Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Global model of miniature electron cyclotron resonance ion source

Wu Wen-Bin Peng Shi-Xiang Zhang Ai-Lin Zhou Hai-Jing Ma Teng-Hao Jiang Yao-Xiang Li Kai Cui Bu-Jian Guo Zhi-Yu Chen Jia-Er

Citation:

Global model of miniature electron cyclotron resonance ion source

Wu Wen-Bin, Peng Shi-Xiang, Zhang Ai-Lin, Zhou Hai-Jing, Ma Teng-Hao, Jiang Yao-Xiang, Li Kai, Cui Bu-Jian, Guo Zhi-Yu, Chen Jia-Er
PDF
HTML
Get Citation
  • Miniature electron cyclotron resonance (ECR) ion sources are widely used in compact ion implanters, miniature neutron tubes, and miniature ion thrusters. To understand the mechanism of miniature ECR ion source, a miniature deuterium ion source developed by Peking University is taken as the research object. In this work, a global model based on particle balance equations is developed for studying the hydrogen plasma and the deuterium plasma inside the miniature ECR source. The research results show that both the hydrogen discharge process and the deuterium discharge process of the ion source are strongly dependent on the gas pressure and microwave power. The calculated results show that high power is beneficial to increasing the proportion of H+(D+) ions, low pressure is helpful in augmenting the ratio of $ {\text{H}}_2^ + $($ {\text{D}}_2^ + $) ions, high pressure and low power are beneficial to enhancing the proportion of $ {\text{H}}_3^ + $($ {\text{D}}_3^ + $) ions. In addition, there is a large difference in ion proportion between hydrogen discharge and deuterium discharge. Under the same operating parameters, the proportion of D+ ions is 10%–25% higher than the proportion of H+ ions since the plasma density of deuterium discharge is higher than that of hydrogen plasma. Therefore, during the operation of miniature source, H2 gas, instead of D2 gas, can be used in experiment, and the proportion of D+ ions under the corresponding operating parameters can be estimated based on the proportion of H+ ions. Finally, the calculated results show that high microwave power is a prerequisite for achieving the high proportion of H+ (D+) ions. However, owing to the limitation of microwave coupling efficiency, the miniature ECR ion source cannot work when the microwave power is greater than 150 W, so that the H+ (D+) proportion cannot be further increased, thereby limiting its further applications in neutron sources, implanters, etc. Therefore, how to improve the microwave coupling efficiency has become one of the key research contents of the miniature ECR ion source. The global model proposed in this paper is helpful in understanding the physical process of the miniature ECR ion source, but there are also some shortcomings. Firstly, the effect of the secondary electron emission coefficient is not considered in the model, so it is impossible to study the influence of wall materials on ion proportion in detail. Secondly, the dissociation degree depends on the plasma measurements, and the error of plasma measurements in turn affect the accuracy of the model to a certain extent. In addition, only the hydrogen plasma model and deuterium plasma model are established in this work, based on which it is impossible to study the processes of other gas discharge plasmas. In the future, the above factors will be considered and the model will be further improved to establish a complete and self-consistent global model of the miniature ECR ion source.
      Corresponding author: Peng Shi-Xiang, sxpeng@pku.edu.cn
    • Funds: Project supported by the Special Funds of the National Natural Science Foundation of China (Grant No. 12147144), the National Natural Science Foundation of China (Grant Nos. 11775007, 11975036), and the China Postdoctoral Science Foundation (Grant No. 2021M700506).
    [1]

    Gammino S, Celona L, Ciavola G, Maimone F, Mascali D 2010 Rev. Sci. Instrum. 81 02B313Google Scholar

    [2]

    丁俊章, 赵玉彬, 刘占稳, 赵红卫, 袁平, 曹云, 雷海亮, 张子民, 张雪珍, 张汶, 郭晓虹, 王辉, 冯玉成, 李锦玉, 马保华, 高级元, 宋沛, 李锡霞 2001 核技术 24 43Google Scholar

    Ding J Z, Zhao Y B, Liu Z W, Zhao H W, Yuan P, Cao Y, Lei H L, Zhang Z M, Zhang X Z, Zhang W, Guo X H, Wang H, Feng Y C, Li J Y, Ma B H, Gao J Y, Song P, Li X X 2001 Nucl. Tech. 24 43Google Scholar

    [3]

    Alonso J R, Calabretta L, Campo D, Celona L, Conrad J, Martinez R G, Johnson R, Labrecque F, Toups M H, Winklehner D, Winslow L 2014 Rev. Sci. Instrum. 85 02A742Google Scholar

    [4]

    崔保群, 李立强, 包轶文, 蒋渭生, 王荣文 2002 原子能科学技术 36 486Google Scholar

    Cui B Q, Li L Q, Bao Y W, Jiang W S, Wang R W 2002 Atomic Energy Science and Technology 36 486Google Scholar

    [5]

    Harrison S E, Voss L F, Torres A M, Frye C D, Shao Q, Nikolić R J 2017 J. Vat. Sci. Technol. A 35 061303Google Scholar

    [6]

    More S E, Dave J R, Makar P K, Bhoraskar S V, Premkumar S, Tomar G B, Mathe V L 2020 Appl. Surf. Sci. 506 144665Google Scholar

    [7]

    Kim W J, Ryu J, Im J, Kim S H, Kang S Y, Lee J H, Jo S H, Ha B K 2018 Mol. Genet. Genomics. 293 1169Google Scholar

    [8]

    李波, 刘华昌, 王云, 吴小磊, 李阿红, 瞿培华, 陈强, 樊梦旭, 巩克云, 欧阳华甫, 吴丛凤 2019 原子能科学技术 53 1656Google Scholar

    Li B, Liu H C, Wang Y, Wu X L, Li A H, Qu P H, Chen Q, Fan M X, Gong K Y, Ouyang H F, Wu C F 2019 Atomic Energy Science and Technology 53 1656Google Scholar

    [9]

    Jiang Y X, Peng S X, Wu W B, Ma T H, Zhang J F, Ren H T, Zhang T, Wen J M, Xu Y, Zhang A L, Sun J, Guo Z Y, Chen J E 2020 Rev. Sci. Instrum. 91 033319Google Scholar

    [10]

    Vainionpaa J H, Harris J L, Piestrup M A, Gary C K, Williams D L, Apodaca M D, Cremer J T, Ji Q, Ludewigt B A, Jones G 2013 AIP Conf. Proc. 1525 118Google Scholar

    [11]

    Fu S, Ding Z, Ke Y, Tian L 2020 IEEE T. Plasma. Sci. 48 676Google Scholar

    [12]

    Wen J M, Peng S X, Ren H T, Zhang T, Zhang J F, Wu W B, Sun J, Guo Z Y, Chen J E 2018 Chin. Phys. B 27 055204Google Scholar

    [13]

    Bogomolov S L, Bondarchenko A E, Efremov A A, Kostyukhov Y E, Kuzmenkov K I, Loginov V N, Pugachev D K, Fatkullin R D 2019 J. Instrum. 14 C01009Google Scholar

    [14]

    Ke Y J, Sun X F, Chen X K, Tian L C, Zhang T P, Zheng F M, Jia Y H, Jiang H C 2017 Plasma Sci. Technol. 19 095503Google Scholar

    [15]

    Yamamoto N, Chikaoka T, Masui H, Nakashima H, Takao Y, Kondo S 2006 In 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit California, America, July 9–12, 2006 p5177

    [16]

    Torii Y, Shimada M, Watanabe I 1992 Rev. Sci. Instrum. 63 2559Google Scholar

    [17]

    Ji Q 2011 AIP Conf. Proc. 1336 528Google Scholar

    [18]

    Baumgarten C, Barchetti A, Einenkel H, Goetz D, Schmelzbach P A 2011 Rev. Sci. Instrum. 82 053304Google Scholar

    [19]

    Fatkullin R, Bogomolov S, Kuzmenkov K, Efremov A 2018 EPJ Web of Conf. 177 08003Google Scholar

    [20]

    Chan C F, Burrell C F, Cooper W S 1983 J. Appl. Phys. 54 6119Google Scholar

    [21]

    Samuell C M, Corr C S 2016 Plasma Sources Sci. Technol. 25 015014Google Scholar

    [22]

    Zorat R, Goss J, Boilson D, Vender D 2000 Plasma Sources Sci. Technol. 9 161Google Scholar

    [23]

    Hollmann E M, Pigarov A Y 2002 Phys. Plasmas 9 4330Google Scholar

    [24]

    Ke J L, Liu Y G, Liu B L, Hu Y H, Liu M, Tang J, Zheng P, Li Y, Wu C L, Lou B C 2020 Instrum. Exp. Tech. 63 616Google Scholar

    [25]

    Svarnas P, Bacal M, Auvray P, Béchu S, Pelletier J 2006 Rev. Sci. Instrum. 77 03A512Google Scholar

    [26]

    Eguchi T, Sasao M, Shimabukuro Y, Ikemoto F, Kisaki M, Nakano H, Tsumori K, Wada M 2020 Rev. Sci. Instrum. 91 013508Google Scholar

    [27]

    Janev R K, Langer W D Jr, Evans K, Post D E 1987 Elementary Processes in Hydrogen-Helium Plasmas: Cross Sections and Reaction Rate Coefficients (Springer-Verlag Berlin Heidelberg) p1868

    [28]

    Huh S R, Kim N K, Jung B K, Chung K J, Hwang Y S, Kim G H 2015 Phys. Plasmas 22 033506Google Scholar

    [29]

    McNeely P, Dudin S V, Christ-Koch S, Fantz U, the NNBI Team 2009 Plasma Sources Sci. Technol. 18 014011Google Scholar

    [30]

    Godyak V A, Piejak R B, Alexandrovich B M 2002 Plasma Sources Sci. Technol. 11 525Google Scholar

    [31]

    Singh S B, Chand N, Pati D S 2009 Vacuum 83 372Google Scholar

    [32]

    Kimura T, Kasugai H 2010 J. Appl. Phys. 107 083308Google Scholar

    [33]

    Hjartarson A T, Thorsteinsson E G, Gudmundsson J T 2010 Plasma Sources Sci. Technol. 19 065008Google Scholar

    [34]

    Fantz U 2006 Plasma Sources Sci. Technol. 15 S137Google Scholar

    [35]

    Mazzaglia M, Castro G, Mascali D, Celona L, Neri L, Torrisi G, Gammino S, Reitano R, Naselli E 2019 Phys. Rev. Accel. Beams 22 053401Google Scholar

    [36]

    Wu W B, Ren H T, Peng S X, Xu Y, Wen J M, Sun J, Zhang A L, Zhang T, Zhang J F, Chen J E 2017 Chin. Phys. B 26 095204Google Scholar

    [37]

    Koga M, Yonesu A, Kawai Y 2003 Surf. Coat. Tech. 171 216Google Scholar

    [38]

    Reuben B G, Friedman L 1962 J. Chem. Phys. 37 1636Google Scholar

    [39]

    Dandl R A, Guest G E 1991 J. Vac. Sci. Technol. A 9 3119Google Scholar

    [40]

    Fu S L, Chen J F, Hu S J, Wu X Q, Lee Y, Fan S L 2006 Plasma Sources Sci. Technol. 15 187Google Scholar

    [41]

    Yoshida Y 1992 Appl. Phys. Lett. 61 1733Google Scholar

    [42]

    Zhang M, Peng S X, Ren H T, Song Z Z, Yuan Z X, Zhou Q F, Lu P N, Xu R, Zhao J, Yu J X, Chen J E, Guo Z Y, Lu Y R 2010 Rev. Sci. Instrum. 81 02B715Google Scholar

    [43]

    Wu W B, Peng S X, Ren H T, Xu Y, Wen J M, Zhang A L, Zhang T, Zhang J F, Sun J, Guo Z Y, Chen J E 2018 AIP Conf. Proc. 2011 020004Google Scholar

    [44]

    Wu Y 2009 Ph. D. Dissertation (Berkeley: UC Berkeley)

    [45]

    Wu W B, Zhang A L, Peng S X, Ma T H, Jiang Y X, Li K, Zhang J F, Zhang T, Wen J M, Xu Y, Guo Z Y, Chen J E 2020 Vacuum 182 109744Google Scholar

    [46]

    Fantz U, Falter H, Franzen P, Wünderlich D, Berger M, Lorenz A, Kraus W, McNeely P, Riedl R, Speth E 2006 Nucl. Fusion 46 S297Google Scholar

    [47]

    Child C D 1911 Phys. Rev. 32 492Google Scholar

    [48]

    Langmuir I 1913 Phys. Rev. 2 450Google Scholar

    [49]

    Xu Y, Peng S X, Ren H T, Zhang A L, Zhang T, Xu Y, Zhang J F, Wen J M, Wu W B, Guo Z Y, Chen J E 2017 Chin. Phys. B 26 085203Google Scholar

    [50]

    Miracoli R, Celona L, Castro G, Mascali D, Gammino S, Lanaia D, Giugno R Di, Serafno T, Ciavola G 2012 Rev. Sci. Instrum. 83 02A305Google Scholar

  • 图 1  北京大学微型ECR离子源结构示意图

    Figure 1.  Schematic diagram of the miniaturized ECR ion source at Peking University.

    图 2  离子源内氢等离子体主要碰撞过程的速率系数[27]

    Figure 2.  Rate coefficients of the main processes of hydrogen plasma inside the ion source[27].

    图 3  中性气体密度与电子温度关系曲线

    Figure 3.  Equilibrium relationships between the neutral gas density and the electron temperature.

    图 4  电子温度与运行气压和微波功率的关系

    Figure 4.  Electron temperature as functions of gas pressure and microwave power.

    图 5  电子密度与运行气压和微波功率的关系 (a) 氢气放电等离子体; (b) 氘气放电等离子体

    Figure 5.  Electron density as functions of gas pressure and microwave power: (a) H2 plasma; (b) D2 plasma.

    图 6  解离度与运行气压和微波功率的关系 (a) 氢气放电等离子体; (b) 氘气放电等离子体

    Figure 6.  Dissociation degree as functions of gas pressure and microwave power: (a) H2 plasma; (b) D2 plasma.

    图 7  不同运行气压下, H+, $ {\text{H}}_2^ + $, $ {\text{H}}_3^ +$比例

    Figure 7.  H+, $ {\text{H}}_2^ + $, $ {\text{H}}_3^ + $ ion fractions for different gas pressure.

    图 8  离子比随运行气压和微波功率的变化曲线 (a) H+; (b) $ {\text{H}}_2^ + $; (c) $ {\text{H}}_3^ + $

    Figure 8.  Ion fractions as functions of gas pressure and microwave power: (a) H+; (b) $ {\text{H}}_2^ + $; (c) $ {\text{H}}_3^ + $.

    图 9  微型ECR离子源工作状态区与H+, $ {\text{H}}_2^ + $, $ {\text{H}}_3^ + $离子占优区

    Figure 9.  Operating state region of the miniaturized ECR ion source and H+, $ {\text{H}}_2^ + $, $ {\text{H}}_3^ + $ ion dominant region.

    图 10  不同运行气压和微波功率条件下, 氘气和氢气放电的离子比对照 (a) D+; (b) $ {\text{D}}_2^ + $; (c) $ {\text{D}}_3^ + $; (d) H+; (e) $ {\text{H}}_2^ + $; (f) $ {\text{H}}_3^ + $

    Figure 10.  Comparison of ion fractions for D2 and H2 plasma at different gas pressure and microwave power: (a) D+; (b) $ {\text{D}}_2^ + $; (c) $ {\text{D}}_3^ + $; (d) H+; (e) $ {\text{H}}_2^ + $; (f) $ {\text{H}}_3^ + $.

    图 11  不同运行气压和微波功率条件下, 氘气放电和氢气放电的离子比差值 (a) Δ [D+–H+]; (b) Δ [$ {\text{D}}_2^ + $$ {\text{H}}_2^ + $]; (c) Δ [$ {\text{D}}_3^ + $$ {\text{H}}_3^ + $]

    Figure 11.  The difference of ion fraction between D2 plasma and H2 plasma at different gas pressure and microwave power: (a) Δ [D+–H+]; (b) Δ [$ {\text{D}}_2^ + $$ {\text{H}}_2^ + $]; (c) Δ [$ {\text{D}}_3^ + $$ {\text{H}}_3^ + $].

    Baidu
  • [1]

    Gammino S, Celona L, Ciavola G, Maimone F, Mascali D 2010 Rev. Sci. Instrum. 81 02B313Google Scholar

    [2]

    丁俊章, 赵玉彬, 刘占稳, 赵红卫, 袁平, 曹云, 雷海亮, 张子民, 张雪珍, 张汶, 郭晓虹, 王辉, 冯玉成, 李锦玉, 马保华, 高级元, 宋沛, 李锡霞 2001 核技术 24 43Google Scholar

    Ding J Z, Zhao Y B, Liu Z W, Zhao H W, Yuan P, Cao Y, Lei H L, Zhang Z M, Zhang X Z, Zhang W, Guo X H, Wang H, Feng Y C, Li J Y, Ma B H, Gao J Y, Song P, Li X X 2001 Nucl. Tech. 24 43Google Scholar

    [3]

    Alonso J R, Calabretta L, Campo D, Celona L, Conrad J, Martinez R G, Johnson R, Labrecque F, Toups M H, Winklehner D, Winslow L 2014 Rev. Sci. Instrum. 85 02A742Google Scholar

    [4]

    崔保群, 李立强, 包轶文, 蒋渭生, 王荣文 2002 原子能科学技术 36 486Google Scholar

    Cui B Q, Li L Q, Bao Y W, Jiang W S, Wang R W 2002 Atomic Energy Science and Technology 36 486Google Scholar

    [5]

    Harrison S E, Voss L F, Torres A M, Frye C D, Shao Q, Nikolić R J 2017 J. Vat. Sci. Technol. A 35 061303Google Scholar

    [6]

    More S E, Dave J R, Makar P K, Bhoraskar S V, Premkumar S, Tomar G B, Mathe V L 2020 Appl. Surf. Sci. 506 144665Google Scholar

    [7]

    Kim W J, Ryu J, Im J, Kim S H, Kang S Y, Lee J H, Jo S H, Ha B K 2018 Mol. Genet. Genomics. 293 1169Google Scholar

    [8]

    李波, 刘华昌, 王云, 吴小磊, 李阿红, 瞿培华, 陈强, 樊梦旭, 巩克云, 欧阳华甫, 吴丛凤 2019 原子能科学技术 53 1656Google Scholar

    Li B, Liu H C, Wang Y, Wu X L, Li A H, Qu P H, Chen Q, Fan M X, Gong K Y, Ouyang H F, Wu C F 2019 Atomic Energy Science and Technology 53 1656Google Scholar

    [9]

    Jiang Y X, Peng S X, Wu W B, Ma T H, Zhang J F, Ren H T, Zhang T, Wen J M, Xu Y, Zhang A L, Sun J, Guo Z Y, Chen J E 2020 Rev. Sci. Instrum. 91 033319Google Scholar

    [10]

    Vainionpaa J H, Harris J L, Piestrup M A, Gary C K, Williams D L, Apodaca M D, Cremer J T, Ji Q, Ludewigt B A, Jones G 2013 AIP Conf. Proc. 1525 118Google Scholar

    [11]

    Fu S, Ding Z, Ke Y, Tian L 2020 IEEE T. Plasma. Sci. 48 676Google Scholar

    [12]

    Wen J M, Peng S X, Ren H T, Zhang T, Zhang J F, Wu W B, Sun J, Guo Z Y, Chen J E 2018 Chin. Phys. B 27 055204Google Scholar

    [13]

    Bogomolov S L, Bondarchenko A E, Efremov A A, Kostyukhov Y E, Kuzmenkov K I, Loginov V N, Pugachev D K, Fatkullin R D 2019 J. Instrum. 14 C01009Google Scholar

    [14]

    Ke Y J, Sun X F, Chen X K, Tian L C, Zhang T P, Zheng F M, Jia Y H, Jiang H C 2017 Plasma Sci. Technol. 19 095503Google Scholar

    [15]

    Yamamoto N, Chikaoka T, Masui H, Nakashima H, Takao Y, Kondo S 2006 In 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit California, America, July 9–12, 2006 p5177

    [16]

    Torii Y, Shimada M, Watanabe I 1992 Rev. Sci. Instrum. 63 2559Google Scholar

    [17]

    Ji Q 2011 AIP Conf. Proc. 1336 528Google Scholar

    [18]

    Baumgarten C, Barchetti A, Einenkel H, Goetz D, Schmelzbach P A 2011 Rev. Sci. Instrum. 82 053304Google Scholar

    [19]

    Fatkullin R, Bogomolov S, Kuzmenkov K, Efremov A 2018 EPJ Web of Conf. 177 08003Google Scholar

    [20]

    Chan C F, Burrell C F, Cooper W S 1983 J. Appl. Phys. 54 6119Google Scholar

    [21]

    Samuell C M, Corr C S 2016 Plasma Sources Sci. Technol. 25 015014Google Scholar

    [22]

    Zorat R, Goss J, Boilson D, Vender D 2000 Plasma Sources Sci. Technol. 9 161Google Scholar

    [23]

    Hollmann E M, Pigarov A Y 2002 Phys. Plasmas 9 4330Google Scholar

    [24]

    Ke J L, Liu Y G, Liu B L, Hu Y H, Liu M, Tang J, Zheng P, Li Y, Wu C L, Lou B C 2020 Instrum. Exp. Tech. 63 616Google Scholar

    [25]

    Svarnas P, Bacal M, Auvray P, Béchu S, Pelletier J 2006 Rev. Sci. Instrum. 77 03A512Google Scholar

    [26]

    Eguchi T, Sasao M, Shimabukuro Y, Ikemoto F, Kisaki M, Nakano H, Tsumori K, Wada M 2020 Rev. Sci. Instrum. 91 013508Google Scholar

    [27]

    Janev R K, Langer W D Jr, Evans K, Post D E 1987 Elementary Processes in Hydrogen-Helium Plasmas: Cross Sections and Reaction Rate Coefficients (Springer-Verlag Berlin Heidelberg) p1868

    [28]

    Huh S R, Kim N K, Jung B K, Chung K J, Hwang Y S, Kim G H 2015 Phys. Plasmas 22 033506Google Scholar

    [29]

    McNeely P, Dudin S V, Christ-Koch S, Fantz U, the NNBI Team 2009 Plasma Sources Sci. Technol. 18 014011Google Scholar

    [30]

    Godyak V A, Piejak R B, Alexandrovich B M 2002 Plasma Sources Sci. Technol. 11 525Google Scholar

    [31]

    Singh S B, Chand N, Pati D S 2009 Vacuum 83 372Google Scholar

    [32]

    Kimura T, Kasugai H 2010 J. Appl. Phys. 107 083308Google Scholar

    [33]

    Hjartarson A T, Thorsteinsson E G, Gudmundsson J T 2010 Plasma Sources Sci. Technol. 19 065008Google Scholar

    [34]

    Fantz U 2006 Plasma Sources Sci. Technol. 15 S137Google Scholar

    [35]

    Mazzaglia M, Castro G, Mascali D, Celona L, Neri L, Torrisi G, Gammino S, Reitano R, Naselli E 2019 Phys. Rev. Accel. Beams 22 053401Google Scholar

    [36]

    Wu W B, Ren H T, Peng S X, Xu Y, Wen J M, Sun J, Zhang A L, Zhang T, Zhang J F, Chen J E 2017 Chin. Phys. B 26 095204Google Scholar

    [37]

    Koga M, Yonesu A, Kawai Y 2003 Surf. Coat. Tech. 171 216Google Scholar

    [38]

    Reuben B G, Friedman L 1962 J. Chem. Phys. 37 1636Google Scholar

    [39]

    Dandl R A, Guest G E 1991 J. Vac. Sci. Technol. A 9 3119Google Scholar

    [40]

    Fu S L, Chen J F, Hu S J, Wu X Q, Lee Y, Fan S L 2006 Plasma Sources Sci. Technol. 15 187Google Scholar

    [41]

    Yoshida Y 1992 Appl. Phys. Lett. 61 1733Google Scholar

    [42]

    Zhang M, Peng S X, Ren H T, Song Z Z, Yuan Z X, Zhou Q F, Lu P N, Xu R, Zhao J, Yu J X, Chen J E, Guo Z Y, Lu Y R 2010 Rev. Sci. Instrum. 81 02B715Google Scholar

    [43]

    Wu W B, Peng S X, Ren H T, Xu Y, Wen J M, Zhang A L, Zhang T, Zhang J F, Sun J, Guo Z Y, Chen J E 2018 AIP Conf. Proc. 2011 020004Google Scholar

    [44]

    Wu Y 2009 Ph. D. Dissertation (Berkeley: UC Berkeley)

    [45]

    Wu W B, Zhang A L, Peng S X, Ma T H, Jiang Y X, Li K, Zhang J F, Zhang T, Wen J M, Xu Y, Guo Z Y, Chen J E 2020 Vacuum 182 109744Google Scholar

    [46]

    Fantz U, Falter H, Franzen P, Wünderlich D, Berger M, Lorenz A, Kraus W, McNeely P, Riedl R, Speth E 2006 Nucl. Fusion 46 S297Google Scholar

    [47]

    Child C D 1911 Phys. Rev. 32 492Google Scholar

    [48]

    Langmuir I 1913 Phys. Rev. 2 450Google Scholar

    [49]

    Xu Y, Peng S X, Ren H T, Zhang A L, Zhang T, Xu Y, Zhang J F, Wen J M, Wu W B, Guo Z Y, Chen J E 2017 Chin. Phys. B 26 085203Google Scholar

    [50]

    Miracoli R, Celona L, Castro G, Mascali D, Gammino S, Lanaia D, Giugno R Di, Serafno T, Ciavola G 2012 Rev. Sci. Instrum. 83 02A305Google Scholar

  • [1] Li Xin, Zeng Ming, Liu Hui, Ning Zhong-Xi, Yu Da-Ren. Iodine electron cyclotron resonance plasma source for electric propulsion. Acta Physica Sinica, 2023, 72(22): 225202. doi: 10.7498/aps.72.20230785
    [2] Fu Yu-Liang, Yang Juan, Wang Bin, Hu Zhan, Xia Xu, Mu Hao. Numerical study on abnormal flameout of 2-cm electron cyclotron resonance ion source. Acta Physica Sinica, 2022, 71(8): 085203. doi: 10.7498/aps.71.20212151
    [3] Chen Guo-Hua, Shi Ke-Jun, Chu Jin-Ke, Wu Hao, Zhou Chi-Lou, Xiao Shu. Numerical simulation and optimization of cooling flow field of cylindrical cathode with annular magnetic field. Acta Physica Sinica, 2021, 70(7): 075203. doi: 10.7498/aps.70.20201368
    [4] Zhang Yu-Ru, Gao Fei, Wang You-Nian. Numerical investigation of low pressure inductively coupled plasma sources: A review. Acta Physica Sinica, 2021, 70(9): 095206. doi: 10.7498/aps.70.20202247
    [5] Xia Xu, Yang Juan, Fu Yu-Liang, Wu Xian-Ming, Geng Hai, Hu Zhan. Numerical simulation of influence of magnetic field on plasma characteristics and surface current of ion source of 2-cm electron cyclotron resonance ion thruster. Acta Physica Sinica, 2021, 70(7): 075204. doi: 10.7498/aps.70.20201667
    [6] Chen Jian, Liu Zhi-Qiang, Guo Heng, Li He-Ping, Jiang Dong-Jun, Zhou Ming-Sheng. Physical characteristics of ion extraction simulation system based on gas discharge plasma jet. Acta Physica Sinica, 2018, 67(18): 182801. doi: 10.7498/aps.67.20180919
    [7] Che Bi-Xuan, Li Xiao-Kang, Cheng Mou-Sen, Guo Da-Wei, Yang Xiong. A magnetohydrodynamic numerical model with external circuit coupled for pulsed inductive thrusters. Acta Physica Sinica, 2018, 67(1): 015201. doi: 10.7498/aps.67.20171225
    [8] Chen Mao-Lin, Xia Guang-Qing, Wei Yan-Ming, Yu Yang, Sun An-Bang, Mao Gen-Wang. Charateristics and stress analysis of sheath of parallel conducting tethers for the electric sail. Acta Physica Sinica, 2016, 65(20): 209601. doi: 10.7498/aps.65.209601
    [9] Jin Yi-Zhou, Yang Juan, Feng Bing-Bing, Luo Li-Tao, Tang Ming-Jie. Ion extraction experiment for electron cyclotron resonance ion source with different magnetic topology. Acta Physica Sinica, 2016, 65(4): 045201. doi: 10.7498/aps.65.045201
    [10] Yang Chao, Yin Mao-Wei, Shang Li-Ping, Wang Wei, Liu Yi, Xia Lian-Sheng, Deng Jian-Jun. Numerical simulation research of plasma characteristics in a multi-cusp proton source based on magnets layout. Acta Physica Sinica, 2015, 64(8): 085203. doi: 10.7498/aps.64.085203
    [11] Tang Ming-Jie, Yang Juan, Jin Yi-Zhou, Luo Li-Tao, Feng Bing-Bing. Experimental optimization in ion source configuration of a miniature electron cyclotron resonance ion thruster. Acta Physica Sinica, 2015, 64(21): 215202. doi: 10.7498/aps.64.215202
    [12] Chen Mao-Lin, Xia Guang-Qing, Xu Zong-Qi, Mao Gen-Wang. Analysis on the effects of optics thermal deformation on the ion thruster operation. Acta Physica Sinica, 2015, 64(9): 094104. doi: 10.7498/aps.64.094104
    [13] Chen Mao-Lin, Xia Guang-Qing, Mao Gen-Wang. Three-dimensional particle in cell simulation of multi-mode ion thruster optics system. Acta Physica Sinica, 2014, 63(18): 182901. doi: 10.7498/aps.63.182901
    [14] Yang Chao, Liu Da-Gang, Liu La-Qun, Xia Meng-Zhong, Wang Hui-Hui, Wang Xiao-Ming. 3D simulation of the electron energy distribution in negative hydrogen ion source. Acta Physica Sinica, 2012, 61(15): 155205. doi: 10.7498/aps.61.155205
    [15] Xia Guang-Qing, Xue Wei-Hua, Chen Mao-Lin, Zhu Yu, Zhu Guo-Qiang. Numerical simulation study on characteristic parameters of microcavity discharge in argon. Acta Physica Sinica, 2011, 60(1): 015201. doi: 10.7498/aps.60.015201
    [16] Yang Juan, Shi Feng, Yang Tie-Lian, Meng Zhi-Qiang. Numerical simulation on the plasma field within discharge chamber of electron cyclotron resonance ion thruster. Acta Physica Sinica, 2010, 59(12): 8701-8706. doi: 10.7498/aps.59.8701
    [17] Yang Yan-Nan, Yang Bo, Zhu Jin-Rong, Shen Zhong-Hua, Lu Jian, Ni Xiao-Wu. Mechanism and numerical simulation of laser-target impulse coupling in vacuum. Acta Physica Sinica, 2007, 56(10): 5945-5951. doi: 10.7498/aps.56.5945
    [18] Yang Juan, Su Wei-Yi, Mao Gen-Wang, Xia Guang-Qing. Numerical simulation of the internal flow in microwave plasma thruster in magnetic field. Acta Physica Sinica, 2006, 55(12): 6494-6499. doi: 10.7498/aps.55.6494
    [19] Liu Ming-Hai, Hu Xi-Wei, Wu Qin-Chong, Yu Guo-Yang. . Acta Physica Sinica, 2000, 49(3): 497-501. doi: 10.7498/aps.49.497
    [20] Wang De-Zhen, Ma Teng-Cai, Gong Ye. . Acta Physica Sinica, 1995, 44(6): 877-884. doi: 10.7498/aps.44.877
Metrics
  • Abstract views:  6405
  • PDF Downloads:  210
  • Cited By: 0
Publishing process
  • Received Date:  05 December 2021
  • Accepted Date:  03 March 2022
  • Available Online:  05 July 2022
  • Published Online:  20 July 2022

/

返回文章
返回
Baidu
map