfusion MST1 Team 2009 Plasma Phys. Control. Fusion 59 014027.

    [12]

    Igochine V, Piovesan P, Classen I G J, Dunne M, Gude A, Lauber P, Liu Y, Maraschek M, Marrelli L, Dermott R Mc, Reich M, Ryan D, Schneller M, Strumberger E, Suttrop W, Tardini G, Zohm H, The ASDEX Upgrade Team and The EUROfusion MST1 Team 2017 Nucl. Fusion 57 116027.

    [13]

    Todd A M M, Manickam J, Okabayashi M, Chance M S, Grimm R C, Greene J M, Johnson J L 1979 Nucl. Fusion 19 743.

    [14]

    Bernard L C, Helton F J, Moore R W, Todd T N 1983 Nucl. Fusion 23 1475.

    [15]

    Li Z-J, Chen W, Sun A-P, Yu L-M, Wang Z, Chen J-L, Xu J-Q, Li J-Q, Shi Z-B, Jiang M, Li Y-G, He X-X, Yang Z-C, Li J 2024 Acta Phys. Sin. 73 065202 (in Chinese) [李正吉, 陈伟, 孙爱萍, 于利明, 王卓, 陈佳乐, 许健强, 李继全, 石中兵, 蒋敏, 李永高, 何小雪, 杨曾辰, 李鉴2024 73 065202]

    [16]

    Zhu X-L, Chen W, Wang F, Wang Z-X 2023 Acta Phys. Sin. 72 215210 (in Chinese) [朱霄龙, 陈伟, 王丰, 王正汹2023 72 215210]

    [17]

    Shen Y, Dong J Q , He H D, Li J, Wu N, Zhao K J, Deng W 2024 J. Phys. Soc. Jpn. 93 104501.

    [18]

    Shen Y, Dong J Q , Pend X D, He H D, Li J X 2025 Phys. Rev. E 111 025208.

    [19]

    Lao L L, John H St, Stambaugh R D, Kellman A G, Pfeiffer W 1985 Nucl. Fusion 25 1611.

    [20]

    Gruber R, Troyon F, Berger D, Bernard L C, Rousset S, Schreiber R, Kerner W, Schneider W, Roberts K V 1981 Comput. Phys. Commun. 21 323.

    [21]

    Bernard L C, Helton F J, Moore R W 1981 Comput. Phys. Commu. 24 377.

    [22]

    Lao L L, Strait E J, Taylor T S, Chu M S, Ozeki T, Howl W, Stambaugh R D, Burrell K H, Chance M S, DeBoo J C, Gohil P, Greene J M, Groebner R J, Kellman A G, Mahdavi M Ali, Osborne T H, Porter G, Turnbull A D 1989 Plasma Phys. Control. Fusion 31 509.

    [23]

    Aydemir A Y, Kim J Y, Park B H, Seol J 2015 Phys. Plasmas 22, 032304.

    [24]

    Bondeson A, Vlad G, and Léutjens H 1992 Phys. Fluids B 4 1889.

    [25]

    Turnbull AD, Pearlstein LD, Bulmer .H, Lao LL, Haye RJ La 1999 Nucl. Fusion 39 1557.

    [26]

    Kerner W, Gruber R, Troyon F 1980 Phys. Rev. Lett. 44 536.

    [27]

    Troyon F, Gruber R, Saurenmann H, Semenzato S, Succi S 1984 Plasma Phys. Control. Fusion, 26, 209.

    [28]

    Troyon F and Gruber R 1985 Phys. Lett. 110A 29.

    [29]

    Bondeson A, Liu D-H, Söldner F X, Persson M, Baranov Yu F, Huysmans G T A 1999 Nucl. Fusion 39 1523.

    [30]

    Shen Y, Dong J-Q, He H-D, Pan W, Hao G-Z 2023 Acta Phys. Sin. 72 035203 (in Chinese) [沈勇, 董家齐, 何宏达, 潘卫, 郝广周 2023 72 035203]

    [31]

    Liu Y, Kirk A, Keeling D L, Kogan L, Du X D, Li L, Piron L, Ryan D A, Turnbull A D 2021 Nucl. Fusion 61 116022.

    [32]

    Wang S, Liu Y Q, Xia G L, Song X M, Hao G Z, Li L, Li B, Zhang N, Dong G Q, Bai X, Zheng G Y 2021 Plasma Phys. Control. Fusion 63 055019.

    [33]

    Haye R J La, Politzer P A, Brennan D P 2008 Nucl. Fusion 48 015005.

    [34]

    Taylor T S, John H St, Turnbull A D, Lin-Liu V R, Burrell K H, Chan V, Chu M S, Ferron J R, Lao L L, Haye R J La, Lazarus E A, Miller R L, Politzer P A, Schissel, Strait E J 1994 Plasma Phys. Control. Fusion 36 B229.

    [35]

    Turnbull A D, Brennan D P, Chu M S, Lao L L, Snyder P B 2005 Fusion Sci. Technol. 48 875.

    [36]

    Li G Q, Xu X Q, Snyder P B, Turnbull A D, Xia T Y, Ma C H, Xi P W 2014 Phys. Plasmas 21 102511.

  • [1] Shen Yong, Dong Jia-Qi, He Hong-Da, Pan Wei, Hao Guang-Zhou. Ideal conductive wall and magnetohydrodynamic instability in Tokamak. Acta Physica Sinica, doi: 10.7498/aps.72.20222043
    [2] Sun Zi-Yuan, Wang Yuan-Zhen, Liu Yue. Numerical study on predicting MHD stability of HL-2A tokamak pedestal structure. Acta Physica Sinica, doi: 10.7498/aps.71.20221098
    [3] Bi Hai-Liang, Wei Lai, Fan Dong-Mei, Zheng Shu, Wang Zheng-Xiong. Excitations of tearing mode and Kelvin-Helmholtz mode in rotating cylindrical plasmas. Acta Physica Sinica, doi: 10.7498/aps.65.225201
    [4] Zheng Shu, Zhang Jia-Peng, Duan Ping, Wei Lai, Wang Xian-Qu. Numerical study of double tearing mode instability in viscous plasma. Acta Physica Sinica, doi: 10.7498/aps.62.025205
    [5] Wei Xin-Hua, Zhou Guo-Cheng, Cao Jin-Bin, Li Liu-Yuan. Low-frequency electromagnetic instabilities in a collisionless current sheet:magnetohydrodynamic model. Acta Physica Sinica, doi: 10.7498/aps.54.3228
    [6] SHI BING-REN, SUI GUO-FANG, GUO GAN-CHENG. STABILITY ANALYSIS OF TOKAMAK RESISTIVE INTERNAL KINK MODE IN ION KINETIC REGIME. Acta Physica Sinica, doi: 10.7498/aps.45.801
    [7] YANG WEI-HONG, HU XI-WEI. REDUCED FORM AND EIGENMODE SOLUTION OF GENERALIZED MHD EQUATIONS IN A CYLINDRICAL PLASMA. Acta Physica Sinica, doi: 10.7498/aps.41.910
    [8] HUANG CHAO-SONG, LI JUN. MODE COUPLING OF INTERCHANGE INSTABILITY IN PLASMAS. Acta Physica Sinica, doi: 10.7498/aps.41.783
    [9] WU HAN-MING. EQUILIBRIUM AND STABILITIES OF A SELF-CONFINED PLASMA BALL. Acta Physica Sinica, doi: 10.7498/aps.38.1833
    [10] CHEN YAN-PING, R. J. HASTIE, KE FU-JIU, CAI SHI-DONG, L. CHEN. ENERGETIC TRAPPED PARTICLE STABILIZING EFFECT OF INTERNAL KINK MODE. Acta Physica Sinica, doi: 10.7498/aps.37.546
    [11] Xu Xue-qiao, Huo Yu-ping. MACROSCOPICAL BEAM-PLASMA KINK INSTABILITY RESEARCH IN TOKAMAK. Acta Physica Sinica, doi: 10.7498/aps.35.1259
    [12] GU YONG-NIAN. KINK INSTABILITIES OF A SHARP BOUNDARY PLASMA WITH SMALL ASPECT RATIO. Acta Physica Sinica, doi: 10.7498/aps.33.554
    [13] Shi Bing-ren. STABILITY OF HIGH-BETA TOKAMAK PLASMAS. Acta Physica Sinica, doi: 10.7498/aps.31.1308
    [14] WANG ZHONG-TIAN. INVESTIGATION OF MHD INSTABILITY OF NONCIRCULAR TOKAMAK PLASMA. Acta Physica Sinica, doi: 10.7498/aps.30.573
    [15] ZHOU YU-MEI, CAI SHI-DONG. PARAMETRIC INSTABILITIES WITH WELL SEPARATED FREQUENCIES IN MAGNETIZED PLASMA. Acta Physica Sinica, doi: 10.7498/aps.29.916
    [16] QING CHENG-RUI, ZHOU YU-MEI. THE FREE BOUNDARY SOLUTION TO THE EQUATION OF PLASMA MAGNETOHYDRODYNAMIC EQUILIBRIUM WITH AXISYMMETRY AND NON-CIRCULAR CROSS-SECTION. Acta Physica Sinica, doi: 10.7498/aps.29.106
    [17] GU YONG-NIAN, QIU NAI-XIAN. KINK INSTABILITIES OF A PLASMA COLUMN WITH ELLIPTICAL CROSS-SECTION. Acta Physica Sinica, doi: 10.7498/aps.29.1367
    [18] WANG ZONG-TIAN. THE SUFFICIENT CRITERION FOR THE INTERNAL MHD KINK INSTABILITY. Acta Physica Sinica, doi: 10.7498/aps.28.135
    [19] MA TENG-CAI. MHD EQUILIBRIUM AND STABILITY OF AXIAL SYMMETRIC TOROIDAL PLASMA WITH AN ELLIPTIC CROSS SECTION OF TRIANGULAR DEFORMATION. Acta Physica Sinica, doi: 10.7498/aps.28.833
    [20] HUO YU-PING. THE STATIC STABILITY OF PLASMA. Acta Physica Sinica, doi: 10.7498/aps.26.149
Metrics
  • Abstract views:  40
  • PDF Downloads:  0
  • Cited By: 0
Publishing process
  • Available Online:  06 May 2025

/

返回文章
返回
Baidu
map