-
The evolution of nanoscale structural heterogeneity and its effect on magnetic properties of Fe80Si9B10Cu1 amorphous alloy during structural relaxation after being annealed for different times are investigated in this work. The nanoscale structural heterogeneity is found to degenerate gradually with relaxation by using the small-angle X-ray scattering and atomic force microscope. Combined with Mössbauer spectroscopy analysis results, the enhanced comprehensive soft magnetic properties of the relaxed alloys can be attributed to the degeneration of nanoscale structural heterogeneity. From the flow unit model, the volume fraction of flow units decreases with relaxation proceeding, and some of the flow units annihilate and transform into the ideal elastic matrix. On the one hand, the relaxed sample with greater packing density has stronger magnetic exchange interaction and higher saturation magnetic flux intensity. On the other hand, the number density of quasi-dislocation dipoles decreases with the annihilation of flow units in the relaxation process, leading the pinning effect of the domain wall to be weakened. Consequently, the magnetic anisotropy decreases after relaxation, which results in the reduction of coercivity. In this work, the structural mechanism of the evolution of magnetic properties in the relaxation process of Fe80Si9B10Cu1 amorphous alloy is investigated from the perspective of structural heterogeneity, which is helpful in establishing the correlation between the structure and magnetic properties of Fe-based amorphous alloys.
[1] Jiang H Y, Shang T T, Xian H J, Sun B, Zhang Q, Yu Q, Bai H, Gu L, Wang W 2020 Small Struct. 2 2000057
Google Scholar
[2] Cheng Y Q, Ma E 2011 Prog. Mater. Sci. 56 379
Google Scholar
[3] Chen D Z, Shi C Y, An Q, Zeng Q, Mao W L, Goddard W A, III G, Greer J R 2015 Science 349 1306
Google Scholar
[4] Hirata A, Guan P, Fujita T, Hirotsu Y, Inoue A, Yavari A R, Sakurai T, Chen M 2011 Nat. Mater. 10 28
Google Scholar
[5] Sheng H W, Luo W K, Alamgir F M, Bai J M, Ma E 2006 Nature 439 419
Google Scholar
[6] 管鹏飞, 王兵, 吴义成, 张珊, 尚宝双, 胡远超, 苏锐, 刘琪 2017 66 176112
Google Scholar
Guan P F, Wang B, Wu Y C, Zhang S, Shang B S, Hu Y C, Su R, Liu Q 2017 Acta Phys. Sin. 66 176112
Google Scholar
[7] Liu C Y, Maaß R 2018 Adv. Funct. Mater. 28 1800388
Google Scholar
[8] Liu Y H, Wang D, Nakajima K, Zhang W, Hirata A, Nishi T, Inoue A, Chen M W 2011 Phys. Rev. Lett. 106 125504
Google Scholar
[9] 孙星, 默广, 赵林志, 戴兰宏, 吴忠华, 蒋敏强 2017 66 176109
Google Scholar
Sun X, Mo G, Zhao L Z, Dai L H, Wu Z H, Jiang M Q 2017 Acta Phys. Sin. 66 176109
Google Scholar
[10] Wang Z, Wen P, Huo L S, Bai H Y, Wang W H 2012 Appl. Phys. Lett. 101 121906
Google Scholar
[11] Wang Z, Wang W H 2019 Natl. Sci. Rev. 6 304
Google Scholar
[12] Wang Z, Sun B A, Bai H Y, Wang W H 2014 Nat. Commun. 5 5823
Google Scholar
[13] Zhu F, Song S, Reddy K M, Hirata A, Chen M 2018 Nat. Commun. 9 3965
Google Scholar
[14] Qiao J C, Wang Q, Pelletier J M, Kato H, Casalini R, Crespo D, Pineda E, Yao Y, Yang Y 2019 Prog. Mater. Sci. 104 250
Google Scholar
[15] Bitoh T, Makino A, Inoue A 2006 J. Appl. Phys. 99 08F102
Google Scholar
[16] Lu Z, Chen X, Liu X, Lin D, Wu Y, Zhang Y, Wang H, Jiang S, Li H, Wang X, Lu Z 2020 npj Comput. Mater. 6 187
Google Scholar
[17] Zhao C C, Inoue A, Kong F L, Zhang J Y, Chen C J, Shen B L, Al-Marzouki F, Greer A L 2020 J. Alloy. Compd. 843 155917
Google Scholar
[18] Fan Y, Zhang S, Miao J, Zhang X, Chen C, Zhang W, Wei R, Wang T, Li F 2020 Intermetallics 127 106959
Google Scholar
[19] Yang Z Z, Zhu L, Ye L X, Gao X, Jiang S S, Yang H, Wang Y G 2021 J. Non-Cryst. Solids 571 121078
Google Scholar
[20] Yang Z Z, Jiang S S, Ye L X, Zhu C, Gao X, Yang H, Wang Y G 2022 J. Non-Cryst. Solids 581 121433
Google Scholar
[21] Yang Z Z, Zhu L, Jiang S S, Zhu C, Xu Q H, Lin Y, Chen F G, Wang Y G 2022 J. Alloy. Compd. 904 164067
Google Scholar
[22] Liu Y, Pan J, Li L, Cheng H 2019 Appl. Phys. A: Mater. Sci. Proc. 125 297
Google Scholar
[23] Garcia R, Gomez C J, Martinez N F, Patil S, Dietz C, Magerle R 2006 Phys. Rev. Lett. 97 016103
Google Scholar
[24] Zhu F, Nguyen H K, Song S X, Aji D P, Hirata A, Wang H, Nakajima K, Chen M W 2016 Nat. Commun. 7 11516
Google Scholar
[25] Karabacak T, Zhao Y P, Wang G C, Lu T M 2001 Phys. Rev. B 64 085323
Google Scholar
[26] Yang Y, Zeng J F, Volland A, Blandin J J, Gravier S, Liu C T 2012 Acta Mater. 60 5260
Google Scholar
[27] Babilas R, Mariola K G, Burian A, Temleitner L 2016 J. Magn. Magn. Mater. 406 171
Google Scholar
[28] Dai J, Wang Y G, Yang L, Xia G T, Zeng Q S, Lou H B 2017 J. Alloy. Compd. 695 1266
Google Scholar
[29] Pradell T, Clavaguera N, Zhu J, Clavagueramora M T 1995 J. Phys.: Condens. Matter 7 4129
Google Scholar
[30] Blazquez J S, Lozano-Perez S, Conde A 2000 Mater. Lett. 45 246
Google Scholar
[31] Gallagher K A, Willard M A, Zabenkin V N, Laughlin D E, McHenry M E 1999 J. Appl. Phys. 85 5130
Google Scholar
-
图 3 (a) 淬态和不同弛豫态Fe80Si9B10Cu1合金的SAXS曲线; (b) Porod定律与 (c) Guinier定律分析样品的散射曲线; (d) 线性拟合小q区域的散射曲线所得到的回转半径Rg
Figure 3. (a) SAXS profiles of the as-quenched and relaxed Fe80Si9B10Cu1 alloys; the analysis results of (b) Porod’s law and (c) Guinier’s law of scattering curves for all specimens; (d) the average radius of gyration Rg obtained by linearly fitting scattering curves for small q regions.
图 6 (a) 淬态与不同弛豫态Fe80Si9B10Cu1合金的室温穆斯堡尔谱; (b) 从穆斯堡尔谱中提取出的超精细场分布; (c) 淬态和不同弛豫态样品的B-H回线; (d) 饱和磁感应强度Bs、平均超精细场Bhfa、强度比A23以及矫顽力Hc随关联长度的变化
Figure 6. (a) Room-temperature Mössbauer spectra of as-quenched and different relaxed Fe80Si9B10Cu1 alloys; (b) the hyperfine magnetic-field distributions extracted from these spectra; (c) B-H curves of as-quenched and different relaxed samples; (d) saturated magnetic flux density Bs, average hyperfine field Bhfa, intensity ratio A23, and coercivity Hc as functions of the correlation length.
表 1 穆斯堡尔谱超精细参数
Table 1. Hyperfine parameters of the Mössbauer spectra
Samples Bhfa/T IS/
(mm·s–1)DTI/
(mm·s–1)QS/
(mm·s–1)As-quenched 24.87 –0.054 0.0062 –0.014 3 min 25.46 –0.075 0.0053 –0.023 5 min 25.63 –0.066 0.0066 –0.018 8 min 25.85 –0.096 0.0076 –0.019 -
[1] Jiang H Y, Shang T T, Xian H J, Sun B, Zhang Q, Yu Q, Bai H, Gu L, Wang W 2020 Small Struct. 2 2000057
Google Scholar
[2] Cheng Y Q, Ma E 2011 Prog. Mater. Sci. 56 379
Google Scholar
[3] Chen D Z, Shi C Y, An Q, Zeng Q, Mao W L, Goddard W A, III G, Greer J R 2015 Science 349 1306
Google Scholar
[4] Hirata A, Guan P, Fujita T, Hirotsu Y, Inoue A, Yavari A R, Sakurai T, Chen M 2011 Nat. Mater. 10 28
Google Scholar
[5] Sheng H W, Luo W K, Alamgir F M, Bai J M, Ma E 2006 Nature 439 419
Google Scholar
[6] 管鹏飞, 王兵, 吴义成, 张珊, 尚宝双, 胡远超, 苏锐, 刘琪 2017 66 176112
Google Scholar
Guan P F, Wang B, Wu Y C, Zhang S, Shang B S, Hu Y C, Su R, Liu Q 2017 Acta Phys. Sin. 66 176112
Google Scholar
[7] Liu C Y, Maaß R 2018 Adv. Funct. Mater. 28 1800388
Google Scholar
[8] Liu Y H, Wang D, Nakajima K, Zhang W, Hirata A, Nishi T, Inoue A, Chen M W 2011 Phys. Rev. Lett. 106 125504
Google Scholar
[9] 孙星, 默广, 赵林志, 戴兰宏, 吴忠华, 蒋敏强 2017 66 176109
Google Scholar
Sun X, Mo G, Zhao L Z, Dai L H, Wu Z H, Jiang M Q 2017 Acta Phys. Sin. 66 176109
Google Scholar
[10] Wang Z, Wen P, Huo L S, Bai H Y, Wang W H 2012 Appl. Phys. Lett. 101 121906
Google Scholar
[11] Wang Z, Wang W H 2019 Natl. Sci. Rev. 6 304
Google Scholar
[12] Wang Z, Sun B A, Bai H Y, Wang W H 2014 Nat. Commun. 5 5823
Google Scholar
[13] Zhu F, Song S, Reddy K M, Hirata A, Chen M 2018 Nat. Commun. 9 3965
Google Scholar
[14] Qiao J C, Wang Q, Pelletier J M, Kato H, Casalini R, Crespo D, Pineda E, Yao Y, Yang Y 2019 Prog. Mater. Sci. 104 250
Google Scholar
[15] Bitoh T, Makino A, Inoue A 2006 J. Appl. Phys. 99 08F102
Google Scholar
[16] Lu Z, Chen X, Liu X, Lin D, Wu Y, Zhang Y, Wang H, Jiang S, Li H, Wang X, Lu Z 2020 npj Comput. Mater. 6 187
Google Scholar
[17] Zhao C C, Inoue A, Kong F L, Zhang J Y, Chen C J, Shen B L, Al-Marzouki F, Greer A L 2020 J. Alloy. Compd. 843 155917
Google Scholar
[18] Fan Y, Zhang S, Miao J, Zhang X, Chen C, Zhang W, Wei R, Wang T, Li F 2020 Intermetallics 127 106959
Google Scholar
[19] Yang Z Z, Zhu L, Ye L X, Gao X, Jiang S S, Yang H, Wang Y G 2021 J. Non-Cryst. Solids 571 121078
Google Scholar
[20] Yang Z Z, Jiang S S, Ye L X, Zhu C, Gao X, Yang H, Wang Y G 2022 J. Non-Cryst. Solids 581 121433
Google Scholar
[21] Yang Z Z, Zhu L, Jiang S S, Zhu C, Xu Q H, Lin Y, Chen F G, Wang Y G 2022 J. Alloy. Compd. 904 164067
Google Scholar
[22] Liu Y, Pan J, Li L, Cheng H 2019 Appl. Phys. A: Mater. Sci. Proc. 125 297
Google Scholar
[23] Garcia R, Gomez C J, Martinez N F, Patil S, Dietz C, Magerle R 2006 Phys. Rev. Lett. 97 016103
Google Scholar
[24] Zhu F, Nguyen H K, Song S X, Aji D P, Hirata A, Wang H, Nakajima K, Chen M W 2016 Nat. Commun. 7 11516
Google Scholar
[25] Karabacak T, Zhao Y P, Wang G C, Lu T M 2001 Phys. Rev. B 64 085323
Google Scholar
[26] Yang Y, Zeng J F, Volland A, Blandin J J, Gravier S, Liu C T 2012 Acta Mater. 60 5260
Google Scholar
[27] Babilas R, Mariola K G, Burian A, Temleitner L 2016 J. Magn. Magn. Mater. 406 171
Google Scholar
[28] Dai J, Wang Y G, Yang L, Xia G T, Zeng Q S, Lou H B 2017 J. Alloy. Compd. 695 1266
Google Scholar
[29] Pradell T, Clavaguera N, Zhu J, Clavagueramora M T 1995 J. Phys.: Condens. Matter 7 4129
Google Scholar
[30] Blazquez J S, Lozano-Perez S, Conde A 2000 Mater. Lett. 45 246
Google Scholar
[31] Gallagher K A, Willard M A, Zabenkin V N, Laughlin D E, McHenry M E 1999 J. Appl. Phys. 85 5130
Google Scholar
Catalog
Metrics
- Abstract views: 5677
- PDF Downloads: 126
- Cited By: 0