Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Experimental study on the influence of granular shear deformation on sound propagation

Zhou Zhi-Gang Zong Jin Wang Wen-Guang Hou Mei-Ying

Citation:

Experimental study on the influence of granular shear deformation on sound propagation

Zhou Zhi-Gang, Zong Jin, Wang Wen-Guang, Hou Mei-Ying
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Effective medium theory (EMT) predicts a scaling relation between sound velocity c and pressure P as c (Z)1/3 (P/E0)1/6, where and Z are respectively the packing fraction and the mean coordination number of granular material. In this relation, the granular contact network is represented via two simple parameters and Z stemming theoretically from a strong approximation that microscopic and macroscopic granular displacements remain affine. This hypothesis simplifies tremendous computations for sound wave in a granular system, however some experimental results show that the scaling relation is recovered only for the case of very high pressure confinement (larger than 106 Pa for a glass bead system), but for the lower pressure case (less than 106 Pa) the relation does not hold. Owing to the fact that the change of microscopic granular displacement relates to the contact network variation of granular sample, and for better understanding the effect of the variation of contact network on the sound propagation in granular system, we conduct uniaxial shear experiments, in which the granular solid sample, composed of 0.28-0.44 mm glass beads, is cyclically compressed under a series of axial loadings (denoted as Pcomp). After these axial loadings, different contact networks of the sample are formed. Ultrasonic waves are then measured in the granular sample with these different contact networks under a constant axial pressure (denoted as Pobse). It is found that the axial deformation of the granular sample apparently affects the incoherent part of ultrasonic wave, but not the coherent part. A resemblant parameter is introduced to quantitatively discuss the variations of incoherent parts of sound waves in different axial deformations. In this paper, we also compare the frequency and the energy spectra of the sound waves, and find that the tendencies of their varying with the increase of axial deformation are nearly the same. This indicates that during the sound wave propagation in the granular solid sample, the processes of wave scattering and dissipation on particle contacted occur at the same time and the energy dissipation of sound wave in the air among particles can be neglected. In our experiments, compressional wave velocities based on time-of-flight method are also explored. The experimental results show that the velocity increases rapidly at the beginning of the axial deformation, and then tends to a steady value which is predicted by EMT. These illuminate that the variation of contact networks of granular sample may contribute to the deviation of velocity-pressure exponent from the prediction of EMT in low confining pressure.
      Corresponding author: Hou Mei-Ying, mayhou@iphy.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos.11274354,11474326) and the Chinese Academy of Sciences Strategic Priority Research Program-SJ-10 (Grant No.XDA04020200).
    [1]

    Liu C H, Nagel S R, Schecter D A, Coppersmith S N, Majumdar S, Narayan O, Witten T A 1995 Science 269 513

    [2]

    Jacco H S, Thijs J H V, van Martin H, van Wim S 2004 Phys. Rev. Lett. 92 054302

    [3]

    Bi D P, Zhang J, Chakraborty B, Behringer R P 2011 Nature 480 355

    [4]

    Makse H A, Gland N, Johnson D L, Schwartz L M 1999 Phys. Rev. Lett. 83 5070

    [5]

    Tournat V, Gusev V E 2009 Phys. Rev. E 80 011306

    [6]

    Jia X, Brunet Th, Laurent J 2011 Phys. Rev. E 84 020301

    [7]

    Caroli C, Velick B 2003 Phys. Rev. E 67 061301

    [8]

    Khidas Y, Jia X P 2012 Phys. Rev. E 85 051302

    [9]

    Zhang Q, Li Y C, Hou M Y, Jiang Y M, Liu M 2012 Phys. Rev. E 85 031306

    [10]

    Domentico S N 1977 Geophysics 42 1339

    [11]

    Yin H 1993 Ph. D. Dissertation (Stanford: Stanford University)

    [12]

    Majmudar T S, Sperl M, Luding S, Behringer R P 2007 Phys. Rev. Lett. 98 058001

    [13]

    Jia X, Caroli C, Velick B 1999 Phys. Rev. Lett. 82 1863

    [14]

    Owens E T, Daniels K E 2011 Eur. Phys. Lett. 94 54005

    [15]

    Liu C H, Nagel S R 1992 Phys. Rev. Lett. 68 2301

    [16]

    Yacine K, Jia X P 2010 Phys. Rev. E 81 021303

    [17]

    Wambaugh J F, Hartley R R, Behringer R P 2010 Eur. Phys. J. E 32 135

    [18]

    Corwin E I, Jaeger H M, Nagel S R 2005 Nature 435 1075

    [19]

    Nicolas V, Giammarinaro B, Derode A, Barrire C 2013 Phys. Rev. E 88 023201

    [20]

    Makse H A, Gland N, Johnson D L, Schwartz L M, Schwartz L 2004 Phys. Rev. E. 70 061302

    [21]

    Vitelli V 2010 Soft Matter 6 3007

    [22]

    Walton K 1987 J. Mech. Phys. Solids 35 213

    [23]

    Lherminier S, Planet R, Simon G, Vanel L, Ramos O 2014 Phys. Rev. Lett. 113 098001

    [24]

    Gilles B, Coste C 2003 Phys. Rev. Lett. 90 174302

    [25]

    Goddard J D 1990 Proc. R. Soc. Lond. Ser. A 430 105

  • [1]

    Liu C H, Nagel S R, Schecter D A, Coppersmith S N, Majumdar S, Narayan O, Witten T A 1995 Science 269 513

    [2]

    Jacco H S, Thijs J H V, van Martin H, van Wim S 2004 Phys. Rev. Lett. 92 054302

    [3]

    Bi D P, Zhang J, Chakraborty B, Behringer R P 2011 Nature 480 355

    [4]

    Makse H A, Gland N, Johnson D L, Schwartz L M 1999 Phys. Rev. Lett. 83 5070

    [5]

    Tournat V, Gusev V E 2009 Phys. Rev. E 80 011306

    [6]

    Jia X, Brunet Th, Laurent J 2011 Phys. Rev. E 84 020301

    [7]

    Caroli C, Velick B 2003 Phys. Rev. E 67 061301

    [8]

    Khidas Y, Jia X P 2012 Phys. Rev. E 85 051302

    [9]

    Zhang Q, Li Y C, Hou M Y, Jiang Y M, Liu M 2012 Phys. Rev. E 85 031306

    [10]

    Domentico S N 1977 Geophysics 42 1339

    [11]

    Yin H 1993 Ph. D. Dissertation (Stanford: Stanford University)

    [12]

    Majmudar T S, Sperl M, Luding S, Behringer R P 2007 Phys. Rev. Lett. 98 058001

    [13]

    Jia X, Caroli C, Velick B 1999 Phys. Rev. Lett. 82 1863

    [14]

    Owens E T, Daniels K E 2011 Eur. Phys. Lett. 94 54005

    [15]

    Liu C H, Nagel S R 1992 Phys. Rev. Lett. 68 2301

    [16]

    Yacine K, Jia X P 2010 Phys. Rev. E 81 021303

    [17]

    Wambaugh J F, Hartley R R, Behringer R P 2010 Eur. Phys. J. E 32 135

    [18]

    Corwin E I, Jaeger H M, Nagel S R 2005 Nature 435 1075

    [19]

    Nicolas V, Giammarinaro B, Derode A, Barrire C 2013 Phys. Rev. E 88 023201

    [20]

    Makse H A, Gland N, Johnson D L, Schwartz L M, Schwartz L 2004 Phys. Rev. E. 70 061302

    [21]

    Vitelli V 2010 Soft Matter 6 3007

    [22]

    Walton K 1987 J. Mech. Phys. Solids 35 213

    [23]

    Lherminier S, Planet R, Simon G, Vanel L, Ramos O 2014 Phys. Rev. Lett. 113 098001

    [24]

    Gilles B, Coste C 2003 Phys. Rev. Lett. 90 174302

    [25]

    Goddard J D 1990 Proc. R. Soc. Lond. Ser. A 430 105

  • [1] Wang Ming-Jun, Wang Wan-Rou, Li Yong-Jun. Phase regulation of lightwave transmission in inhomogeneous atmospheric medium using plane acoustic field. Acta Physica Sinica, 2022, 71(16): 164302. doi: 10.7498/aps.71.20220484
    [2] Song Tong-Tong, Luo Jie, Lai Yun. Pseudo-local effect medium theory. Acta Physica Sinica, 2020, 69(15): 154203. doi: 10.7498/aps.69.20200196
    [3] Sun Nan-Nan, Shi Zhan, Ding Qi, Xu Wei-Wei, Shen Yang, Nan Ce-Wen. Software realization of physical property calculation model based on effective medium theory. Acta Physica Sinica, 2019, 68(15): 157701. doi: 10.7498/aps.68.20182273
    [4] Cheng Qi, Ran Xian-Wen, Liu Ping, Tang Wen-Hui, Raphael Blumenfeld. Numerical simulation of a spinning sphere moving in granular matter. Acta Physica Sinica, 2018, 67(1): 014702. doi: 10.7498/aps.67.20171459
    [5] Niu Xiao-Na, Zhang Guo-Hua, Sun Qi-Cheng, Zhao Xue-Dan, Dong Yuan-Xiang. Vibrational density of states and boson peak in two-dimensional frictional granular assemblies. Acta Physica Sinica, 2016, 65(3): 036301. doi: 10.7498/aps.65.036301
    [6] Zhang Pan, Zhao Xue-Dan, Zhang Guo-Hua, Zhang Qi, Sun Qi-Cheng, Hou Zhi-Jian, Dong Jun-Jun. Acoustic detection and nonlinear response of granular materials under vertical vibrations. Acta Physica Sinica, 2016, 65(2): 024501. doi: 10.7498/aps.65.024501
    [7] Xu Cong-Hui, Zhang Guo-Hua, Qian Zhi-Heng, Zhao Xue-Dan. Effective mass spectrum and dissipation power of granular material under the horizontal and vertical excitation. Acta Physica Sinica, 2016, 65(23): 234501. doi: 10.7498/aps.65.234501
    [8] Peng Zheng, Jiang Yi-Min, Liu Rui, Hou Mei-Ying. Energy dissipation of a granular system under vertical vibration. Acta Physica Sinica, 2013, 62(2): 024502. doi: 10.7498/aps.62.024502
    [9] Ji Shun-Ying, Li Peng-Fei, Chen Xiao-Dong. Experiments on shock-absorbing capacity of granular matter under impact load. Acta Physica Sinica, 2012, 61(18): 184703. doi: 10.7498/aps.61.184703
    [10] Zheng He-Peng, Jiang Yi-Min, Peng Zheng, Fu Li-Ping. Properties of sound waves in granular matter analyzed by an elastic potential model. Acta Physica Sinica, 2012, 61(21): 214502. doi: 10.7498/aps.61.214502
    [11] Peng Ya-Jing, Zhang Zhuo, Wang Yong, Liu Xiao-Song. Experimental and theoretical investigations of the effect of “Brazil Nut” segregation in vibrating granular matters. Acta Physica Sinica, 2012, 61(13): 134501. doi: 10.7498/aps.61.134501
    [12] Bi Zhong-Wei, Sun Qi-Cheng, Liu Jian-Guo, Jin Feng, Zhang Chu-Han. Development of shear band in a granular material in biaxial tests. Acta Physica Sinica, 2011, 60(3): 034502. doi: 10.7498/aps.60.034502
    [13] Jiang Ze-Hui, Zhang Feng, Guo Bo, Zhao Hai-Fa, Zheng Rui-Hua. Convection and crystallization in vertically vibrated granular “capillary” systems. Acta Physica Sinica, 2010, 59(8): 5581-5587. doi: 10.7498/aps.59.5581
    [14] Jiang Ze-Hui, Jing Ya-Fang, Zhao Hai-Fa, Zheng Rui-Hua. Effects of subharmonic motion on size segregation in vertically vibrated granular materials. Acta Physica Sinica, 2009, 58(9): 5923-5929. doi: 10.7498/aps.58.5923
    [15] Zheng He-Peng, Jiang Yi-Min. A nonlinear elastic analysis of static stress and lateral pressure coefficient for granular Couette systems. Acta Physica Sinica, 2008, 57(12): 7919-7927. doi: 10.7498/aps.57.7919
    [16] Zhang Hang, Guo Yun-Bo, Chen Xiao, Wang Duan, Cheng Peng-Jun. The distribution of a granular pile under impact. Acta Physica Sinica, 2007, 56(4): 2030-2036. doi: 10.7498/aps.56.2030
    [17] Peng Zheng, Hou Mei-Ying, Shi Qing-Fan, Lu Kun-Quan. Effect of particle size on the sinking depth of an object supported by a granular bed. Acta Physica Sinica, 2007, 56(2): 1195-1202. doi: 10.7498/aps.56.1195
    [18] Wang Wen-Gang, Liu Zheng-You, Zhao De-Gang, Ke Man-Zhu. Resonant tunneling of acoustic waves in 1D phononic crystal. Acta Physica Sinica, 2006, 55(9): 4744-4747. doi: 10.7498/aps.55.4744
    [19] Han Ru-Qu, Shi Qing-Fan, Sun Gang. Simulation of transmitting sound wave in one-dimensional easy-expanding medium. Acta Physica Sinica, 2005, 54(5): 2188-2193. doi: 10.7498/aps.54.2188
    [20] Wu Fu-Gen, Liu You-Yan. . Acta Physica Sinica, 2002, 51(7): 1434-1434. doi: 10.7498/aps.51.1434
Metrics
  • Abstract views:  5713
  • PDF Downloads:  161
  • Cited By: 0
Publishing process
  • Received Date:  14 March 2017
  • Accepted Date:  16 May 2017
  • Published Online:  05 August 2017

/

返回文章
返回
Baidu
map