-
ZIFs crystal is composed of imidazolidyl bridging single metal ions, and its structure can be adjusted by flexibly selecting functional groups of imidazolidyl ligands, thereby possessing more new properties and functions. While, the pore structure and chemical environment of ZIFs crystals are closely related to their properties. In this work, ZIF nanocrystals are prepared by static reaction. The X-ray diffraction results confirm that the prepared crystals are typical of ZIF-8 crystals, and the regular rhomboidal structure can be observed by scanning electron microscopy. The N2 adsorption-desorption test indicates that the ZIF crystal exhibits the larger specific surface area (2966.26 m2/g) and pore volume (3.01 cm3/g) . With the increase of Co content, specific surface area and pore volume of ZIFs crystal decrease, while the pore size remains nearly unchanged (around 12 Å). However, the pore size distribution calculated by N2 adsorption/desorption isothermal curve does not show the ultra-micropore information of the six-membered ring composed of imidazole ligands (3.4 Å). The microstructure and surface properties of the crystal are investigated by positron annihilation lifetime and Doppler broadening. The positron lifetime spectrum has four components. The longer lifetimes
$ {\tau }_{3} $ and$ {\tau }_{4} $ are the annihilation lifetimes of o-Ps in the microporous region and the regular angular gap of the crystal, respectively. With the increase of Co content, the lifetime$ {\tau }_{3} $ hardly changes, while the longer lifetime$ {\tau }_{4} $ decreases from 30.89 ns to 12.57 ns, and the corresponding intensities$ {I}_{3} $ and$ {I}_{4} $ decrease sharply from 12.93% and 8.15% to 3.68% and 0.54%, respectively. With the increase of Co content, the S parameter obtained by doppler broadening shows a continuous upward trend, and the p-Ps intensity also increases gradually, which is mainly due to the self-rotation effect of the electron element. Therefore, the decrease of$ {\tau }_{4} $ in ZIFs nanocrystal is probably due to the self-rotation effect of positronium and Co ion on the crystal surface.-
Keywords:
- positron annihilation lifetime /
- positronium /
- Doppler broadening /
- self-rotation
[1] 彭雨, 吴依, 杨紫微, 李琳钰, 蒋华麟, 陈萍华 2020 广州化工 48 4
Google Scholar
Peng Y, Wu Y, Yang Z W, Li L Y, Jiang H L, Chen P H 2020 Guangzhou Chem. Indus. 48 4
Google Scholar
[2] 韩臻, 陈元涛, 张炜, 许成, 胡广壮, 刘蓉 2021 应用化工 50 638
Google Scholar
Han Z, Chen Y T, Zhang W, Xu C, Hu G Z, Liu R 2021 Appl. Chem. Indus. 50 638
Google Scholar
[3] 田龙, 豆维新, 杨玮婷, 王成 2021 应用化学 38 84
Google Scholar
Tian L, Dou W X, Yang W T Wang C 2021 Chin. J. Appl. Chem. 38 84
Google Scholar
[4] Sharma S K, Sudarshan K, Yadav A K, Jha S N, Bhattacharyya D, Pujari P K 2019 J. Phys. Chem. C 123 22273
Google Scholar
[5] He X, Chen D R, Wang W N 2020 Chem. Eng. J. 382 122825
Google Scholar
[6] Chu Q, Zhang S, Li X, Guo P, Fu A, Liu B, Wang Y Y 2021 Chem-Asian J. 16 1233
Google Scholar
[7] Ding R, Zheng W, Yang K, Dai Y, Ruan X, Yan X, He G 2020 Sep. Purif. Technol. 236 116209
Google Scholar
[8] Kumar S, Srivastava R, Koh J 2020 J. CO2 Util. 41 101251
Google Scholar
[9] Ralph F S C, Cohen S M, Yan W, Deng H X, Guillerm V, Eddaoudi M, Madden D G, Fairen-Jimenez D, Lyu H, Macreadie L K, Ji Z, Zhang Y Y, Wang B, Haase F, Wçll C, Zaremba O, Andreo J, Wuttke S, Diercks C S 2021 Angew. Chem. Int. Edit. 60 23946
Google Scholar
[10] Ran J, Jaroniec M, Qiao S Z 2018 Adv. Mater. 30 1704649
Google Scholar
[11] 马生花, 马芙莲, 解玉龙 2020 硅酸盐通报 39 2993
Google Scholar
Ma S H, Ma F L, Xie Y L 2020 Bull. Chin. Ceramic Soc. 39 2993
Google Scholar
[12] Jin C X, Shang H B 2021 J. Solid State Chem. 297 122040
Google Scholar
[13] Nagarjun N, Arthy K, Dhakshinamoorthy A 2021 Eur. J. Inorg. Chem. 2021 2108
Google Scholar
[14] 邹伦妃, 马振超, 王苏龙, 白宇森, 王亚珍 2021 电源技术 45 512
Google Scholar
Zou L F, Ma Z C, Wang S L, Bai Y S, Wang Y Z 2021 Power Technology 45 512
Google Scholar
[15] Yao B, Lua S K, Lim H S, Zhang Q, Cui X, White T J, Ting V P, Dong Z 2021 Micropor. Mesopor. Mat. 314 110777
Google Scholar
[16] Barrett E P, Joyner L G, Halenda P P 1951 J. Am. Chem. Soc. 73 373
Google Scholar
[17] Brunauer S, Emmett P H, Teller E 1938 J. Am. Chem. Soc. 60 309
Google Scholar
[18] Jean Y C 2003 Principles and Applications of Positron & Positronium Chemistry (World Scientific Pub Co Inc. (March 31)) p267
[19] Tao S J 1972 J. Chem. Phys. 56 5499
Google Scholar
[20] Eldrup M, Lightbody D, Sherwood J N 1981 Chem. Phys. 63 51
Google Scholar
[21] Goworek T, Ciesielski K, Jasinska B, Wawryszczuk J 1998 Chem. Phys. 230 305
Google Scholar
[22] Dull T L, Frieze W E, Gidley D W 2001 J. Phys. Chem. B 105 4657
Google Scholar
[23] Li C Y, Qi N, Liu Z W, Zhou B, Chen Z Q, Wang Z 2016 Appl. Surf. Sci. 363 445
Google Scholar
[24] 王少阶, 陈志权, 王波, 吴奕初, 方鹏飞, 张永学 2008 应用正电子谱学 (湖北: 湖北科学技术出版社) 第198页
Wang S J, Chen Z Q, Wang B, Wu Y C, Fang P F, Zhang Y X 2008 Applied Positron Spectroscopy (Hubei: Hubei Science and Technology Press) p198 (in Chinese)
[25] Jean Y C, Lu X, Lou Y, Bharathi A, Sundar C S, Lyu Y, Hor P H, Chu C W 1992 Phys. Rev. B 45 12126
Google Scholar
[26] Matthias T, Katsumi K, Alexander V N, James P O, Francisco R R, Jean R, Kenneth S W S 2015 Pure Appl. Chem. 87 1051
Google Scholar
[27] Davis M E 2002 Nature 417 813
Google Scholar
[28] Paulin R, Ambrosino G 1968 J. Phys. France 29 263
Google Scholar
[29] Lahtinen J, Hautojärvi P 1997 J. Phys. Chem. B 101 1609
Google Scholar
[30] Eldrup M, Vehanen A, Schultz P J, Lynn K G 1984 Phys. Rev. Lett. 53 954
Google Scholar
[31] Ito K, Nakanishi H, Ujihira Y 1999 J. Phys. Chem. B 103 4555
Google Scholar
[32] Zhang H J, Chen Z Q, Wang S J, Kawasuso A, Morishita N 2010 Phys. Rev. B 82 035439
Google Scholar
[33] Zhang H J, Liu Z W, Chen Z Q, Wang S J 2011 Chin. Phys. Lett. 28 017802
Google Scholar
[34] Chen Z Q, Kawasuso A, Xu Y, Naramoto H, Yuan X L, Sekiguchi T, Suzuki R, Ohdaira T 2005 Phys. Rev. B 71 115213
Google Scholar
[35] Lazzarini A L F, Lazzarini E, Mariani M 1993 J. Chem. Soc. Faraday Trans. 89 3737
Google Scholar
[36] Lazzarini A L F, Lazzarini E, Mariani M 1994 J. Chem. Soc. Faraday Trans. 90 423
Google Scholar
-
表 1 ZIF-Co-Zn纳米晶体中孔结构信息
Table 1. Pore structure parameters of ZIF-Co-Zn crystals
Sample $ {S}_{\mathrm{B}\mathrm{E}\mathrm{T}}/ $ $({\mathrm{m} }^{2}{\cdot}{\mathrm{g} }^{-1})$ $ {S}_{\mathrm{m}\mathrm{i}\mathrm{c}\mathrm{r}\mathrm{o}}/ $ $({\mathrm{m} }^{2}{\cdot}{\mathrm{g} }^{-1})$ $ {V}_{\mathrm{t}\mathrm{o}\mathrm{t}\mathrm{a}\mathrm{l}} $/ $\left({\mathrm{c}\mathrm{m} }^{3}{\cdot\mathrm{g} }^{-1}\right)$ B1 2966.26 2523.56 3.01 B2 2644.63 2330.56 2.39 B3 3110.94 2734.41 2.96 B4 3101.99 2684.39 2.99 B5 3149.70 2798.98 2.71 B6 3019.41 2753.46 1.70 B7 2250.85 2139.03 1.00 注: B1—B7依次代表制备的ZIF-Zn, ZIF-Co0.025-Zn0.975, ZIF-Co0.5-Zn0.95, ZIF-Co0.15-Zn0.85, ZIF-Co0.3-Zn0.7, ZIF-Co0.7-Zn0.3及ZIF-Co. -
[1] 彭雨, 吴依, 杨紫微, 李琳钰, 蒋华麟, 陈萍华 2020 广州化工 48 4
Google Scholar
Peng Y, Wu Y, Yang Z W, Li L Y, Jiang H L, Chen P H 2020 Guangzhou Chem. Indus. 48 4
Google Scholar
[2] 韩臻, 陈元涛, 张炜, 许成, 胡广壮, 刘蓉 2021 应用化工 50 638
Google Scholar
Han Z, Chen Y T, Zhang W, Xu C, Hu G Z, Liu R 2021 Appl. Chem. Indus. 50 638
Google Scholar
[3] 田龙, 豆维新, 杨玮婷, 王成 2021 应用化学 38 84
Google Scholar
Tian L, Dou W X, Yang W T Wang C 2021 Chin. J. Appl. Chem. 38 84
Google Scholar
[4] Sharma S K, Sudarshan K, Yadav A K, Jha S N, Bhattacharyya D, Pujari P K 2019 J. Phys. Chem. C 123 22273
Google Scholar
[5] He X, Chen D R, Wang W N 2020 Chem. Eng. J. 382 122825
Google Scholar
[6] Chu Q, Zhang S, Li X, Guo P, Fu A, Liu B, Wang Y Y 2021 Chem-Asian J. 16 1233
Google Scholar
[7] Ding R, Zheng W, Yang K, Dai Y, Ruan X, Yan X, He G 2020 Sep. Purif. Technol. 236 116209
Google Scholar
[8] Kumar S, Srivastava R, Koh J 2020 J. CO2 Util. 41 101251
Google Scholar
[9] Ralph F S C, Cohen S M, Yan W, Deng H X, Guillerm V, Eddaoudi M, Madden D G, Fairen-Jimenez D, Lyu H, Macreadie L K, Ji Z, Zhang Y Y, Wang B, Haase F, Wçll C, Zaremba O, Andreo J, Wuttke S, Diercks C S 2021 Angew. Chem. Int. Edit. 60 23946
Google Scholar
[10] Ran J, Jaroniec M, Qiao S Z 2018 Adv. Mater. 30 1704649
Google Scholar
[11] 马生花, 马芙莲, 解玉龙 2020 硅酸盐通报 39 2993
Google Scholar
Ma S H, Ma F L, Xie Y L 2020 Bull. Chin. Ceramic Soc. 39 2993
Google Scholar
[12] Jin C X, Shang H B 2021 J. Solid State Chem. 297 122040
Google Scholar
[13] Nagarjun N, Arthy K, Dhakshinamoorthy A 2021 Eur. J. Inorg. Chem. 2021 2108
Google Scholar
[14] 邹伦妃, 马振超, 王苏龙, 白宇森, 王亚珍 2021 电源技术 45 512
Google Scholar
Zou L F, Ma Z C, Wang S L, Bai Y S, Wang Y Z 2021 Power Technology 45 512
Google Scholar
[15] Yao B, Lua S K, Lim H S, Zhang Q, Cui X, White T J, Ting V P, Dong Z 2021 Micropor. Mesopor. Mat. 314 110777
Google Scholar
[16] Barrett E P, Joyner L G, Halenda P P 1951 J. Am. Chem. Soc. 73 373
Google Scholar
[17] Brunauer S, Emmett P H, Teller E 1938 J. Am. Chem. Soc. 60 309
Google Scholar
[18] Jean Y C 2003 Principles and Applications of Positron & Positronium Chemistry (World Scientific Pub Co Inc. (March 31)) p267
[19] Tao S J 1972 J. Chem. Phys. 56 5499
Google Scholar
[20] Eldrup M, Lightbody D, Sherwood J N 1981 Chem. Phys. 63 51
Google Scholar
[21] Goworek T, Ciesielski K, Jasinska B, Wawryszczuk J 1998 Chem. Phys. 230 305
Google Scholar
[22] Dull T L, Frieze W E, Gidley D W 2001 J. Phys. Chem. B 105 4657
Google Scholar
[23] Li C Y, Qi N, Liu Z W, Zhou B, Chen Z Q, Wang Z 2016 Appl. Surf. Sci. 363 445
Google Scholar
[24] 王少阶, 陈志权, 王波, 吴奕初, 方鹏飞, 张永学 2008 应用正电子谱学 (湖北: 湖北科学技术出版社) 第198页
Wang S J, Chen Z Q, Wang B, Wu Y C, Fang P F, Zhang Y X 2008 Applied Positron Spectroscopy (Hubei: Hubei Science and Technology Press) p198 (in Chinese)
[25] Jean Y C, Lu X, Lou Y, Bharathi A, Sundar C S, Lyu Y, Hor P H, Chu C W 1992 Phys. Rev. B 45 12126
Google Scholar
[26] Matthias T, Katsumi K, Alexander V N, James P O, Francisco R R, Jean R, Kenneth S W S 2015 Pure Appl. Chem. 87 1051
Google Scholar
[27] Davis M E 2002 Nature 417 813
Google Scholar
[28] Paulin R, Ambrosino G 1968 J. Phys. France 29 263
Google Scholar
[29] Lahtinen J, Hautojärvi P 1997 J. Phys. Chem. B 101 1609
Google Scholar
[30] Eldrup M, Vehanen A, Schultz P J, Lynn K G 1984 Phys. Rev. Lett. 53 954
Google Scholar
[31] Ito K, Nakanishi H, Ujihira Y 1999 J. Phys. Chem. B 103 4555
Google Scholar
[32] Zhang H J, Chen Z Q, Wang S J, Kawasuso A, Morishita N 2010 Phys. Rev. B 82 035439
Google Scholar
[33] Zhang H J, Liu Z W, Chen Z Q, Wang S J 2011 Chin. Phys. Lett. 28 017802
Google Scholar
[34] Chen Z Q, Kawasuso A, Xu Y, Naramoto H, Yuan X L, Sekiguchi T, Suzuki R, Ohdaira T 2005 Phys. Rev. B 71 115213
Google Scholar
[35] Lazzarini A L F, Lazzarini E, Mariani M 1993 J. Chem. Soc. Faraday Trans. 89 3737
Google Scholar
[36] Lazzarini A L F, Lazzarini E, Mariani M 1994 J. Chem. Soc. Faraday Trans. 90 423
Google Scholar
Catalog
Metrics
- Abstract views: 4990
- PDF Downloads: 79
- Cited By: 0