-
π相移光纤光栅因具有较短的有效光栅传感长度, 近年来成为了超声传感领域的研究热点. 本研究旨在探究π相移光纤光栅作为水听器应用时对超声波的指向性特性. 选取π相移光纤光栅作为超声传感单元, 先基于分层介质的声传播理论计算出水中超声波入射时光纤纤芯的应变, 再运用基于光学耦合模方程的传递矩阵法计算反射光谱得到光波长偏移. 将角度-频率空间分为三个区域, 计算了声波频率在1—10 MHz时不同角度下的应变结果和光波长偏移响应特性, 并开展了实验研究. 结果表明, 理论和实验结果具有较高的一致性, π相移光纤光栅在超声波垂直光纤入射时响应最大, 随声波入射方向与光纤法向间夹角的增加, π相移光纤光栅的声响应先急剧下降, 后在水中直达声波和光纤中导波叠加时出现极大值. 此外, π相移光纤光栅的声响应随声波频率增加而降低. 本研究对π相移光纤光栅在超声传感中的实际应用具有重要意义.
${\text{π }}$ -phase-shifted fiber Bragg grating with a short effective sensing length becomes one of research hotspots in ultrasonic sensing, because light undergoes strong localization centered at its phase shift position. To investigate the directional sensing characteristics of${\text{π }}$ -phase-shifted fiber Bragg grating as hydrophone, the theory of sound propagation in layered media is used to calculate the strain of fiber core, then the transfer matrix method based on the coupled-mode theory in optics is used to calculate the shift of central wavelength in optical reflection spectrum. Results of strain and wavelength shift under obliquely incident ultrasonic from 1-10 MHz are divided into A area, B area, and C area, and analyzed by numerical calculation and simulation calculation. Axial strain and elasto-optical strain change the grating period and effective refractive index by the mechanical effect and elasto-optical effect, respectively, thereby resulting in wavelength shift. In A area (frequency below 5 MHz, incident angle below$15^\circ $ ), the axial strain nearly equals zero, thus elasto-optical effect plays a predominant role in wavelength shift. The maximal response occurs at vertical incidence, and then obviously declines with angle increasing. The maximum is essentially unchanged with grating length. In B area and C area (angle above$15^\circ $ ), both mechanical effect and elasto-optical effect contribute to wavelength shift. In B area (frequency below 5 MHz), the amplitude of strain is the largest in three areas. A peak of wavelength shift appears at the same angle of the peak of strain, where exists the interference of the guided wave in fiber with the direct ultrasonic wave form water. The peak amplitude of wavelength shift decreases with grating length increasing. In C area (frequency below 5 MHz), the amplitude of strain is larger than in A area, but the wavelength shift is smaller, which is correlated to its higher axial wave number. Comparing the results in three areas, it is clear that the wavelength shift is larger at lower frequency and at vertical incidence. Experiments on 3 MHz and 5 MHz are then performed with a π-phase-shifted fiber Bragg grating. The experimental result accords well with the theoretical result. The research is important in practically using the${\text{π }}$ -phase-shifted fiber Bragg grating in ultrasonic sensing.-
Keywords:
- π-phase-shifted fiber Bragg grating /
- ultrasonic sensing /
- directivity
[1] Majumder M, Gangopadhyay T K, Chakraborty A K, Dasgupta K, Bhattacharya D K 2008 Sens. Actuator A: Phys. 147 150Google Scholar
[2] Wu Q, Okabe Y, Yu F 2018 Sensors 18 3395Google Scholar
[3] Roriz P, Frazão O, Lobo-Ribeiro A B, Santos J L, Simões J A 2013 J. Biomed. Opt. 18 50903Google Scholar
[4] 王力, 王永杰, 于非, 李芳 2021 激光与光电子学进展 58 1306014Google Scholar
Wang L, Wang Y J, Yu F, Li F 2021 Laser. Optoelectron. Prog. 58 1306014Google Scholar
[5] Tosi D 2017 Sensors. 17 2368Google Scholar
[6] Minardo A, Cusano A, Bernini R, Zeni L, Giordano M 2005 IEEE T. Ultrason., Ferr. 52 304Google Scholar
[7] Rosenthal A, Razansky D, Ntziachristos V 2011 Opt. Lett. 36 1833Google Scholar
[8] Takeda N, Okabe Y, Kuwahara J, Kojima S, Ogisu T 2005 Compos. Sci. Technol. 65 2575Google Scholar
[9] Gatti D, Galzerano G, Janner D, Longhi S, Laporta P 2008 Opt. Express 16 1945Google Scholar
[10] Rosenthal A, Caballero M Á A, Kellnberger S, Razansky D, Ntziachristos V 2012 Opt. Lett. 37 3174Google Scholar
[11] Guo J, Xue S, Zhao Q, Yang C 2014 Opt. Express 22 19573Google Scholar
[12] Wu Q, Okabe Y, Saito K, Yu F 2014 Sensors 14 1094Google Scholar
[13] Wu Q, Okabe Y 2014 J. Intell. Mater. Syst. Struct. 25 640Google Scholar
[14] Guo J, Yang C 2015 IEEE Photon. Technol. Lett. 27 848Google Scholar
[15] Meng L J, Yi J G, Tan X, Li C 2017 IEICE Electron. Express. 14 20170259Google Scholar
[16] Foster S B, Cranch G A, Harrison J, Tikhomirov A E, Miller G A 2017 J. Light. Technol. 35 3514Google Scholar
[17] Jiang Y, Liu C, Li D, Yang D, Zhao J 2018 Meas. Sci. Technol. 29 045101Google Scholar
[18] Srivastava D, Tiwari U, Das B 2018 Opt. Commun. 410 88Google Scholar
[19] Wu Q, Wang R, Lan W, Zhang H, Zhai H 2021 Advanced Sensor Systems and Applications XI Nantong, China , October 10–12, 2021 p26
[20] Fomitchov P, Krishnaswamy S 2003 Opt. Eng. 42 956Google Scholar
[21] Liu T, Han M 2012 IEEE Sensors. J. 12 2368Google Scholar
[22] Wu D, Marchi G, Rus J, Hopf B, Drexler P, Roths J 2018 German Acoustic Conference 2018 Muenchen, German, March 29, 2018 p978
[23] Veres I A, Burgholzer P, Berer T, Rosenthal A, Wissmeyer G, Ntziachristos V 2014 J. Acoust. Soc. Am. 135 1853Google Scholar
[24] Nagy P B 1995 J. Acoust. Soc. Am. 98 454Google Scholar
[25] Ahmad F 2001 J. Acoust. Soc. Am. 109 886Google Scholar
[26] Honarvar F, Sinclair A N 1996 J. Acoust. Soc. Am. 100 57Google Scholar
[27] Rokhlin S I, Wang L 2002 J. Acoust. Soc. Am. 112 822Google Scholar
[28] Huang W, Wang Y J, Rokhlin S I 1996 J. Acoust. Soc. Am. 99 2742Google Scholar
[29] Erdogan T 1997 J. Light. Technol. 15 1277Google Scholar
[30] Yamada M, Sakuda K 1987 Appl. Opt. 26 3474Google Scholar
[31] Thurston R N 1978 J. Acoust. Soc. Am. 64 1Google Scholar
[32] Jarzynski J 2001 Opt. Eng. 40 2115Google Scholar
[33] 江毅, 陈淑芬 2004 光学学报 24 11Google Scholar
Jiang Y, Chen S F 2004 Acta Opt. Sin. 24 11Google Scholar
-
-
[1] Majumder M, Gangopadhyay T K, Chakraborty A K, Dasgupta K, Bhattacharya D K 2008 Sens. Actuator A: Phys. 147 150Google Scholar
[2] Wu Q, Okabe Y, Yu F 2018 Sensors 18 3395Google Scholar
[3] Roriz P, Frazão O, Lobo-Ribeiro A B, Santos J L, Simões J A 2013 J. Biomed. Opt. 18 50903Google Scholar
[4] 王力, 王永杰, 于非, 李芳 2021 激光与光电子学进展 58 1306014Google Scholar
Wang L, Wang Y J, Yu F, Li F 2021 Laser. Optoelectron. Prog. 58 1306014Google Scholar
[5] Tosi D 2017 Sensors. 17 2368Google Scholar
[6] Minardo A, Cusano A, Bernini R, Zeni L, Giordano M 2005 IEEE T. Ultrason., Ferr. 52 304Google Scholar
[7] Rosenthal A, Razansky D, Ntziachristos V 2011 Opt. Lett. 36 1833Google Scholar
[8] Takeda N, Okabe Y, Kuwahara J, Kojima S, Ogisu T 2005 Compos. Sci. Technol. 65 2575Google Scholar
[9] Gatti D, Galzerano G, Janner D, Longhi S, Laporta P 2008 Opt. Express 16 1945Google Scholar
[10] Rosenthal A, Caballero M Á A, Kellnberger S, Razansky D, Ntziachristos V 2012 Opt. Lett. 37 3174Google Scholar
[11] Guo J, Xue S, Zhao Q, Yang C 2014 Opt. Express 22 19573Google Scholar
[12] Wu Q, Okabe Y, Saito K, Yu F 2014 Sensors 14 1094Google Scholar
[13] Wu Q, Okabe Y 2014 J. Intell. Mater. Syst. Struct. 25 640Google Scholar
[14] Guo J, Yang C 2015 IEEE Photon. Technol. Lett. 27 848Google Scholar
[15] Meng L J, Yi J G, Tan X, Li C 2017 IEICE Electron. Express. 14 20170259Google Scholar
[16] Foster S B, Cranch G A, Harrison J, Tikhomirov A E, Miller G A 2017 J. Light. Technol. 35 3514Google Scholar
[17] Jiang Y, Liu C, Li D, Yang D, Zhao J 2018 Meas. Sci. Technol. 29 045101Google Scholar
[18] Srivastava D, Tiwari U, Das B 2018 Opt. Commun. 410 88Google Scholar
[19] Wu Q, Wang R, Lan W, Zhang H, Zhai H 2021 Advanced Sensor Systems and Applications XI Nantong, China , October 10–12, 2021 p26
[20] Fomitchov P, Krishnaswamy S 2003 Opt. Eng. 42 956Google Scholar
[21] Liu T, Han M 2012 IEEE Sensors. J. 12 2368Google Scholar
[22] Wu D, Marchi G, Rus J, Hopf B, Drexler P, Roths J 2018 German Acoustic Conference 2018 Muenchen, German, March 29, 2018 p978
[23] Veres I A, Burgholzer P, Berer T, Rosenthal A, Wissmeyer G, Ntziachristos V 2014 J. Acoust. Soc. Am. 135 1853Google Scholar
[24] Nagy P B 1995 J. Acoust. Soc. Am. 98 454Google Scholar
[25] Ahmad F 2001 J. Acoust. Soc. Am. 109 886Google Scholar
[26] Honarvar F, Sinclair A N 1996 J. Acoust. Soc. Am. 100 57Google Scholar
[27] Rokhlin S I, Wang L 2002 J. Acoust. Soc. Am. 112 822Google Scholar
[28] Huang W, Wang Y J, Rokhlin S I 1996 J. Acoust. Soc. Am. 99 2742Google Scholar
[29] Erdogan T 1997 J. Light. Technol. 15 1277Google Scholar
[30] Yamada M, Sakuda K 1987 Appl. Opt. 26 3474Google Scholar
[31] Thurston R N 1978 J. Acoust. Soc. Am. 64 1Google Scholar
[32] Jarzynski J 2001 Opt. Eng. 40 2115Google Scholar
[33] 江毅, 陈淑芬 2004 光学学报 24 11Google Scholar
Jiang Y, Chen S F 2004 Acta Opt. Sin. 24 11Google Scholar
计量
- 文章访问数: 3911
- PDF下载量: 93
- 被引次数: 0