-
高熵合金中的缓慢扩散效应与严重的晶格畸变效应理论上会阻碍辐照诱导的点缺陷的移动,从而抑制尺寸较大的缺陷团簇的形成,这使得该类合金在核材料领域中受到越来越多的关注。本文以FeCoCrNiAl0.3高熵合金为研究对象,利用1.25MV的超高压电镜,对高能电子辐照过程中的缺陷与析出相随辐照温度和时间的形成与演化行为进行原位观察及系统性研究。根据三种高温辐照温度下的饱和缺陷密度与缺陷生长率的统计数据,获得FeCoCrNiAl0.3高熵合金的间隙原子迁移能与空位迁移能两个本征参数,讨论了该合金较高的缺陷迁移能与合金中各元素的离位阈能以及原子尺寸错配的关系。同时,系统表征了723K高能电子辐照下位错环的形态与分布规律,发现全位错环与不全位错环可同时产生,且两者在生长过程中不存在系统性的差异。
-
关键词:
- FeCoCrNiAl0.3高熵合金 /
- 高能电子辐照 /
- 缺陷迁移能 /
- 辐照诱导缺陷与析出
The sluggish diffusion and severe lattice distortion effects in high-entropy alloys (HEAs) theoretically impede the movement of radiation-induced point defects, thereby effectively suppressing the formation of larger defect clusters and ultimately enhancing the radiation resistance of materials. Current research on the radiation resistance of HEAs primarily concentrates on the qualitative analysis of the migration behaviors of radiation-induced defects, while the quantitative research on the energy barriers of the migration behavior of point defects is still limited. As a representative HEA system, FeCoCrNiAl-based alloys exhibit exceptional properties, including enhanced ductility, remarkable shear resistance, high tensile yield strength and excellent oxidation resistance. In this study, we selected the FeCoCrNiAl0.3 alloy as the model material and conducted in-situ observations using a 1.25 MV high voltage electron microscope (HVEM) to systematically investigate the temporal evolution of irradiation-induced defects and precipitates under different temperatures. Based on the statistical data of saturated defect number density and defect growth rates under three irradiation temperatures, two intrinsic parameters of the alloy - the interstitial atom migration energy and vacancy migration energy - were determined respectively, which is 1.09 eV and 1.47 eV, respectively. The higher interstitial atomic migration energy may be related to the incorporation of Al, which has a smaller threshold energy and exhibits a larger atomic radius difference compared to the other elements in the alloy. In addition, the morphology and distribution of dislocation loops formed under 723 K high energy electron irradiation were characterized in detail, revealing the coexistence of perfect dislocation loops and Frank dislocation loops, both of which grow along different crystal planes. No systematic difference is observed between the growth process of the two types of loops.-
Keywords:
- FeCoCrNiAl0.3 high entropy alloy /
- High-energy electron irradiation /
- Defect migration energy /
- Irradiation induced the defects and precipitation
-
[1] Yeh J W, Chen S K, Lin S J, Gan J Y, Chin T S, Shun T T, Tsau C H, Chang S Y 2004 Adv. Eng. Mater. 6(5) 299
[2] Zhang Y 2010 Amorphous and High Entropy Alloys (Beijing:Science Press) (in Chinese) [张勇 2010非晶和高熵合金 (北京:科学出版社)]
[3] Tian Z, Li C C, Wu Y, Lyu Z P 2024 J. Mater. Eng. 52(1) 1 (in Chinese) [田震 李聪聪 吴渊 吕昭平 2024 材料工程 52(1) 1]
[4] Cheng Z Y, Sun J R, GAO X, Wang Y Y, Cui J H, Wang T, Chang H L 2023 J. Alloy. Compd. 930 166768
[5] Zhang Y W, Osetsky Y N, Weber W J 2021 Chem. Rev. 122(1) 789
[6] Li D Y, Li C X, Feng T, Zhang Y D, Sha G, Lewandowski J J, Liaw P K, Zhang Y 2017 Acta Mater. 123 285
[7] Ma S G, Zhang S F, Qiao J W, Wang Z H, Gao M C, Jiao Z M, Yang H J, Zhang Y 2014 Intermetallics 54 104
[8] Li Z, Zhao S, Diao H, Liaw P K, Meyers M A 2017 Sci. Rep. 7(1) 42742
[9] Gwalani B, Gorsse S, Choudhuri D, Zheng Y F, Mishra R S, Banerjee R 2019 Scr. Mater. 162 18
[10] Chen W Y, Liu X, Chen Y R, Yeh J W, Tseng K K, Natesan K 2018 J. Nucl. Mater. 510 421
[11] Chen W Y, Kirk M A, Hashimoti N, Yeh J W, Liu X, Chen Y R 2020 J. Nucl. Mater. 539 152324
[12] Diao S Z, Liu Q, Zhang Y, Wan F R, Zhan Q 2024 Mater. Charact. 212 113964.
[13] Yang T F, Guo W, Poplawsky J D, Li D Y, Wang L, Li Y, Hu W Y, Crespillo M L, Yan Z F, Zhang Y 2020. Acta Mater. 188 1
[14] Kiritani M 1994 J. Nucl. Mater. 216 220
[15] Bourret A 1971 Phys. Status Solidi A. 4(3) 813
[16] Urban K, Wilkens M 1971 Phys. Status Solidi A. 6(1) 173
[17] Liu P P, Jiang S N, Du Y F, Zhan Q, Zhao H F, Han W T, Yi X O, Ohnuki S, Wan F R 2021 Mater. Charact. 174 111014
[18] Schäublin R, Henry J, Dai Y 2008 C. R. Phys. 9(3-4) 389
[19] Kiritani M, Yoshida N, Takata H, Maehara Y 1975 J. Phys. Soc. Jap. 38(6) 1677
[20] Kiritani M, Takata H, Moriyama K, Fujita F E 1979 Philos. Mag. A 40(6) 779
[21] Kiritani M, Takata H 1978 J. Nucl. Mater. 69 277
[22] Liu P P, Bai J W, Ke D, Wan F R, Wang Y B, Wang Y M, Ohnuki S, Zhan Q 2012 J. Nucl. Mater. 423 47
[23] Kato T, Takahashi H, Izumiya M 1991 Mater. Trans. 32(10) 921
[24] Hayashi T, Fukumoto K, Matsui H 2002 J. Nucl. Mater. 307 951
[25] Hashimoto N, Tanimoto J, Kubota T, Kinoshita H, Ohnuki S 2013 J. Nucl. Mater. 442(1-3) S796
[26] Takeuchi A, Inoue A 2005 Mater. Trans. 46(12) 2817
[27] Zhang B Z, Zhang Z, Xun K H, Asta M, Ding J, Ma E 2024 Proc. Nati. Acad. Sci. 121(5) e2314248121.
[28] Liu H C, Mitchell T. 1982 J. Nucl. Mater. 107(2-3) 318
[29] He M R, Wang S, Jin K, Bei H B, Yasuda K, Matsumura S, Higashida K, Robertson I M 2016 Scr. Mater. 125 5
[30] Wang X X, Niu L L, Wang S 2018 J. Nucl. Mater. 501 94
[31] Brown L, Spring M, Ipohorski M 1971 Philos. Mag. 24(192) 1495
[32] Nakanishi D, Kawabata T, Doihara K, Okita T, Itakua M, Suziki K 2018 Philos. Mag. 98(33) 3034
[33] Lu C Y, Niu L L, Chen N J, Jin K, Yang T N, Xiu P Y, Zhang Y W, Gao F, Bei H B, Shi S 2016 Nat. commun. 7(1) 13564
[34] He M R, Wang S, Shi S, Jin K, Bei H B, Yasuda K, Matsumura S, Higashida K, Robertson I M 2017 Acta Mater. 126 182
计量
- 文章访问数: 44
- PDF下载量: 1
- 被引次数: 0