Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Study of circular cross-section plasmas in HL-2A tokamak: MHD equilibrium, stability and operational $ \boldsymbol{\beta } $ limit

SHEN Yong DONG Jiaqi SHI Zhongbing HE Hongda ZHAO Kaijun PENG Xiaodong QU Hongpeng LI Jia SUN Aiping

Citation:

Study of circular cross-section plasmas in HL-2A tokamak: MHD equilibrium, stability and operational $ \boldsymbol{\beta } $ limit

SHEN Yong, DONG Jiaqi, SHI Zhongbing, HE Hongda, ZHAO Kaijun, PENG Xiaodong, QU Hongpeng, LI Jia, SUN Aiping
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Circular cross-section plasma is the most basic form of tokamak plasma and the fundamental configuration for magnetic confinement fusion experiments. Based on the HL-2A limiter discharge experiments, the magnetohydrodynamic (MHD) equilibrium and MHD instability of circular cross-section tokamak plasmas are investigated in this work. The results show that when $ {q}_{0}=0.95 $, the internal kink mode of $ m/n=1/1 $ is always unstable. The increase in plasma $ \beta $ (the ratio of thermal pressure to magnetic pressure) can lead to the appearance of external kink modes. The combination of axial safety factor $ {q}_{0} $ and edge safety factor $ {q}_{{\mathrm{a}}} $ determines the equilibrium configuration of the plasma and also affects the MHD stability of the equilibrium, but its growth rate is also related to the size of $ \beta $. Under the condition of $ {q}_{{\mathrm{a}}} > 2 $ and $ {q}_{0} $ slightly greater than $ 1 $, the internal kink mode and surface kink mode can be easily stabilized. However the plasma becomes unstable again and the instability intensity increases as $ {q}_{0} $ continues to increase when $ {q}_{0} $ exceeds $ 1 $. As the poloidal specific pressure ($ {\beta }_{{\mathrm{p}}} $) increases, the MHD instability develops, the equilibrium configuration of MHD elongates laterally, and the Shafranov displacement increases, which in turn has the effect on suppressing instability. Calculations have shown that the maximum $ \beta $ value imposed by the ideal MHD mode in a plasma with free boundary in tokamak experiments is proportional to the normalized current $ {I}_{{\mathrm{N}}} $ ($ {I}_{{\mathrm{N}}}={I}_{{\mathrm{p}}}\left({\mathrm{M}}{\mathrm{A}}\right)/a\left({\mathrm{m}}\right){B}_{0}\left({\mathrm{T}}\right) $), and the maximum specific pressure $ \beta \left({\mathrm{m}}{\mathrm{a}}{\mathrm{x}}\right) $ is calibrated to be $ ~2.01{I}_{{\mathrm{N}}},{\mathrm{ }}{\mathrm{i}}. {\mathrm{e}}. $ $ \beta \left({\mathrm{m}}{\mathrm{a}}{\mathrm{x}}\right)~2.01{I}_{{\mathrm{N}}} $. The operational $ \beta $ limit of HL-2A circular cross-section plasma is approximately $ {\beta }_{{\mathrm{N}}}^{{\mathrm{c}}}\approx 2.0 $. Too high a value of $ {q}_{0} $ is not conducive to MHD stability and leads the $ \beta $ limit value to decrease. When $ {q}_{0}=1.3 $, we obtain a maximum value of $ {\beta }_{{\mathrm{N}}} $ of approximately $ 1.8 $. Finally, based on the existing circular cross-section plasma, some key factors affecting the operational $ \beta $ and the relationship between the achievable high $ \beta $ limit and the calculated ideal $ \beta $ limit are discussed.
  • 图 1  在4206次放电中, $ {q}_{0}=0.95 $, $ {\beta }_{{\mathrm{p}}}=0.8 $时, 装置与等离子体平衡位形(a)和等离子体平衡磁面结构(b), 以及不同$ {q}_{0} $与$ {\beta }_{{\mathrm{p}}} $下的(c)压强剖面、(d) $ q $剖面和(e), (f)电流密度($ {J}_{{\mathrm{m}}{\mathrm{i}}{\mathrm{d}}} $)剖面

    Figure 1.  (a) Equilibrium configuration constructed and (b) mapped flux surfaces for $ {q}_{0}=0.95 $ and $ {\beta }_{{\mathrm{p}}}=0.8 $ in HL-2A discharge #4206, and (c) pressure ($ p $) profile, (d) $ q $ profile and (e), (f) current density ($ {J}_{{\mathrm{m}}{\mathrm{i}}{\mathrm{d}}} $) profiles for different $ {q}_{0} $ and $ {\beta }_{{\mathrm{p}}} $.

    图 2  在4206次放电中, $ {\beta }_{{\mathrm{p}}}=1.2 $时, 不同$ {q}_{0} $对应的$ n=1 $扭曲模扰动位移在极向截面的投影(a), (c)及模的傅里叶分解图(b), (d) (a), (b) $ {q}_{0}=0.95 $; (c), (d) $ {q}_{0}=1.05 $. 横轴$ \left\langle{\psi }\right\rangle $代表归一化磁通

    Figure 2.  At $ {\beta }_{{\mathrm{p}}}=1.2 $ for discharge #4206, the mode displacement vectors projected onto the poloidal plane (a), (c) and the Fourier decomposition of the normal displacement (b), (d): (a), (b) $ {q}_{0}=0.95 $; (c), (d) $ {q}_{0}=1.05 $. The horizontal axis $ \left\langle{\psi }\right\rangle $ represents the normalized magnetic flux.

    图 3  在4044次放电中, $ {q}_{0}=0.95 $时, 不同$ {q}_{0} $对应的模扰动位移在极向截面的投影(a), (c)及模的傅里叶分解图(b), (d) (a), (b) $ {\beta }_{{\mathrm{p}}}=0.8 $; (c), (d) $ {\beta }_{{\mathrm{p}}}=1.8 $

    Figure 3.  Unstable kink mode for limiter discharge with $ {q}_{0}=0.95 $ for discharge #4044, the mode displacement vectors projected onto the poloidal plane (a), (c) and Fourier decomposition of the normal displacement (b), (d) $ : $ (a), (b) $ {\beta }_{{\mathrm{p}}}=0.8 $; (c), (d) $ {\beta }_{{\mathrm{p}}}=1.8 $

    图 4  在4044次放电中, $ {q}_{0}=1.05 $时, 不同$ {q}_{0} $对应的模扰动位移在极向截面的投影及模的傅里叶分解图 (a), (b) $ {\beta }_{{\mathrm{p}}}=0.8 $; (c), (d) $ {\beta }_{{\mathrm{p}}}=1.8 $

    Figure 4.  For discharge #4044, mode displacement vectors projected onto the poloidal plane (a), (c) with $ {q}_{0}=1.05 $and Fourier decomposition of the normal displacement (b), (d) $ :\left({\mathrm{a}}\right), {\mathrm{ }}\left({\mathrm{b}}\right){\beta }_{{\mathrm{p}}}=0.8;{\mathrm{ }}\left({\mathrm{c}}\right), {\mathrm{ }}\left({\mathrm{d}}\right){\beta }_{{\mathrm{p}}}=1.8 $.

    图 5  在4206次放电中, $ {\beta }_{{\mathrm{p}}}=2 $时, (a), (b) $ {q}_{0}=0.95 $, (c), (d) $ {q}_{0}=1.05 $和(e), (f) $ {q}_{0}=1.3 $对应的$ n=1 $扭曲模扰动位移在极向截面的投影及模的傅里叶分解图

    Figure 5.  At $ {\beta }_{{\mathrm{p}}}=2 $ for discharge #4206, the mode displacement vectors projected onto the poloidal plane for $ {q}_{0}=0.95 $ (a), $ 1.05 $ (c) and $ 1.3 $ (e), and Fourier decomposition of the normal displacement for $ {q}_{0}=0.95 $ (b), $ 1.05 $ (d) and $ 1.3 $ (f).

    图 6  对典型的限制器类型放电 (a) 固定$ {q}_{0}=1.05 $时, $ 1/{q}_{{\mathrm{a}}} $-$ {\beta }^{*} $平面内的扭曲稳定性; (b)不固定$ {q}_{0} $时, 使$ n=1 $模稳定的最大$ {\beta }^{*} $和$ 1/{q}_{{\mathrm{a}}} $; (c)不固定$ {q}_{0} $时, 使$ n=2 $模稳定的最大$ {\beta }^{*} $和$ 1/{q}_{{\mathrm{a}}} $

    Figure 6.  For the typical limiter discharges: (a) Kink stabilities in $ 1/{q}_{{\mathrm{a}}} $-$ {\beta }^{*} $plane at fixed $ {q}_{0}=1.05 $; (b) $ {\beta }^{*} $ vs. $ {q}_{{\mathrm{a}}} $ at unfixed $ {q}_{0} $, here $ {\beta }^{*} $ is the maximum achievable one limited by $ n=1 $ kink; (c) $ {\beta }^{*} $ vs. $ {q}_{{\mathrm{a}}} $ at unfixed $ {q}_{0} $, here $ {\beta }^{*} $ is the maximum achievable one limited by $ n=2 $ kink. The solid lines with arrows indicate the change direction of $ {\beta }^{*} $ as $ {q}_{{\mathrm{a}}} $ increases.

    图 7  基于4044次放电的计算结果 (a), (b)归一化增长率的平方值$ {\widehat{\gamma }}_{{\mathrm{N}}}^{2} $对$ {\beta }_{{\mathrm{p}}} $和$ {\beta }_{{\mathrm{N}}} $的依赖; (c)边缘最大扰动位移随归一化比压的变化. 注意图中, $ {\beta }_{{\mathrm{p}}} $是计算的平衡位形的实际极向比压. 菱形符号表示临界点

    Figure 7.  Calculations were based on the data of discharge #4044: (a), (b) Square value of normalized mode growth rate $ {\widehat{\gamma }}_{{\mathrm{N}}}^{2} $ as functions of $ {\beta }_{{\mathrm{p}}} $ and $ {\beta }_{{\mathrm{N}}} $; (c) maximum edge normal displacement as functions of normalized. Note that βp is the actual polar specific pressure of the calculated equilibrium configuration. The rhombus symbol represents the critical point

    Baidu
  • [1]

    Buttery R J, Park J M, McClenaghan J T, Weisberg D, Canik J, Ferron J, Garofalo A, Holcomb C T, Leuer J, Snyder P B, The Atom Project Team 2021 Nucl. Fusion 61 046028Google Scholar

    [2]

    SarazinY, Hillairet J, Duchateau J L, Gaudimont K, Varennes R, Garbet X, Ghendrih Ph, Guirlet R, Pégourié B, Torre A 2020 Nucl. Fusion 60 016010Google Scholar

    [3]

    Hender T C, Wesley J C, Bialek J 2007 Nucl. Fusion 47 S128Google Scholar

    [4]

    Suzuki Y, Watanabe K Y, Sakakibara S 2020 Phys. Plasmas 27 102502Google Scholar

    [5]

    Liu Y, Chapman I T, Saarelma S, Gryaznevich M P, Hender T C, Howell D F, JET-EFDA contributors 2009 Plasma Phys. Controlled Fusion 51 115005Google Scholar

    [6]

    Wolf R C, Biel W, Bock M F M de, Finken K H, Günter S, Hogeweij G M D, Jachmich S, Jakubowski M W, Jaspers R J E, Krämer-Flecken A, Koslowski H R, Lehnen M, Liang Y, Unterberg B, Varshney S K, Hellermann M von, Yu Q, Zimmermann O, Abdullaev S S, Donné A J H, Samm U, Schweer B, Tokar M, Westerhof E, the TEXTOR Team 2005 Nucl. Fusion 45 1700Google Scholar

    [7]

    Zhao K J, Lan T, Dong J Q, Yan L W, Hong W Y, Yu C X, Liu A D, Qian J, Cheng J, Yu D L, Yang Q W, Ding X T, Liu Y, Pan C H 2006 Phys. Rev. Lett. 96 255004Google Scholar

    [8]

    Chen W, Ding X T, Yang Q W, Liu Yi, Ji X Q, Zhang Y P, Zhou J, Yuan G L, Sun H J, Li W, Zhou Y, Huang Y, Dong J Q, Feng B B, Song X M, Shi Z B, Liu Z T, Song X Y, Li L C, Duan X R, Liu Y (HL-2A team) 2010 Phys. Rev. Lett. 105 185004Google Scholar

    [9]

    Zhong W L, Shen Y, Zou X L, Gao J M, Shi Z B, Dong J Q, Duan X R, Xu M, Cui Z Y, Li Y G, Ji X Q , Yu D L, Cheng J, Xiao G L, Jiang M, Yang Z C, Zhang B Y, Shi P W, Liu Z T, Song X M, Ding X T, Liu Y (HL-2A Team1) 2016 Phys. Rev. Lett. 117 045001

    [10]

    Xu M, Duan X R, Liu Yi, Song X M, Liu D Q, Wang Y Q, Lu B, Yang Q W, Zheng G Y, Ding X T, Dong J Q, Hao G Z, Zhong W L, Shi Z B, Yan L W, Zou X L, Liu Y Q, Chen W, Xiao G L, Zhang Y P, Jiang M, Hou Y M, …, the HL-2A Team 2019 Nucl. Fusion 59112017

    [11]

    Piovesan P, Igochine V, Turco F, Ryan D A, Cianciosa M R, Liu Y Q, Marrelli L, Terranova D, Wilcox R S, Wingen A, Angioni C, Bock C, Chrystal C, Classen I, Dunne M, Ferraro N M, Fischer R, Gude A, Holcomb C T, Lebchy A, Luce T C, Maraschek M, McDermott R, Odstrčil T, Paz-Soldan C, Reich M, Sertoli M, Suttrop W, Taylor N Z, Weiland M, Willensdorfer M, The ASDEX Upgrade Team, The DIII-D Team and The EUROfusion MST1 Team 2009 Plasma Phys. Controlled Fusion 59 014027

    [12]

    Igochine V, Piovesan P, Classen I G J, Dunne M, Gude A, Lauber P, Liu Y, Maraschek M, Marrelli L, Dermott R Mc, Reich M, Ryan D, Schneller M, Strumberger E, Suttrop W, Tardini G, Zohm H, The ASDEX Upgrade Team and The EUROfusion MST1 Team 2017 Nucl. Fusion 57 116027Google Scholar

    [13]

    Todd A M M, Manickam J, Okabayashi M, Chance M S, Grimm R C, Greene J M, Johnson J L 1979 Nucl. Fusion 19 743Google Scholar

    [14]

    Bernard L C, Helton F J, Moore R W, Todd T N 1983 Nucl. Fusion 23 1475.Google Scholar

    [15]

    李正吉, 陈伟, 孙爱萍, 于利明, 王卓, 陈佳乐, 许健强, 李继全, 石中兵, 蒋敏, 李永高, 何小雪, 杨曾辰, 李鉴 2024 73 065202Google Scholar

    Li Z J, Chen W, Sun A P, Yu L M, Wang Z, Chen J L, Xu J Q, Li J Q, Shi Z B, Jiang M, Li YG, He X X, Yang Z C, Li J 2024 Acta Phys. Sin. 73 065202Google Scholar

    [16]

    朱霄龙, 陈伟, 王丰, 王正汹 2023 72 215210Google Scholar

    Zhu X L, Chen W, Wang F, Wang Z X 2023 Acta Phys. Sin. 72 215210Google Scholar

    [17]

    Shen Y, Dong J Q, He H D, Li J, Wu N, Zhao K J, Deng W 2024 J. Phys. Soc. Jpn. 93 104501Google Scholar

    [18]

    Shen Y, Dong J Q, Pend X D, He H D, Li J X 2025 Phys. Rev. E 111 025208Google Scholar

    [19]

    Lao L L, John H St, Stambaugh R D, Kellman A G, Pfeiffer W 1985 Nucl. Fusion 25 1611

    [20]

    Gruber R, Troyon F, Berger D, Bernard L C, Rousset S, Schreiber R, Kerner W, Schneider W, Roberts K V 1981 Comput. Phys. Commun. 21 323Google Scholar

    [21]

    Bernard L C, Helton F J, Moore R W 1981 Comput. Phys. Commu. 24 377Google Scholar

    [22]

    Lao L L, Strait E J, Taylor T S, Chu M S, Ozeki T, Howl W, Stambaugh R D, Burrell K H, Chance M S, DeBoo J C, Gohil P, Greene J M, Groebner R J, Kellman A G, Mahdavi M Ali, Osborne T H, Porter G, Turnbull A D 1989 Plasma Phys. Controlled Fusion 31 509Google Scholar

    [23]

    Aydemir A Y, Kim J Y, Park B H, Seol J 2015 Phys. Plasmas 22 032304Google Scholar

    [24]

    Bondeson A, Vlad G, Léutjens H 1992 Phys. Fluids B 4 1889Google Scholar

    [25]

    Turnbull AD, Pearlstein LD, Bulmer . H, Lao LL, Haye RJ La 1999 Nucl. Fusion 39 1557

    [26]

    Kerner W, Gruber R, Troyon F 1980 Phys. Rev. Lett. 44 536Google Scholar

    [27]

    Troyon F, Gruber R, Saurenmann H, Semenzato S, Succi S 1984 Plasma Phys. Controlled Fusion 26 209Google Scholar

    [28]

    Troyon F, Gruber R 1985 Phys. Lett. 110A 29

    [29]

    Bondeson A, Liu D H, Söldner F X, Persson M, Baranov Yu F, Huysmans G T A 1999 Nucl. Fusion 39 1523Google Scholar

    [30]

    沈勇, 董家齐, 何宏达, 潘卫, 郝广周 2023 72 035203Google Scholar

    Shen Y, Dong J Q, He H D, Pan W, Hao G Z 2023 Acta Phys. Sin. 72 035203Google Scholar

    [31]

    Liu Y, Kirk A, Keeling D L, Kogan L, Du X D, Li L, Piron L, Ryan D A, Turnbull A D 2021 Nucl. Fusion 61 116022.Google Scholar

    [32]

    Wang S, Liu Y Q, Xia G L, Song X M, Hao G Z, Li L, Li B, Zhang N, Dong G Q, Bai X, Zheng G Y 2021 Plasma Phys. Controlled Fusion 63 055019Google Scholar

    [33]

    Haye R J La, Politzer P A, Brennan D P 2008 Nucl. Fusion 48 015005Google Scholar

    [34]

    Taylor T S, John H St, Turnbull A D, Lin-Liu V R, Burrell K H, Chan V, Chu M S, Ferron J R, Lao L L, Haye R J La, Lazarus E A, Miller R L, Politzer P A, Schissel, Strait E J 1994 Plasma Phys. Controlled Fusion 36 B229Google Scholar

    [35]

    Turnbull A D, Brennan D P, Chu M S, Lao L L, Snyder P B 2005 Fusion Sci. Technol. 48 875Google Scholar

    [36]

    Li G Q, Xu X Q, Snyder P B, Turnbull A D, Xia T Y, Ma C H, Xi P W 2014 Phys. Plasmas 21 102511Google Scholar

  • [1] Xu Ming, Xu Li-Qing, Zhao Hai-Lin, Li Ying-Ying, Zhong Guo-Qiang, Hao Bao-Long, Ma Rui-Rui, Chen Wei, Liu Hai-Qing, Xu Guo-Sheng, Hu Jian-Sheng, Wan Bao-Nian, the EAST Team. Summary of magnetohydrodynamic instabilities and internal transport barriers under condition of qmin$\approx $2 in EAST tokamak. Acta Physica Sinica, doi: 10.7498/aps.72.20230721
    [2] Zhu Xiao-Long, Chen Wei, Wang Feng, Wang Zheng-Xiong. Hybrid numerical simulation on fast particle transport induced by synergistic interaction of low- and medium-frequency magnetohydrodynamic instabilities in tokamak plasma. Acta Physica Sinica, doi: 10.7498/aps.72.20230620
    [3] Shen Yong, Dong Jia-Qi, He Hong-Da, Pan Wei, Hao Guang-Zhou. Ideal conductive wall and magnetohydrodynamic instability in Tokamak. Acta Physica Sinica, doi: 10.7498/aps.72.20222043
    [4] Liu Ying, Chen Zhi-Hua, Zheng Chun. Kelvin-Helmholtz instability in anisotropic viscous magnetized fluid. Acta Physica Sinica, doi: 10.7498/aps.68.20181747
    [5] Yuan Xiao-Xia, Zhong Jia-Yong. Simulations for two colliding plasma bubbles embedded into an external magnetic field. Acta Physica Sinica, doi: 10.7498/aps.66.075202
    [6] Yang Zheng-Quan, Li Cheng, Lei Yi-An. Magnetohydrodynamic simulation of conical plasma compression. Acta Physica Sinica, doi: 10.7498/aps.65.205201
    [7] SHI BING-REN, SUI GUO-FANG, GUO GAN-CHENG. STABILITY ANALYSIS OF TOKAMAK RESISTIVE INTERNAL KINK MODE IN ION KINETIC REGIME. Acta Physica Sinica, doi: 10.7498/aps.45.801
    [8] YANG WEI-HONG, HU XI-WEI. MAGNETOHYDRODYNAMICS WAVES IN A NONHOMEG-ENEOUS CURRENT-CARRYING CYLINDRICAL PLASMA. Acta Physica Sinica, doi: 10.7498/aps.45.595
    [9] KUANG GUANG-LI, G.WAIDMANN. THE PROPERTIES OF THE MHD OSCILLATIONS IN TEXTOR TOKAMAK PLASMAS. Acta Physica Sinica, doi: 10.7498/aps.43.1466
    [10] HUANG CHAO-SONG, LI JUN. MODE COUPLING OF INTERCHANGE INSTABILITY IN PLASMAS. Acta Physica Sinica, doi: 10.7498/aps.41.783
    [11] YANG WEI-HONG, HU XI-WEI. REDUCED FORM AND EIGENMODE SOLUTION OF GENERALIZED MHD EQUATIONS IN A CYLINDRICAL PLASMA. Acta Physica Sinica, doi: 10.7498/aps.41.910
    [12] WU HAN-MING. EQUILIBRIUM AND STABILITIES OF A SELF-CONFINED PLASMA BALL. Acta Physica Sinica, doi: 10.7498/aps.38.1833
    [13] Xu Xue-qiao, Huo Yu-ping. MACROSCOPICAL BEAM-PLASMA KINK INSTABILITY RESEARCH IN TOKAMAK. Acta Physica Sinica, doi: 10.7498/aps.35.1259
    [14] GU YONG-NIAN. KINK INSTABILITIES OF A SHARP BOUNDARY PLASMA WITH SMALL ASPECT RATIO. Acta Physica Sinica, doi: 10.7498/aps.33.554
    [15] Shi Bing-ren. STABILITY OF HIGH-BETA TOKAMAK PLASMAS. Acta Physica Sinica, doi: 10.7498/aps.31.1308
    [16] WANG ZHONG-TIAN. INVESTIGATION OF MHD INSTABILITY OF NONCIRCULAR TOKAMAK PLASMA. Acta Physica Sinica, doi: 10.7498/aps.30.573
    [17] GU YONG-NIAN, QIU NAI-XIAN. KINK INSTABILITIES OF A PLASMA COLUMN WITH ELLIPTICAL CROSS-SECTION. Acta Physica Sinica, doi: 10.7498/aps.29.1367
    [18] QING CHENG-RUI, ZHOU YU-MEI. THE FREE BOUNDARY SOLUTION TO THE EQUATION OF PLASMA MAGNETOHYDRODYNAMIC EQUILIBRIUM WITH AXISYMMETRY AND NON-CIRCULAR CROSS-SECTION. Acta Physica Sinica, doi: 10.7498/aps.29.106
    [19] MA TENG-CAI. MHD EQUILIBRIUM AND STABILITY OF AXIAL SYMMETRIC TOROIDAL PLASMA WITH AN ELLIPTIC CROSS SECTION OF TRIANGULAR DEFORMATION. Acta Physica Sinica, doi: 10.7498/aps.28.833
    [20] WANG ZONG-TIAN. THE SUFFICIENT CRITERION FOR THE INTERNAL MHD KINK INSTABILITY. Acta Physica Sinica, doi: 10.7498/aps.28.135
Metrics
  • Abstract views:  327
  • PDF Downloads:  6
  • Cited By: 0
Publishing process
  • Received Date:  07 April 2025
  • Accepted Date:  17 April 2025
  • Available Online:  06 May 2025

/

返回文章
返回
Baidu
map