搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

大气压填充式反应器等离子体解离二氧化碳反应机理数值模拟研究

彭毅 汪纯婧 李晶 高凯悦 徐汉城 陈传杰 钱沐杨 董冰岩 王德真

引用本文:
Citation:

大气压填充式反应器等离子体解离二氧化碳反应机理数值模拟研究

彭毅, 汪纯婧, 李晶, 高凯悦, 徐汉城, 陈传杰, 钱沐杨, 董冰岩, 王德真

Numerical Simulation Study on the Mechanism of Plasma Dissociation of Carbon Dioxide in Atmospheric Pressure Packed-Bed Reactors

Peng Yi, Wang ChunJing, Li Jing, Gao KaiYue, Xu HanCheng, Chen ChuanJie, Qian MuYang, Dong BinYan, WangDeZhen
PDF
导出引用
  • 本文基于PASSKEy构建了一个多层介质球的二氧化碳填充式介质阻挡放电二维模型,对此模型的流注传播演化动态过程进行了深入系统的仿真研究。研究指出第一层和第二层介质球的内侧不是二氧化碳解离等反应发生的主要区域,主要区域为流注传播路径以及第一层介质球的外侧。同时,本文还对此模型的电子密度与电场的演化进行了深入解析,并给出了相应的物理机理和对应特征点的局部电场演化。此外,本文还分别研究了空间电荷和表面电荷的时空演化,指出整体上空间中的负电荷随着流注的形成和传播,不断收缩于流注内部和介质表面,而正电荷主导放电空间的电荷分布。并且通过展开特定介质球的表面,给出了具体的分布角度范围和演变趋势。最后本文还研究了一氧化碳粒子和二氧化碳离子和氧气离子的时空演化机理,并且对放电空间中所有的电子和二氧化碳离子的空间能量沉积进行了积分,数据表明在此模型中的总能量沉积值约为1.428 mJ/m,二氧化碳离子的沉积能量约为0.1251 mJ/m,占比达8.8%。
    This article presents a comprehensive study on the streamer propagation and electric field distribution within a two-dimensional fluid model of a packed bed reactor (PBR) filled with carbon dioxide, utilizing the PASSKEy simulation platform. The research delves into the spatiotemporal evolution of electron density, electric fields and key plasma species in the discharge process. The model simulates a PBR with layered dielectric spheres, indicates that the inner sides of the first and second layers of dielectric spheres are not the primary regions for reactions such as CO2 dissociation; instead, the main regions are along the streamer propagation path and the outer side of the first layer of dielectric spheres. The study by examining the propagation of streamers in the presence of an electric field, highlighting the influence of anode voltage rise and dielectric polarization on local electric field enhancement. This enhancement leads to increased electron density and temperature, facilitating streamer propagation and the formation of filamentary microdischarges and surface ionization waves. The article provides a detailed analysis of the local electric field evolution at specific points within the PBR. The research further investigates the spatiotemporal dynamics of spatial and surface charges, revealing that negative charges concentrate within the streamer and on the dielectric surface, with densities significantly higher than positive charges. The positive charges' distribution is closely related to the streamer's path, and over time, they come to dominate the charge distribution in the discharge space. The study also explores the surface charge deposition on the dielectric spheres, discusses the evolution trends of the distribution. Additionally, the article discusses the temporal and spatial evolution of key plasma species, including ions and radicals, and their contribution to the overall discharge characteristics. The production mechanisms of carbon monoxide particles, carbon dioxide ions, and oxygen ions are analyzed, with a focus on their spatial distribution and correlation with electron density. The study concludes with an examination of the energy deposition within the PBR, integrating the spatial energy deposition of electrons and major positive ions. The results indicate a total energy deposition value of approximately 1.428 mJ/m, with carbon dioxide ions accounting for 8.8% of this value.
  • [1]

    Bogaerts A, Tu X, Whitehead J C, Centi G, Lefferts L, Guaitella O, Azzolina-Jury F, Kim H, Murphy A B, Schneider W F 2020 J. Phys. D: Appl. Phys. 53443001

    [2]

    George A, Shen B X, Craven M, Wang Y L, Kang D R, Wu C F, Tu X 2021 Renew. Sust. Energ. Rev. 135109702

    [3]

    Bogaerts A, Neyts E C, Guaitella O, Murphy A B 2022 Plasma Sources Sci. Technol. 31053002

    [4]

    Sun S R, Wang H X, Bogaerts A 2020 Plasma Sources Sci. Technol. 29025012

    [5]

    Zhang T H, Wang X C, Zhang Y T 2021 Acta Phys. Sin. 70215201(in Chinese) [张泰恒, 王绪成, 张远涛2021 70215201]

    [6]

    Hinterman E, Hoffman J A 2020 Acta Astronautica 170678

    [7]

    McClean J B, Hoffman J A, Hecht M H, Aboobaker A M, Araghi K R, Elangovan S, Graves C R, Hartvigsen J J, Hinterman E D, Liu A M, Meyen F E, Nasr M, Ponce A, Rapp D, SooHoo J G, Swobada J, Voecks G E 2022 Acta Astronautica 192301

    [8]

    Wang W Z, Kim H H, Laer K V, Bogaerts A 2018 Chem. Eng. J. 3342467

    [9]

    Kruszelnicki J, Engeling K W, Foster J E, Xiong Z M, Kushner M J 2017 J. Phys. D: Appl. Phys. 50025203

    [10]

    Engeling K W, Kruszelnicki J, Kushner M J, Foster J E 2018 Plasma Sources Sci. Technol. 27085002

    [11]

    Ren C H, Huang B D, Luo Y, Zhang C, Shao T 2023 Plasma Chem. Plasma Process 431613

    [12]

    Wang W Z, Butterworth T, Bogaerts A 2021 J. Phys. D: Appl. Phys. 54214004

    [13]

    Cheng H, Ma M Y, Zhang Y Z, Liu D W, Lu X P 2020 J. Phys. D: Appl. Phys. 53144001

    [14]

    Lu N, Liu N, Zhang C K, Su Y, Shang K F, Jiang N, Li J, Wu Y 2021 Chem. Eng. J. 417129283

    [15]

    Zhu M, Hu S Y, Wu F F, Ma H, Xie S Y, Zhang C H 2022 J. Phys. D: Appl. Phys. 55225207

    [16]

    Kaliyappan P, Paulus A, Haen J D, Pieter S, Uytdenhouwen Y, Hafezkhiabani N, Bogaerts A, Meynen V, Elen K, Hardy A, Bael M V 2021 J. CO2 Util. 46101468

    [17]

    Uytdenhouwen Y, Meynen V, Cool P, Bogaerts A 2020 Catalysts 10530

    [18]

    Uytdenhouwen Y, Alphen S V, Michielsen I, Meynen V, Cool P, Bogaerts A 2018 Chem. Eng. J. 348557

    [19]

    Li X R, Dijcks S, Sun A B, Nijdam S, Teunissen J 2024 Plasma Sources Sci. Technol. 33095009

    [20]

    Marskar R 2024 Plasma Sources Sci. Technol. 33025023

    [21]

    Zhou C, Yuan C X, Kudryavtsev A, Katircioglu T Y, Rafatov I, Yao J F 2023 Plasma Sources Sci. Technol. 32015010

    [22]

    Fu Q, Wang C, Wang Y F, Chang Z S 2022 Acta Phys. Sin. 71115204(in Chinese) [付强, 王聪, 王语菲, 常正实2021 71115204]

    [23]

    Zhang Z H, Zhang G J, Shao X J, Chang Z S, Peng Z Y, Xu H 2012 Acta Phys. Sin. 61245205(in Chinese) [张增辉, 张冠军, 邵先军, 常正实, 彭兆裕, 许昊2012 61245205]

    [24]

    Li Y, Mu H B, Deng J B, Zhang G J, Wang S H 2013 Acta Phys. Sin. 62124703(in Chinese) [李元, 穆海宝, 邓军波, 张冠军, 王曙鸿2013 62124703]

    [25]

    Xiao J P, Dai D, Tarasenko V F, Shao T 2023 Acta Phys. Sin. 72105201(in Chinese) [肖江平, 戴栋, Victor F. Tarasenko, 邵涛2023 72105201]

    [26]

    Zhu Y F, Chen X C, Wu Y, Starikovskaia S 2021 PASSKEy code [software]. Available from http://www.plasma-tech.net/parser/passkey/, Science and Technology of Plasma Dynamics Laboratory, Xi’an, China and Laboratoire de Physique des Plasmas, Paris, France

    [27]

    Zhu Y F, Chen X C, Wu Y, Hao J B, Ma X G, Lu P F, Tardiveau P 2021 Plasma Sources Sci. Technol. 30075025

    [28]

    Pancheshnyi S 2014 Plasma Sources Sci. Technol. 24015023

    [29]

    Zhu Y F, Wu Y, Li J 2020 arXiv arXiv.2005.10021

    [30]

    Guo Y L, Li Y R, Zhu Y F, Sun A B 2023 Plasma Sources Sci. Technol. 32025003

    [31]

    Bourdon A, Pasko V P, Liu N Y, Célestin S, Ségur P, Marode E 2007 Plasma Sources Sci. Technol. 16656

    [32]

    Teich, Timm H 1967 Z. Phys. 199378

    [33]

    Przybylski A 1962 Z. Phys. 168504

    [34]

    Sroka W 1970 Zeitschrift für Naturforschung A 251437

    [35]

    Bagheri B, Teunissen J, Ebert U 2020 Plasma Sources Sci. Technol. 29125021

    [36]

    Levko D, Pachuilo M, Raja L L 2017 J. Phys. D: Appl. Phys. 50354004

    [37]

    Zhu Y F, Starikovskaia S 2018 Plasma Sources Sci. Technol. 27124007

    [38]

    Peng B F, Jiang N, Zhu Y F, Wu Y 2024 Plasma Sources Sci. Technol. 33045018

    [39]

    Itikawa database, www.lxcat.net, retrieved on May 19, 2024.

    [40]

    IST-Lisbon database, www.lxcat.net, retrieved on May 19, 2024.

    [41]

    Hagelaar G J M, Pitchford L C 2005 Plasma Sources Sci. Technol. 14722

    [42]

    Bogaerts A, Wang W Z, Berthelot A, Guerra V 2016 Plasma Sources Sci. Technol. 25055016

    [43]

    Qian M Y, Zhong W S, Kang J S, Liu S Q, Ren C S, Zhang J L, Wang D Z 2020 Jpn. J. Appl. Phys. 59066003

    [44]

    Chen Y L, Peng Y, Qian M Y, Liu S Q, Zhang J L, Wang D Z 2022 Jpn. J. Appl. Phys. 61086001

  • [1] 程亮元, 徐进良. 流动方向对超临界二氧化碳流动传热特性的影响.  , doi: 10.7498/aps.73.20231142
    [2] 韩晓静, 杨静, 张佳莉, 刘冬雪, 石标, 王鹏阳, 赵颖, 张晓丹. 反应等离子体沉积二氧化锡电子传输层及其在钙钛矿太阳电池中的应用.  , doi: 10.7498/aps.72.20230693
    [3] 曾平, 宋盼, 王小伟, 赵晶, 张栋文, 袁建民, 赵增秀. 强飞秒激光场下二氧化碳二聚体四价离子的多体解离动力学.  , doi: 10.7498/aps.72.20230699
    [4] 孙辉, 刘婧楠, 章立新, 杨其国, 高明. 超临界二氧化碳类液-类气区边界线数值分析.  , doi: 10.7498/aps.71.20211464
    [5] 刘祥群, 刘宇, 凌艺铭, 雷久侯, 曹金祥, 李瑾, 钟育民, 谌明, 李艳华. 等离子体风洞中释放二氧化碳降低电子密度.  , doi: 10.7498/aps.71.20212353
    [6] 马书鹏, 林飞宇, 罗媛, 朱刘, 郭学益, 杨英. 多步旋涂过程中CsPbBr3无机钙钛矿成膜机理.  , doi: 10.7498/aps.71.20220171
    [7] 孔得霖, 杨冰彦, 何锋, 韩若愚, 缪劲松, 宋廷鲁, 欧阳吉庭. 大气压电晕等离子体射流制备氧化钛薄膜.  , doi: 10.7498/aps.70.20202181
    [8] 张亚容, 韩乾翰, 郭颖, 张菁, 石建军. 大气压脉冲放电等离子体射流特性及机理研究.  , doi: 10.7498/aps.70.20202246
    [9] 钟旺燊, 陈野力, 钱沐杨, 刘三秋, 张家良, 王德真. 大气压非平衡等离子体甲烷干法重整零维数值模拟.  , doi: 10.7498/aps.70.20201700
    [10] 陈忠, 赵子甲, 吕中良, 李俊汉, 潘冬梅. 基于蒙特卡罗-离散纵标方法的氘氚激光等离子体聚变反应率数值模拟.  , doi: 10.7498/aps.68.20190440
    [11] 郭恒, 张晓宁, 聂秋月, 李和平, 曾实, 李志辉. 亚大气压六相交流电弧放电等离子体射流特性数值模拟.  , doi: 10.7498/aps.67.20172557
    [12] 赵曰峰, 王超, 王伟宗, 李莉, 孙昊, 邵涛, 潘杰. 大气压甲烷针-板放电等离子体中粒子密度和反应路径的数值模拟.  , doi: 10.7498/aps.67.20172192
    [13] 刘富成, 晏雯, 王德真. 针板型大气压氦气冷等离子体射流的二维模拟.  , doi: 10.7498/aps.62.175204
    [14] 程巳阳, 徐亮, 高闽光, 金岭, 李胜, 冯书香, 刘建国, 刘文清. 直射太阳光红外吸收光谱技术遥测大气中二氧化碳柱浓度.  , doi: 10.7498/aps.62.124206
    [15] 屈年瑞, 高发明. 固态二氧化碳电子结构及性能的理论研究.  , doi: 10.7498/aps.60.067102
    [16] 庞学霞, 邓泽超, 贾鹏英, 梁伟华. 大气等离子体中氮氧化物粒子行为的数值模拟.  , doi: 10.7498/aps.60.125201
    [17] 周翔, 张萱, 刘爱芬, 曾祥华. FC(O)O2的结构及其自由基与NO反应的微观机理研究.  , doi: 10.7498/aps.59.5128
    [18] 罗奔毅, 卢义刚. 超临界点附近二氧化碳流体的声速.  , doi: 10.7498/aps.57.4397
    [19] 王佩怡, 杨 春, 李来才, 李言荣. SrTiO3薄膜生长初期Sr,Ti,O原子分子反应机理的理论研究.  , doi: 10.7498/aps.57.2340
    [20] 赵 江, 崔 磊, 曾祥华, 徐秀莲. FC(O)O自由基与NO反应机理的理论研究.  , doi: 10.7498/aps.57.7349
计量
  • 文章访问数:  123
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 上网日期:  2024-11-08

/

返回文章
返回
Baidu
map