Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Interface reflection wave of axisymmetric directional spherical-wave

Duan Yun-Da Hu Heng-Shan

Citation:

Interface reflection wave of axisymmetric directional spherical-wave

Duan Yun-Da, Hu Heng-Shan
PDF
HTML
Get Citation
  • The sound radiation field of a circular piston source in an infinite plane rigid baffle can be approximated as an axisymmetric directional spherical-wave. The interface response expressions of the axisymmetric directional spherical-wave for the piston parallel with the interface has already been obtained in previous studies. On condition that the distance from the piston center to the interface is much greater than the piston radius, we first derive the conical wave expansion of the axisymmetric directional spherical-wave which is obtained by using the conical wave expansion of the homogeneous spherical-wave and the formula of the axisymmetric directional spherical-wave excited by a circular piston in an rigid infinite plane, and then derive the expression of the interface reflection wave of the axisymmetric directional spherical-wave for the piston non-parallel to the interface. The expression of the interface reflection wave is simplified into a simplified expression by saddle point method on condition that the source distance is much larger than the acoustic wavelength. The simplified expression is not only simple in the calculation, but also clear in the physical meaning. The simplified expression shows that the interface reflection wave of the axisymmetric directional spherical-wave can be regarded as the product of the axisymmetric directional spherical-wave excited by the piston mirror image and the reflection coefficient. The calculations show that when the piston radius is smaller than the acoustic wavelength, the reflected wave is less sensitive to the angle included between the piston and the interface and the azimuth of the receiving point, and the directivity of the reflected wave is weak. When the piston radius is greater than the acoustic wavelength, the reflected wave is very sensitive to the angle included between the piston and the interface and the azimuth of the receiving point, and the directivity of the reflected wave is strong. Increasing the angle included between the piston and the interface, the reflected wave and its directivity both first increase and then decrease. The reflected wave is largest and the directivity of the reflected wave is strongest when the angle included between the piston and the interface is equal to that between the interface normal and the connecting line between the mirror image of the piston center and the receiving point.
      Corresponding author: Hu Heng-Shan, hhs@hit.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11972132, 11734017)
    [1]

    腾舵, 杨虎, 李道江 2016 水声换能器基础 (西安: 西北工业大学出版社) 第1—3页

    Ten D, Yang H, Li D J 2016 Underwater Acoustic Transducer Foundation (Xi’an: Northwestern Polytechnical University Press) pp1–3 (in Chinese)

    [2]

    杨坤德, 段睿, 李辉, 马远良 2019 水下声源定位理论与技术 (北京: 电子工业出版社) 第1—3页

    Yang K D, Duan R, Li H, Ma Y L 2019 Theory and Technology of Underwater Sound Source Location (Beijing: Publishing House of Electronics Industry) pp1–3 (in Chinese)

    [3]

    莫喜平 2012 应用声学 31 171Google Scholar

    Mo X P 2012 Appl. Acoust. 31 171Google Scholar

    [4]

    Hall D E 1987 Basic Acoustics (New York: Harper & Row Publishers) pp161–177

    [5]

    朱中锐 2015 声呐障板下矢量水听器应用引论 (哈尔滨: 哈尔滨工程大学出版社) 第29页

    Zhu Z R 2015 Introduction to the Application of Vector Hydrophone under Sonar Baffle (Harbin: Harbin Engineering University Press) p29 (in Chinese)

    [6]

    莫喜平, 于婧涵 2019 声学学报 44 751

    Mo X P, Yu J H 2019 Acta Acustica 44 751

    [7]

    何正耀 2020 水声换能器及基阵建模与设计 (北京: 科学出版社) 第2页

    Hei Z Y 2020 Modeling and Design of Underwater Acoustic Transducer and Array (Beijing: Science Press) p2 (in Chinese)

    [8]

    New R, Becker R I, Wilhelmij P 1981 J. Acoust. Soc. Am. 70 1518Google Scholar

    [9]

    Mast T D, Yu F 2005 J. Acoust. Soc. Am. 118 3457Google Scholar

    [10]

    Mellow T 2006 J. Acoust. Soc. Am. 120 90Google Scholar

    [11]

    莫喜平 2018 应用声学 37 671Google Scholar

    Mo X P 2018 J. Appl. Acoust. 37 671Google Scholar

    [12]

    纪伟, 刘忠乐 2017 水雷战与舰船防护 25 7

    Ji W, Liu Z L 2017 Mine Warf. Ship Def. 25 7

    [13]

    梅元贵, 许建林, 耿烽, 周朝晖, 李刚 2006 铁道学报 28 74Google Scholar

    Mei Y G, Xu J L, Geng F, Zhou C H, Li G 2006 J. China Rail. Soc. 28 74Google Scholar

    [14]

    李禹志, 李昕珈, 王青东, 郭各朴, 马青玉 2019 声学技术 38 327

    Li Y Z, Li X J, Wang Q D, Guo G P, Ma Q Y 2019 Tech. Acoust. 38 327

    [15]

    Amédin C K, Berry A, Champoux Y, Allard J F 1995 J. Acoust. Soc. Am. 98 1757Google Scholar

    [16]

    Wang C N, Cho H M 2005 Appl. Acoust. 66 866Google Scholar

    [17]

    Schakel M D, Smeulders D, Slob E C, Heller H K 2011 J. Appl. Phys. 109 15678

    [18]

    Schakel M D, Smeulders D, Slob E C, Heller H K 2011 Geophysics 76 N29Google Scholar

    [19]

    Schakel M D, Smeulders D, Slob E C, Heller H K 2012 Transport Porous Med. 93 1Google Scholar

    [20]

    Pride S R 1994 Phys. Rev. B 50 15678Google Scholar

    [21]

    Pride S R, Haartsen M W 1996 J. Acoust. Soc. Am. 100 1301Google Scholar

    [22]

    王鑫 2020 化学工程与装备 285 115

    Wang X 2020 Chem. Eng. Eq. 285 115

    [23]

    Aki K, Richards P G 2002 Quantitative Seismology (California: University Science Books) pp194–207

    [24]

    Morse P M, Feshbach H 1953 Methods of Theoretical Physics (Part II) (NewYork: McGraw-Hill) pp1323, 1457

    [25]

    裴彦良, 王揆洋, 李官保, 李西双, 刘晨光 2007 石油仪器 21 20

    Pei Y L, Wang K Y, Li G B, Li X S, Liu C G 2007 Petrol. Instrum. 21 20

    [26]

    谈国君 2010 江苏水利 000 28Google Scholar

    Tang G J 2010 Jiangsu Water Resour. 000 28Google Scholar

    [27]

    张虹斌, 周忠海, 刘军礼, 程广欣 2012 中国水运 12 211

    Zhang H B, Zhou Z H, Liu J L, Cheng G X 2012 China Water Transport 12 211

    [28]

    奚定平 1998 贝塞尔函数 (北京: 高等教育出版社) 第13—16页

    Xi D P 1998 Bessel Function (Beijing: Higher Education Press) pp13–16 (in Chinese)

  • 图 1  无限大平面刚性障板中的圆形活塞与界面的示意图

    Figure 1.  Schematic diagram of a piston in an infinite plane rigid baffle and an interface.

    图 2  ${p_{\text{f}}}\left( M \right)$, ${p_{\text{f}}}\left( O \right)$$ {p_{{\text{f0}}}} $的时域波形 (a) $a = 0.1\;\text{m}$; (b) $a = 1\;\text{m}$

    Figure 2.  Time-domain waveforms of ${p_{\text{f}}}\left( M \right)$, ${p_{\text{f}}}\left( O \right)$ and $ {p_{{\text{f0}}}} $: (a) $a = 0.1\;\text{m}$; (b) $a = 1\;\text{m}$.

    图 3  活塞面关于界面的镜像

    Figure 3.  Mirror image of the piston surface with respect to the interface.

    图 4  $ {P_{{\text{ref}}}} $$ {P_{{\rm{ref\_jian}}}} $的比较 (a)$ a = 0.1\;\text{m} $且快速地层; (b)$ a = 0.1\;\text{m} $且慢速地层; (c)$ a = 1\;\text{m} $且快速地层; (d)$ a = 1\;\text{m} $且慢速地层

    Figure 4.  Comparison of $ {P_{{\text{ref}}}} $ and $ {P_{{\rm{ref\_jian}}}} $: (a)$ a = 0.1\;\text{m} $ and fast formation; (b)$ a = 0.1\;\text{m} $ and slow formation; (c)$ a = 1\;\text{m} $ and fast formation; (d)$ a = 1\;\text{m} $ and slow formation.

    图 5  不同夹角α下在M$( {20\sqrt 3 , \;0, \; - 10} )$处的反射波 (a)$a = 0.1\;\text{m}$; (b)$a = 1\;\text{m}$

    Figure 5.  Reflected wave under different included angle α for point M at $( {20\sqrt 3 , \;0, \; - 10} )$: (a)$a = 0.1\;\text{m}$; (b)$a = 1\;\text{m}$.

    图 6  不同夹角α下在M$( {20\sqrt 3 , \;45, \; - 10} )$处的反射波 (a) $a = 0.1\;\text{m}$; (b)$a = 1\;\text{m}$

    Figure 6.  Reflected wave under different included angle α for point M at $( {20\sqrt 3 , \;45, \; - 10} )$: (a) $a = 0.1\;\text{m}$; (b) $a = 1\;\text{m}$.

    图 7  不同夹角α下在M$( {20\sqrt 3 , \;90, \; - 10})$处的反射波 (a)$a = 0.1\;\text{m}$; (b)$a = 1\;\text{m}$

    Figure 7.  Reflected wave under different included angle α for point M at $( {20\sqrt 3 , \;90, \; - 10} )$: (a)$a = 0.1\;\text{m}$; (b)$a = 1\;\text{m}$.

    图 8  $\alpha = {45^{\circ}}$时不同${\varphi _M}$下的反射波和其指向图 (a)$a = 0.1\;\text{m}$时的反射波; (b)$a = 0.1\;\text{m}$时的指向图; (c)$a = 1\;\text{m}$时的反射波; (d)$a = 1\;\text{m}$时的指向图

    Figure 8.  Reflected waves and directional diagrams at different azimuths ${\varphi _M}$ for $\alpha = {45^{\circ}}$: (a) Reflected waves for $ a = 0.1\;\text{m} $; (b) directional diagram for $ a = 0.1\;\text{m} $; (c) reflected waves for $ a = 1\;\text{m} $; (d) directional diagram for $ a = 1\;\text{m} $.

    图 9  不同夹角α下的反射波的指向图 (a)$a = 0.1\;\text{m}$; (b)$a = 1\;\text{m}$

    Figure 9.  Directional diagrams under different angle α: (a)$a = 0.1\;\text{m}$; (b)$a = 1\;\text{m}$.

    图 10  $a = 1\;\text{m}$时不同夹角α下的指向图 (a)$ {\beta _{M{E_{1}}}} = {20^{\circ}} $; (b)$ {\beta _{M{E_{1}}}} = {40^{\circ}} $

    Figure 10.  Directional diagrams under different angle α for $a = 1\;\text{m}$: (a)$ {\beta _{M{E_{1}}}} = {20^{\circ}} $; (b)$ {\beta _{M{E_{1}}}} = {40^{\circ}} $.

    图 11  $\left| B \right|$$ {\beta _{M{E_{1}}}} $的变化曲线

    Figure 11.  Variation curve of $\left| B \right|$ with $ {\beta _{M{E_{1}}}} $.

    表 1  流体和固体参数

    Table 1.  Parameters of fluid and solid.

    密度/
    (${\rm{ kg}} \cdot {{\rm{m}}^{ - 3} }$)
    纵波速度/
    (${\text{m}} \cdot {{\text{s}}^{ - 1}}$)
    横波速度/
    (${\text{m}} \cdot {{\text{s}}^{ - 1}}$)
    流体10001500
    快速地层260040002300
    慢速地层200022001200
    DownLoad: CSV
    Baidu
  • [1]

    腾舵, 杨虎, 李道江 2016 水声换能器基础 (西安: 西北工业大学出版社) 第1—3页

    Ten D, Yang H, Li D J 2016 Underwater Acoustic Transducer Foundation (Xi’an: Northwestern Polytechnical University Press) pp1–3 (in Chinese)

    [2]

    杨坤德, 段睿, 李辉, 马远良 2019 水下声源定位理论与技术 (北京: 电子工业出版社) 第1—3页

    Yang K D, Duan R, Li H, Ma Y L 2019 Theory and Technology of Underwater Sound Source Location (Beijing: Publishing House of Electronics Industry) pp1–3 (in Chinese)

    [3]

    莫喜平 2012 应用声学 31 171Google Scholar

    Mo X P 2012 Appl. Acoust. 31 171Google Scholar

    [4]

    Hall D E 1987 Basic Acoustics (New York: Harper & Row Publishers) pp161–177

    [5]

    朱中锐 2015 声呐障板下矢量水听器应用引论 (哈尔滨: 哈尔滨工程大学出版社) 第29页

    Zhu Z R 2015 Introduction to the Application of Vector Hydrophone under Sonar Baffle (Harbin: Harbin Engineering University Press) p29 (in Chinese)

    [6]

    莫喜平, 于婧涵 2019 声学学报 44 751

    Mo X P, Yu J H 2019 Acta Acustica 44 751

    [7]

    何正耀 2020 水声换能器及基阵建模与设计 (北京: 科学出版社) 第2页

    Hei Z Y 2020 Modeling and Design of Underwater Acoustic Transducer and Array (Beijing: Science Press) p2 (in Chinese)

    [8]

    New R, Becker R I, Wilhelmij P 1981 J. Acoust. Soc. Am. 70 1518Google Scholar

    [9]

    Mast T D, Yu F 2005 J. Acoust. Soc. Am. 118 3457Google Scholar

    [10]

    Mellow T 2006 J. Acoust. Soc. Am. 120 90Google Scholar

    [11]

    莫喜平 2018 应用声学 37 671Google Scholar

    Mo X P 2018 J. Appl. Acoust. 37 671Google Scholar

    [12]

    纪伟, 刘忠乐 2017 水雷战与舰船防护 25 7

    Ji W, Liu Z L 2017 Mine Warf. Ship Def. 25 7

    [13]

    梅元贵, 许建林, 耿烽, 周朝晖, 李刚 2006 铁道学报 28 74Google Scholar

    Mei Y G, Xu J L, Geng F, Zhou C H, Li G 2006 J. China Rail. Soc. 28 74Google Scholar

    [14]

    李禹志, 李昕珈, 王青东, 郭各朴, 马青玉 2019 声学技术 38 327

    Li Y Z, Li X J, Wang Q D, Guo G P, Ma Q Y 2019 Tech. Acoust. 38 327

    [15]

    Amédin C K, Berry A, Champoux Y, Allard J F 1995 J. Acoust. Soc. Am. 98 1757Google Scholar

    [16]

    Wang C N, Cho H M 2005 Appl. Acoust. 66 866Google Scholar

    [17]

    Schakel M D, Smeulders D, Slob E C, Heller H K 2011 J. Appl. Phys. 109 15678

    [18]

    Schakel M D, Smeulders D, Slob E C, Heller H K 2011 Geophysics 76 N29Google Scholar

    [19]

    Schakel M D, Smeulders D, Slob E C, Heller H K 2012 Transport Porous Med. 93 1Google Scholar

    [20]

    Pride S R 1994 Phys. Rev. B 50 15678Google Scholar

    [21]

    Pride S R, Haartsen M W 1996 J. Acoust. Soc. Am. 100 1301Google Scholar

    [22]

    王鑫 2020 化学工程与装备 285 115

    Wang X 2020 Chem. Eng. Eq. 285 115

    [23]

    Aki K, Richards P G 2002 Quantitative Seismology (California: University Science Books) pp194–207

    [24]

    Morse P M, Feshbach H 1953 Methods of Theoretical Physics (Part II) (NewYork: McGraw-Hill) pp1323, 1457

    [25]

    裴彦良, 王揆洋, 李官保, 李西双, 刘晨光 2007 石油仪器 21 20

    Pei Y L, Wang K Y, Li G B, Li X S, Liu C G 2007 Petrol. Instrum. 21 20

    [26]

    谈国君 2010 江苏水利 000 28Google Scholar

    Tang G J 2010 Jiangsu Water Resour. 000 28Google Scholar

    [27]

    张虹斌, 周忠海, 刘军礼, 程广欣 2012 中国水运 12 211

    Zhang H B, Zhou Z H, Liu J L, Cheng G X 2012 China Water Transport 12 211

    [28]

    奚定平 1998 贝塞尔函数 (北京: 高等教育出版社) 第13—16页

    Xi D P 1998 Bessel Function (Beijing: Higher Education Press) pp13–16 (in Chinese)

  • [1] An Bing-Wen, Chen Jia-Yi, Li Fei-Ran, Li Zi-Qi, Wu Xian-Mei. Ultrasonic sensing directivity of π-phase-shifted fiber Bragg grating hydrophone. Acta Physica Sinica, 2023, 72(6): 064303. doi: 10.7498/aps.72.20222154
    [2] Wang Ming-Jun, Wang Wan-Rou, Li Yong-Jun. Phase regulation of lightwave transmission in inhomogeneous atmospheric medium using plane acoustic field. Acta Physica Sinica, 2022, 71(16): 164302. doi: 10.7498/aps.71.20220484
    [3] Zhou Yan-Ling, Fan Jun, Wang Bin, Li Bing. Manipulating spatial directivity of acoustic scattering from a submerged cylinder by means of annular grooves. Acta Physica Sinica, 2021, 70(17): 174301. doi: 10.7498/aps.70.20210111
    [4] Liu Sheng-Xing, Li Zheng-Lin. Reflecting and scattering of acoustic wave from sea ices. Acta Physica Sinica, 2017, 66(23): 234301. doi: 10.7498/aps.66.234301
    [5] Sun Hong-Xiang, Fang Xin, Ge Yong, Ren Xu-Dong, Yuan Shou-Qi. Acoustic focusing lens with near-zero refractive index based on coiling-up space structure. Acta Physica Sinica, 2017, 66(24): 244301. doi: 10.7498/aps.66.244301
    [6] Zhou Zhi-Gang, Zong Jin, Wang Wen-Guang, Hou Mei-Ying. Experimental study on the influence of granular shear deformation on sound propagation. Acta Physica Sinica, 2017, 66(15): 154502. doi: 10.7498/aps.66.154502
    [7] Guo Jun-Yuan, Yang Shi-E, Piao Sheng-Chun, Mo Ya-Xiao. Direction-of-arrival estimation based on superdirective multi-pole vector sensor array for low-frequency underwater sound sources. Acta Physica Sinica, 2016, 65(13): 134303. doi: 10.7498/aps.65.134303
    [8] Ning Fang-Li, Dong Liang, Zhang Wen-Zhi, Wang Kang. A finite volume algorithm for solving nonlinear standing waves in acoustic resonators. Acta Physica Sinica, 2012, 61(19): 190203. doi: 10.7498/aps.61.190203
    [9] Lü Jun, Zhao Zheng-Yu, Zhou Chen, Zhang Yuan-Nong. Effect of finite-amplitude acoustic wave nonlinear interaction on farfield directivity of sound source. Acta Physica Sinica, 2011, 60(8): 084301. doi: 10.7498/aps.60.084301
    [10] Liu Qi-Neng. Analytic method of studying defect mode of 1D doped phononic crystal. Acta Physica Sinica, 2011, 60(4): 044302. doi: 10.7498/aps.60.044302
    [11] Wang Wen-Gang, Liu Zheng-You, Zhao De-Gang, Ke Man-Zhu. Resonant tunneling of acoustic waves in 1D phononic crystal. Acta Physica Sinica, 2006, 55(9): 4744-4747. doi: 10.7498/aps.55.4744
    [12] Gu Yong-Yu, Zhang Yong-Kang, Zhang Xing-Quan, Shi Jian-Guo. Theoretical study on the influence of the overlay on the pressure of laser shock wave in photomechanics. Acta Physica Sinica, 2006, 55(11): 5885-5891. doi: 10.7498/aps.55.5885
    [13] Han Ru-Qu, Shi Qing-Fan, Sun Gang. Simulation of transmitting sound wave in one-dimensional easy-expanding medium. Acta Physica Sinica, 2005, 54(5): 2188-2193. doi: 10.7498/aps.54.2188
    [14] Cao Yu, Yang Kong-Qing. Hamiltonian system approach for simulation of acoustic and elastic wave propagat ion. Acta Physica Sinica, 2003, 52(8): 1984-1992. doi: 10.7498/aps.52.1984
    [15] Duan Wen-Shan, Hong Xue-Ren. Ion acoustic solitary waves in a weakly relativistic plasma under transverse p erturbations. Acta Physica Sinica, 2003, 52(6): 1337-1339. doi: 10.7498/aps.52.1337
    [16] Wu Fu-Gen, Liu You-Yan. . Acta Physica Sinica, 2002, 51(7): 1434-1434. doi: 10.7498/aps.51.1434
    [17] ZHENG XIAO-YU, QIAN ZU-WEN. REFLECTION OF AND REFRACTION OF FINITE AMPLITUDE SOUND WAVE ON PLANE BOUNDARY OF HALF SPACE. Acta Physica Sinica, 1990, 39(1): 89-93. doi: 10.7498/aps.39.89
    [18] QIAN ZU-WEN, SHI XIU-XIANG, ZHAO CHUN-SHENG, LU FENG-LING, WANG XIAO-XIA. FINITE-AMPLITUDE REFLECTION WAVE OF CIRCULAR PISTON SOUND SOURCES. Acta Physica Sinica, 1983, 32(9): 1109-1117. doi: 10.7498/aps.32.1109
    [19] Zhang Ren-he, Zhu Bai-xian. NORMAL-MODE SOUND FIELD OF DIRECTIONAL RADIATOR. Acta Physica Sinica, 1983, 32(4): 490-496. doi: 10.7498/aps.32.490
    [20] YAN REN-BO. DIRECTIVITY PATTERNS OF ANGLE PROBES FOR ULTRASONIC BULK WAVES AND SURFACE WAVES. Acta Physica Sinica, 1974, 23(6): 41-50. doi: 10.7498/aps.23.41
Metrics
  • Abstract views:  4014
  • PDF Downloads:  54
  • Cited By: 0
Publishing process
  • Received Date:  15 September 2021
  • Accepted Date:  22 November 2021
  • Available Online:  26 January 2022
  • Published Online:  05 April 2022

/

返回文章
返回
Baidu
map