搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高能电子辐照下FeCoCrNiAl0.3高熵合金的缺陷演变原位研究及缺陷迁移能计算

刁斯喆 张一帆 赵芳茜 SEUNGJo Yoo SOMEIOhnuki 万发荣 张勇 詹倩

引用本文:
Citation:

高能电子辐照下FeCoCrNiAl0.3高熵合金的缺陷演变原位研究及缺陷迁移能计算

刁斯喆, 张一帆, 赵芳茜, SEUNGJo Yoo, SOMEIOhnuki, 万发荣, 张勇, 詹倩

In-situ study of defect evolution and calculation of defect migration energy of FeCoCrNiAl0.3 high-entropy alloy under high-energy electron irradiation

DIAO Sizhe, ZHANG Yifan, ZHAO Fangqian, SEUNG Jo Yoo, SOMEI Ohnuki, WAN Farong, ZHANG Yong, ZHAN Qian
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 高熵合金中的缓慢扩散效应与严重的晶格畸变效应理论上会阻碍辐照诱导的点缺陷的移动, 从而抑制尺寸较大的缺陷团簇的形成, 这使得该类合金在核材料领域中受到越来越多的关注. 本文以FeCoCrNiAl0.3高熵合金为研究对象, 利用1.25 MV的超高压电子显微镜, 对高能电子辐照过程中的缺陷与析出相随辐照温度和时间的形成与演化行为进行原位观察及系统性研究. 根据3种高温辐照温度下的饱和缺陷密度与缺陷生长率的统计数据, 获得FeCoCrNiAl0.3高熵合金的间隙原子迁移能与空位迁移能两个本征参数, 讨论该合金较高的缺陷迁移能与合金中各元素的离位阈能以及原子尺寸错配的关系. 同时, 系统表征了723 K高能电子辐照下位错环的形态与分布规律, 发现全位错环与不全位错环可同时产生, 且两者在生长过程中不存在系统性的差异.
    The sluggish diffusion and severe lattice distortion effects in high-entropy alloys (HEAs) theoretically impede the movement of radiation-induced point defects, thereby effectively suppressing the formation of larger defect clusters and ultimately enhancing the radiation resistance of materials. Current research on the radiation resistance of HEAs primarily concentrates on the qualitative analysis of the migration behaviors of radiation-induced defects, while the quantitative research on the energy barriers of the migration behavior of point defects is still limited. As a representative HEA system, FeCoCrNiAl-based alloy exhibits exceptional properties, including enhanced ductility, remarkable shear resistance, high tensile yield strength, and excellent oxidation resistance. In this study, FeCoCrNiAl0.3 alloy is selected as a model material and in-situ observations are conducted by using a 1.25-MV high-voltage electron microscope (HVEM) to systematically investigate the temporal evolution of irradiation-induced defects and precipitates at different temperatures. Based on the statistical data of saturated defect number density and defect growth rates under three irradiation temperatures, two intrinsic parameters of the alloy, i.e. interstitial atom migration energy and vacancy migration energy, are determined to be 1.09 eV and 1.47 eV, respectively. The higher interstitial atomic migration energy may be related to the incorporation of Al that has a smaller threshold energy and exhibits a larger atomic radius difference than the other elements in the alloy. In addition, the morphology and distribution of dislocation loops formed at 723 K and high-energy electron irradiation are characterized in detail, demonstrating the coexistence of perfect dislocation loops and Frank dislocation loops, both of which grow along different crystal planes. No systematic difference in growth process between the two types of loops is observed.
  • 图 1  FeCoCrNiAl0.3高熵合金在不同辐照温度条件下原位电子辐照过程中缺陷的产生与生长, 电子束方向均平行于{011}晶带轴, 并使用g = (200)的“双束”衍射衬度条件进行记录

    Fig. 1.  Production and growth of defects in FeCoCrNiAl0.3 high entropy alloy during in-situ electron irradiation at different irradiation temperature, the electron beam directions are parallel to the axis of the {011} with g = (200).

    图 2  (a) 辐照诱导缺陷平均尺寸随辐照时间的变化; (b) 经15 min电子辐照后, 3种不同辐照温度下缺陷尺寸分布; (c) 辐照诱导缺陷密度随辐照时间的变化

    Fig. 2.  (a) Variation of average size of irradiation induced defects with irradiation time; (b) the size distribution of defects at three different irradiation temperatures after 15 min electron irradiation; (c) variation of irradiation induced defect density with irradiation time.

    图 3  在723 K温度下, 原位电子辐照过程中具体的位错行为 (a1)—(a5)弗兰克位错环的合并过程; (b1)—(b5) 长条状弗兰克位错环的湮灭过程; (c1)—(c5) “马蹄形”缺陷的形成过程; (d), (e)分别为图3(a)中1, 2两个位错环在合并过程中尺寸随辐照时间的变化; (f) 两位错合并后, 位错的生长行为与尺寸随辐照时间的变化

    Fig. 3.  Specific dislocation behavior during in-situ electron irradiation at 723 K: (a1)–(a5) The merging process of Frank loops; (b1), (b5) the annihilation process of long Frank loops, (c1)–(c5) the formation process of “horseshoe” defect; (d), (e) the size changes of the two dislocation loops 1 and 2 in panel (a) with irradiation time during the merging process, respectively; (f) the growth behavior and size of two dislocations combined with irradiation time.

    图 4  不同温度下, 电子辐照诱导缺陷的饱和密度(a)、生长率(b)与温度的倒数的关系以及相对应的最小二乘法拟合结果

    Fig. 4.  Relationship between the reciprocal of temperature and saturation density (a), growth rate (b) of electron irradiation induced defects at different temperatures and the corresponding least square fitting results.

    图 5  (a)弗兰克不全位错与全位错形成与生长的过程; (b)沿两个晶面生长的弗兰克位错环与全位错长轴方向的尺寸随辐照时间的变化; (c)不同类型的位错环在基体中的形貌与分布

    Fig. 5.  (a) Production and growth of Frank loops and perfect loops; (b) variation of the size of Frank loop and perfect loop in the long axis with irradiation time; (c) the morphology and distribution of different types of dislocation rings in matrix.

    图 6  FeCoCrNiAl0.3高熵合金在原位电子辐照过程中缺陷的产生与生长的HRTEM

    Fig. 6.  HRTEM images of defect generation and growth in FeCoCrNiAl0.3 high entropy alloy during in-situ electron irradiation.

    图 7  (a), (b)辐照诱导空位型位错环HRTEM; (c) 图(a)中的空位型位错环示意图

    Fig. 7.  (a), (b) HRTEM image of vacancy-type dislocation loop induced by irradiation; (c) schematic diagram of vacancy-type dislocation loop.

    图 8  (a)室温条件下辐照过程中FeCoCrNiAl0.3高熵合金的HRTEM; (b), (c)辐照诱导与基体呈共格关系析出相

    Fig. 8.  (a) HRTEM image of FeCoCrNiAl0.3 high entropy alloy irradiated at room temperature; (b), (c) the precipitates induced by irradiation coherent with matrix.

    表 1  三种不同温度下经电子辐照诱导缺陷的饱和密度与生长率

    Table 1.  Saturation density and growth rate of defects induced by electron irradiation at three different temperatures.

    温度/ K饱和密度/(1021 m–3)生长率(nm·min–1)
    6738.250.63
    7233.011.673
    7732.483.228
    下载: 导出CSV

    表 2  部分纯金属与核能系统候选材料的点缺陷迁移能数据

    Table 2.  Point defect migration energy data of some pure metals and candidate materials for nuclear power system.

    材料空位迁移能
    $ {E}_{{\mathrm{m}}}^{{\mathrm{v}}} $/eV
    间隙原子
    迁移能$ {E}_{{\mathrm{m}}}^{{\mathrm{i}}} $/eV
    Fe0.70.26
    Cu0.30.12
    Au0.440.19
    Al0.290.08
    Ni0.60.18
    Fe-10 Cr0.66
    F82 H1.20.3
    V-4 Cr-Ti1.00.5
    316 L1.07
    FeCoCrNiAl0.3*1.47*1.09*
    注: *为本文工作
    下载: 导出CSV
    Baidu
  • [1]

    Yeh J W, Chen S K, Lin S J, Gan J Y, Chin T S, Shun T T, Tsau C H, Chang S Y 2004 Adv. Eng. Mater. 6 299Google Scholar

    [2]

    张勇 2010非晶和高熵合金 (北京: 科学出版社)

    Zhang Y 2010 Amorphous and High Entropy Alloys (Beijing: Science Press

    [3]

    田震 李聪聪 吴渊 吕昭平 2024 材料工程 52 1Google Scholar

    Tian Z, Li C C, Wu Y, Lü Z P 2024 J. Mater. Eng. 52 1Google Scholar

    [4]

    Cheng Z Y, Sun J R, Gao X, Wang Y Y, Cui J H, Wang T, Chang H L 2023 J. Alloy. Compd. 930 166768Google Scholar

    [5]

    Zhang Y W, Osetsky Y N, Weber W J 2021 Chem. Rev. 122 789

    [6]

    Li D Y, Li C X, Feng T, Zhang Y D, Sha G, Lewandowski J J, Liaw P K, Zhang Y 2017 Acta Mater. 123 285Google Scholar

    [7]

    Ma S G, Zhang S F, Qiao J W, Wang Z H, Gao M C, Jiao Z M, Yang H J, Zhang Y 2014 Intermetallics 54 104Google Scholar

    [8]

    Li Z, Zhao S, Diao H, Liaw P K, Meyers M A 2017 Sci. Rep. 7 42742Google Scholar

    [9]

    Gwalani B, Gorsse S, Choudhuri D, Zheng Y F, Mishra R S, Banerjee R 2019 Scr. Mater. 162 18Google Scholar

    [10]

    Chen W Y, Liu X, Chen Y R, Yeh J W, Tseng K K, Natesan K 2018 J. Nucl. Mater. 510 421Google Scholar

    [11]

    Chen W Y, Kirk M A, Hashimoti N, Yeh J W, Liu X, Chen Y R 2020 J. Nucl. Mater. 539 152324Google Scholar

    [12]

    Diao S Z, Liu Q, Zhang Y, Wan F R, Zhan Q 2024 Mater. Charact. 212 113964.Google Scholar

    [13]

    Yang T F, Guo W, Poplawsky J D, Li D Y, Wang L, Li Y, Hu W Y, Crespillo M L, Yan Z F, Zhang Y 2020 Acta Mater. 188 1Google Scholar

    [14]

    Kiritani M 1994 J. Nucl. Mater. 216 220Google Scholar

    [15]

    Bourret A 1971 Phys. Status Solidi A. 4 813Google Scholar

    [16]

    Urban K, Wilkens M 1971 Phys. Status Solidi A. 6 173Google Scholar

    [17]

    Liu P P, Jiang S N, Du Y F, Zhan Q, Zhao H F, Han W T, Yi X O, Ohnuki S, Wan F R 2021 Mater. Charact. 174 111014Google Scholar

    [18]

    Schäublin R, Henry J, Dai Y 2008 C. R. Phys. 9 389Google Scholar

    [19]

    Kiritani M, Yoshida N, Takata H, Maehara Y 1975 J. Phys. Soc. Jpn. 38 1677Google Scholar

    [20]

    Kiritani M, Takata H, Moriyama K, Fujita F E 1979 Philos. Mag. A 40 779Google Scholar

    [21]

    Kiritani M, Takata H 1978 J. Nucl. Mater. 69 277

    [22]

    Liu P P, Bai J W, Ke D, Wan F R, Wang Y B, Wang Y M, Ohnuki S, Zhan Q 2012 J. Nucl. Mater. 423 47Google Scholar

    [23]

    Kato T, Takahashi H, Izumiya M 1991 Mater. Trans. 32 921Google Scholar

    [24]

    Hayashi T, Fukumoto K, Matsui H 2002 J. Nucl. Mater. 307 951

    [25]

    Hashimoto N, Tanimoto J, Kubota T, Kinoshita H, Ohnuki S 2013 J. Nucl. Mater. 442 S796Google Scholar

    [26]

    Takeuchi A, Inoue A 2005 Mater. Trans. 46 2817Google Scholar

    [27]

    Zhang B Z, Zhang Z, Xun K H, Asta M, Ding J, Ma E 2024 Proc. Nati. Acad. Sci. 121 e2314248121Google Scholar

    [28]

    Liu H C, Mitchell T 1982 J. Nucl. Mater. 107 318Google Scholar

    [29]

    He M R, Wang S, Jin K, Bei H B, Yasuda K, Matsumura S, Higashida K, Robertson I M 2016 Scr. Mater. 125 5Google Scholar

    [30]

    Wang X X, Niu L L, Wang S 2018 J. Nucl. Mater. 501 94Google Scholar

    [31]

    Brown L, Spring M, Ipohorski M 1971 Philos. Mag. 24 1495Google Scholar

    [32]

    Nakanishi D, Kawabata T, Doihara K, Okita T, Itakua M, Suziki K 2018 Philos. Mag. 98 3034Google Scholar

    [33]

    Lu C Y, Niu L L, Chen N J, Jin K, Yang T N, Xiu P Y, Zhang Y W, Gao F, Bei H B, Shi S 2016 Nat. Commun. 7 13564Google Scholar

    [34]

    He M R, Wang S, Shi S, Jin K, Bei H B, Yasuda K, Matsumura S, Higashida K, Robertson I M 2017 Acta Mater. 126 182Google Scholar

  • [1] 沈子钦, 艾德生, 吕沙沙, 高杰, 赖文生, 李正操. Fe-C合金在辐照条件下基体缺陷演化的OKMC模拟.  , doi: 10.7498/aps.71.20220090
    [2] 周书星, 方仁凤, 魏彦锋, 陈传亮, 曹文彧, 张欣, 艾立鹍, 李豫东, 郭旗. 磷化铟高电子迁移率晶体管外延结构材料抗电子辐照加固设计.  , doi: 10.7498/aps.71.20211265
    [3] 贺玮迪, 张培源, 刘翔, 田雪芬, 付馨葛, 邓爱红. 用正电子湮没技术研究H/He中性束辐照钨钾合金中缺陷的演化.  , doi: 10.7498/aps.70.20210438
    [4] 刘思冕, 韩卫忠. 金属材料界面与辐照缺陷的交互作用机理.  , doi: 10.7498/aps.68.20190128
    [5] 李维勤, 郝杰, 张海波. 高能电子辐照绝缘厚样品的表面电位动态特性.  , doi: 10.7498/aps.64.086801
    [6] 谷文萍, 张林, 李清华, 邱彦章, 郝跃, 全思, 刘盼枝. 中子辐照对AlGaN/GaN高电子迁移率晶体管器件电特性的影响.  , doi: 10.7498/aps.63.047202
    [7] 张明兰, 杨瑞霞, 李卓昕, 曹兴忠, 王宝义, 王晓晖. GaN厚膜中的质子辐照诱生缺陷研究.  , doi: 10.7498/aps.62.117103
    [8] 吕玲, 张进成, 李亮, 马晓华, 曹艳荣, 郝跃. 3 MeV质子辐照对AlGaN/GaN高电子迁移率晶体管的影响.  , doi: 10.7498/aps.61.057202
    [9] 韩录会, 张崇宏, 张丽卿, 杨义涛, 宋银, 孙友梅. 低速高电荷态重离子辐照的GaN晶体表面X射线光电子能谱研究.  , doi: 10.7498/aps.59.4584
    [10] 邹慧, 荆洪阳, 王志平, 关庆丰. 强流脉冲电子束辐照诱发金属纯镍中的空位簇缺陷.  , doi: 10.7498/aps.59.6384
    [11] 周凯, 李辉, 王柱. 正电子湮没谱和光致发光谱研究掺锌GaSb质子辐照缺陷.  , doi: 10.7498/aps.59.5116
    [12] 关庆丰, 程笃庆, 邱冬华, 朱健, 王雪涛, 程秀围. 强流脉冲电子束辐照诱发多晶纯铝中的空位缺陷簇结构.  , doi: 10.7498/aps.58.4846
    [13] 王 博, 赵有文, 董志远, 邓爱红, 苗杉杉, 杨 俊. 高温退火后非掺杂磷化铟材料的电子辐照缺陷.  , doi: 10.7498/aps.56.1603
    [14] 侯碧辉, 陆肖璞, 施朝淑, 杨炳忻. BaF2微晶的γ辐照缺陷.  , doi: 10.7498/aps.44.1296
    [15] 刘方新, 张辰华, 金嗣昭, 轩植华, 李宗民. 光纤辐照缺陷的电子自旋共振研究.  , doi: 10.7498/aps.43.1871
    [16] 高愈尊, 大贯惣明, 高桥平七郎, 佐藤義一, 竹山太郎. 氢离子注入对硅单晶电子辐照缺陷和氢泡形成的影响.  , doi: 10.7498/aps.37.152
    [17] 彭承, 孙恒慧. 电子辐照InP的体内和界面缺陷研究.  , doi: 10.7498/aps.36.1408
    [18] 陆昉, 孙恒慧, 黄蕴, 盛篪, 张增光, 王梁. 高温电子辐照硅中缺陷的研究.  , doi: 10.7498/aps.36.745
    [19] 吴凤美, 赖启基, 沈波, 周国泉. 电子辐照硅层中缺陷能级的研究.  , doi: 10.7498/aps.35.638
    [20] 杜永昌, 张玉峰, 秦国刚, 孟祥提. 中子辐照含氢硅中的与氢有关的深能级缺陷.  , doi: 10.7498/aps.33.477
计量
  • 文章访问数:  290
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 上网日期:  2025-02-17

/

返回文章
返回
Baidu
map