搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一氟化碳电子态的光谱性质和预解离机理的理论研究

邢伟 刘慧 施德恒 孙金锋 朱遵略 吕淑霞

引用本文:
Citation:

一氟化碳电子态的光谱性质和预解离机理的理论研究

邢伟, 刘慧, 施德恒, 孙金锋, 朱遵略, 吕淑霞

Theoretical study on spectroscopic properties and predissociation mechanisms of the electronic states of carbon monofluoride

Xing Wei, Liu Hui, Shi De-Heng, Sun Jin-Feng, Zhu Zun-Lü, Lü Shu-Xia
PDF
导出引用
  • 采用考虑Davidson修正的内收缩多参考组态相互作用(icMRCI+Q)方法结合相关一致基组aug-cc-pV5Z和aug-cc-pV6Z首次计算了一氟化碳(CF)11个Λ-S 态(X2Π , a4Σ-, A2Σ+, B2Δ, 14Π, 12Σ-, 24Π, 1{4}Δ , 14Σ+, 22Σ-和24Σ-) 所产生的25个Ω 态的势能曲线. 计算中考虑了旋轨耦合效应、核价相关和标量相对论修正以及将参考能和相关能分别外推至完全基组极限. 基于得到的势能曲线, 获得了束缚和准束缚的Λ-S态和Ω 态的光谱常数, 与已有的实验结果非常符合. 分析了束缚和准束缚的Λ-S态在各自平衡核间距Re处的主要电子组态. 由于14Π 和24Π态的避免交叉, 发现准束缚态24Π. 由Λ-S态势能曲线的交叉现象, 借助于计算的旋轨耦合矩阵元, 分析了a4Σ-和B2Δ 态的预解离机理. 计算了25个Ω 态的离解关系, 给出了它们的离解极限. 最后研究了A2Σ+-X2Π 跃迁特性, 本文计算得到的A2Σ+-X2Π跃迁的Frank-Condon 因子和辐射寿命与已有实验值也符合得非常好.
    The potential energy curves of twenty-five Ω states generated from the eleven Λ-S states (X2Π, a4Σ-, A2Σ+, B2Δ, 14Π, 12Σ-, 24Π, 14Δ, 14Σ+, 22Σ- and 24Σ-) of the carbon monofluoride are calculated using the internally contracted multireference configuration interaction approach with the Davidson modification (icMRCI+Q) in the correlation-consistent aug-cc-pV5Z and aug-cc-pV6Z basis sets, for the first time so far as we know. The spin-orbit coupling, core-valence correlation, and relativistic corrections are taken into account, and all the potential energy curves are extrapolated to the complete basis set limit by separately extrapolating the Hartree-Fock and correlation energies scheme. Based on the calculated potential energy curves, the spectroscopic parameters of the bound and quasibound Λ-S and Ω states are obtained, and a very good agreement with experiment is achieved. It demonstrates that the spectroscopic parameters of A2Σ+(1st well), 24Π Λ-S and the eleven Ω states reported here for the first time can be expected to be reliably predicted results. The 24Π quasibound state caused by avoiding crossings are found, and the important electronic configurations of the bound and quasibound Λ-S states near the equilibrium positions Re are given. Various crossings in curves of Λ-S states are revealed, and with the help of our computed spin-orbit coupling matrix elements, the predissociation mechanisms of the a4Σ- and B2Δ states are analyzed. Dissociation relationships and dissociation channels of the twenty-five Ω states also are given. The transition properties of the A2Σ+-X2Π transitions are finally predicted, and our computed Franck-Condon factors and radiative lifetimes match the available experimental results very well.
    • 基金项目: 国家自然科学基金(批准号: 61275132)、河南省科技计划(批准号: 142300410201)、河南省教育厅科学技术研究重点项目(批准号: 14B140024)和信阳师范学院青年科研基金(批准号: 2013-QN-063)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61275132), the Program for Science & Technology of Henan Province of China (Grant No. 142300410201), the Key Program for Science and Technology of Educational Bureau of Henan Province, China (Grant No. 14B140024), and the Youth Sustentation Fund of Xinyang Normal University, China (Grant No. 2013-QN-063).
    [1]

    Morino I, Yamada K M T, Belov S P, Winnewisser G 2000 Astrophys. J. 532 377

    [2]

    Reid C J 1996 Chem. Phys. 210 501

    [3]

    Coburn J W 1982 Plasma Chem. Plasma Proc. 2 1

    [4]

    Booth J P, Hancock G, Perry N D 1987 Appl. Phys. Lett. 50 318

    [5]

    Miyata K, Hori M, Goto T 1996 J. Vac. Sci. Technol. A 14 2343

    [6]

    Georgieva V, Bogaerts A, Gijbels R 2003 J. Appl. Phys. 94 3748

    [7]

    Luquea J, Hudson E A, Booth J P 2003 J. Chem. Phys. 118 622

    [8]

    Andrews E B, Barrow R F 1950 Nature 165 890

    [9]

    Andrews E B, Barrow R F 1951 Proc. Phys. Soc. A 64 481

    [10]

    Huber K P, Herzberg G 1979 Molecular Spectra and Molecular Structure (Vol. Ⅳ): Constants of Diatomic Molecules (New York: Van Nostrand Reinhold Company) pp138

    [11]

    Kawaguchi K, Yamada C, Hamada Y, Hirota E 1981 J. Mol. Spectrosc. 86 136

    [12]

    Grieman F J, Droege A T, Engelking P C 1983 J. Chem. Phys. 78 2248

    [13]

    Gondal M A, Rohrbeck W, Urban W 1983 J. Mol. Spectrosc. 100 290

    [14]

    Brown J M, Schubert J E, Saykally R J, Evenson K M 1986 J. Mol. Spectrosc. 120 421

    [15]

    Booth J P, Hancock G 1988 Chem. Phys. Lett 150 457

    [16]

    Nakanaga T, Ito F, Takeo H 1994 J. Mol. Spectrosc. 165 88

    [17]

    Liu Y Y, Liu Z A, Davies P B 1995 J. Mol. Spectrosc. 171 402

    [18]

    Booth J P, Hancock G, Toogood M J, McKendrick K G 1996 J. Phys. Chem. 100 47

    [19]

    Wollbrandt J, Rossberg M, Strube W, Linke E 1996 J. Mol. Spectrosc. 176 385

    [20]

    Nizamov B, Dagdigian P J 2001 J. Phys. Chem. A 105 29

    [21]

    O’Hare P A G, Wahl A C 1971 J. Chem. Phys. 5 666

    [22]

    Hall J A, Richards W G 1972 Mol. Phys. 23 331

    [23]

    Dunning T H, White W P, Pitzer R M, Mathews C W 1979 J. Mol. Spectrosc. 75 297

    [24]

    White W P, Pitzer R M, Mathews C W, Dunning T H 1979 J. Mol. Spectrosc. 75 318

    [25]

    Hess B A, Buenker R J 1986 Chem. Phys. 101 211

    [26]

    Rendell A P, Bauschlicher C W Jr, Langhoff S R 1989 Chem. Phys. Lett. 163 354

    [27]

    Gutsev G L, Ziegler T 1991 J. Phys. Chem. 95 7220

    [28]

    Petsalakis I D 1999 J. Chem. Phys. 110 10730

    [29]

    Petsalakis I D, Theodorakopoulos G 2011 Chem. Phys. Lett. 508 17

    [30]

    Li R, Wei C L, Sun Q X, Sun E P, Jin M X, Xu H F, Yan B 2013 Chin. Phys. B 22 123103

    [31]

    Li R, Zhang X M, Jin M X, Xu H F, Yan B 2014 Chin. Phys. B 23 053101

    [32]

    Chakraborty S, Ahmed M, Jackson T L, Thiemens M H 2008 Science 321 1328

    [33]

    Langhoff S R, Davidson E R 1974 Int. J. Quantum Chem. 8 61

    [34]

    Richartz A, Buenker R J 1978 Chem. Phys. 28 305

    [35]

    Woon D E, Dunning T H 1993 J. Chem. Phys. 98 1358

    [36]

    Mourik T V, Wilson A K, Dunning T H 1999 Mol. Phys. 96 529

    [37]

    Peterson K A, Dunning T H 2002 J. Chem. Phys. 117 10548

    [38]

    Reiher M, Wolf A 2004 J. Chem. Phys. 121 2037

    [39]

    Wolf A, Reiher M, Hess B A 2002 J. Chem. Phys. 117 9215

    [40]

    Truhlar D G 1998 Chem. Phys. Lett. 294 45

    [41]

    Xing W, Liu H, Shi D H, Sun J F, Zhu Z L 2012 Acta Phys. Sin. 61 243102 (in Chinese) [邢伟, 刘慧, 施德恒, 孙金峰, 朱遵略 2012 61 243102]

    [42]

    Liu H, Xing W, Shi D H, Sun J F, Zhu Z L 2013 Acta Phys. Sin. 62 203104 (in Chinese) [刘慧, 邢伟, 施德恒, 孙金峰, 朱遵略 2013 62 203104]

    [43]

    Xing W, Shi D H, Sun J F, Liu H, Zhu Z L 2013 Mol. Phys. 111 673

    [44]

    Xing W, Shi D H, Sun J F, Zhu Z L 2013 Eur. Phys. J. D 67 228

    [45]

    Le Roy R J 2007 LEVEL 8.0: A Computer Program for Solving the Radial Schrödinger Equation for Bound and Quasibound levels. (University of Waterloo Chemical Physics Research Report CP-663)

    [46]

    Moore C E 1971 Atomic energy levels (Vol. 1) (Washington, DC: National Bureau of Standard) pp 21-60

  • [1]

    Morino I, Yamada K M T, Belov S P, Winnewisser G 2000 Astrophys. J. 532 377

    [2]

    Reid C J 1996 Chem. Phys. 210 501

    [3]

    Coburn J W 1982 Plasma Chem. Plasma Proc. 2 1

    [4]

    Booth J P, Hancock G, Perry N D 1987 Appl. Phys. Lett. 50 318

    [5]

    Miyata K, Hori M, Goto T 1996 J. Vac. Sci. Technol. A 14 2343

    [6]

    Georgieva V, Bogaerts A, Gijbels R 2003 J. Appl. Phys. 94 3748

    [7]

    Luquea J, Hudson E A, Booth J P 2003 J. Chem. Phys. 118 622

    [8]

    Andrews E B, Barrow R F 1950 Nature 165 890

    [9]

    Andrews E B, Barrow R F 1951 Proc. Phys. Soc. A 64 481

    [10]

    Huber K P, Herzberg G 1979 Molecular Spectra and Molecular Structure (Vol. Ⅳ): Constants of Diatomic Molecules (New York: Van Nostrand Reinhold Company) pp138

    [11]

    Kawaguchi K, Yamada C, Hamada Y, Hirota E 1981 J. Mol. Spectrosc. 86 136

    [12]

    Grieman F J, Droege A T, Engelking P C 1983 J. Chem. Phys. 78 2248

    [13]

    Gondal M A, Rohrbeck W, Urban W 1983 J. Mol. Spectrosc. 100 290

    [14]

    Brown J M, Schubert J E, Saykally R J, Evenson K M 1986 J. Mol. Spectrosc. 120 421

    [15]

    Booth J P, Hancock G 1988 Chem. Phys. Lett 150 457

    [16]

    Nakanaga T, Ito F, Takeo H 1994 J. Mol. Spectrosc. 165 88

    [17]

    Liu Y Y, Liu Z A, Davies P B 1995 J. Mol. Spectrosc. 171 402

    [18]

    Booth J P, Hancock G, Toogood M J, McKendrick K G 1996 J. Phys. Chem. 100 47

    [19]

    Wollbrandt J, Rossberg M, Strube W, Linke E 1996 J. Mol. Spectrosc. 176 385

    [20]

    Nizamov B, Dagdigian P J 2001 J. Phys. Chem. A 105 29

    [21]

    O’Hare P A G, Wahl A C 1971 J. Chem. Phys. 5 666

    [22]

    Hall J A, Richards W G 1972 Mol. Phys. 23 331

    [23]

    Dunning T H, White W P, Pitzer R M, Mathews C W 1979 J. Mol. Spectrosc. 75 297

    [24]

    White W P, Pitzer R M, Mathews C W, Dunning T H 1979 J. Mol. Spectrosc. 75 318

    [25]

    Hess B A, Buenker R J 1986 Chem. Phys. 101 211

    [26]

    Rendell A P, Bauschlicher C W Jr, Langhoff S R 1989 Chem. Phys. Lett. 163 354

    [27]

    Gutsev G L, Ziegler T 1991 J. Phys. Chem. 95 7220

    [28]

    Petsalakis I D 1999 J. Chem. Phys. 110 10730

    [29]

    Petsalakis I D, Theodorakopoulos G 2011 Chem. Phys. Lett. 508 17

    [30]

    Li R, Wei C L, Sun Q X, Sun E P, Jin M X, Xu H F, Yan B 2013 Chin. Phys. B 22 123103

    [31]

    Li R, Zhang X M, Jin M X, Xu H F, Yan B 2014 Chin. Phys. B 23 053101

    [32]

    Chakraborty S, Ahmed M, Jackson T L, Thiemens M H 2008 Science 321 1328

    [33]

    Langhoff S R, Davidson E R 1974 Int. J. Quantum Chem. 8 61

    [34]

    Richartz A, Buenker R J 1978 Chem. Phys. 28 305

    [35]

    Woon D E, Dunning T H 1993 J. Chem. Phys. 98 1358

    [36]

    Mourik T V, Wilson A K, Dunning T H 1999 Mol. Phys. 96 529

    [37]

    Peterson K A, Dunning T H 2002 J. Chem. Phys. 117 10548

    [38]

    Reiher M, Wolf A 2004 J. Chem. Phys. 121 2037

    [39]

    Wolf A, Reiher M, Hess B A 2002 J. Chem. Phys. 117 9215

    [40]

    Truhlar D G 1998 Chem. Phys. Lett. 294 45

    [41]

    Xing W, Liu H, Shi D H, Sun J F, Zhu Z L 2012 Acta Phys. Sin. 61 243102 (in Chinese) [邢伟, 刘慧, 施德恒, 孙金峰, 朱遵略 2012 61 243102]

    [42]

    Liu H, Xing W, Shi D H, Sun J F, Zhu Z L 2013 Acta Phys. Sin. 62 203104 (in Chinese) [刘慧, 邢伟, 施德恒, 孙金峰, 朱遵略 2013 62 203104]

    [43]

    Xing W, Shi D H, Sun J F, Liu H, Zhu Z L 2013 Mol. Phys. 111 673

    [44]

    Xing W, Shi D H, Sun J F, Zhu Z L 2013 Eur. Phys. J. D 67 228

    [45]

    Le Roy R J 2007 LEVEL 8.0: A Computer Program for Solving the Radial Schrödinger Equation for Bound and Quasibound levels. (University of Waterloo Chemical Physics Research Report CP-663)

    [46]

    Moore C E 1971 Atomic energy levels (Vol. 1) (Washington, DC: National Bureau of Standard) pp 21-60

  • [1] 郭芮, 谭涵, 袁沁玥, 张庆, 万明杰. LiCl-阴离子的光谱性质和跃迁性质.  , 2021, (): . doi: 10.7498/aps.70.20211688
    [2] 高峰, 张红, 张常哲, 赵文丽, 孟庆田. SiH+(X1Σ+)的势能曲线、光谱常数、振转能级和自旋-轨道耦合理论研究.  , 2021, 70(15): 153301. doi: 10.7498/aps.70.20210450
    [3] 魏长立, 廖浩, 罗太盛, 任银拴, 闫冰. Na2+离子较低电子态势能曲线和光谱常数的理论研究.  , 2018, 67(24): 243101. doi: 10.7498/aps.67.20181690
    [4] 邢伟, 孙金锋, 施德恒, 朱遵略. icMRCI+Q理论研究BF+离子电子态的光谱性质和预解离机理.  , 2018, 67(6): 063301. doi: 10.7498/aps.67.20172114
    [5] 周锐, 李传亮, 和小虎, 邱选兵, 孟慧艳, 李亚超, 赖云忠, 魏计林, 邓伦华. 基于ab initio计算的CF-离子低激发态光谱性质研究.  , 2017, 66(2): 023101. doi: 10.7498/aps.66.023101
    [6] 邢伟, 刘慧, 施德恒, 孙金锋, 朱遵略. icMRCI+Q理论研究CF+离子12个-S态和23个态的光谱性质.  , 2016, 65(3): 033102. doi: 10.7498/aps.65.033102
    [7] 王杰敏, 王希娟, 陶亚萍. 75As32S+和75As34S+离子的光谱常数与分子常数.  , 2015, 64(24): 243101. doi: 10.7498/aps.64.243101
    [8] 王杰敏, 冯恒强, 孙金锋, 施德恒, 李文涛, 朱遵略. SiN自由基X2+, A2和B2+ 电子态的光谱常数研究.  , 2013, 62(1): 013105. doi: 10.7498/aps.62.013105
    [9] 邢伟, 刘慧, 施德恒, 孙金锋, 朱遵略. MRCI+Q理论研究SiSe分子X1Σ+和A1Π电子态的光谱常数和分子常数.  , 2013, 62(4): 043101. doi: 10.7498/aps.62.043101
    [10] 李松, 韩立波, 陈善俊, 段传喜. SN-分子离子的势能函数和光谱常数研究.  , 2013, 62(11): 113102. doi: 10.7498/aps.62.113102
    [11] 于坤, 张晓美, 刘玉芳. 从头计算研究BCl+基态和激发态的势能曲线和光谱性质.  , 2013, 62(6): 063301. doi: 10.7498/aps.62.063301
    [12] 刘慧, 邢伟, 施德恒, 孙金锋, 朱遵略. PS自由基X2Π态的势能曲线和光谱性质.  , 2013, 62(20): 203104. doi: 10.7498/aps.62.203104
    [13] 王杰敏, 孙金锋, 施德恒, 朱遵略, 李文涛. PH, PD和PT分子常数理论研究.  , 2012, 61(6): 063104. doi: 10.7498/aps.61.063104
    [14] 施德恒, 牛相宏, 孙金锋, 朱遵略. BF自由基X1+和a3态光谱常数和分子常数研究.  , 2012, 61(9): 093105. doi: 10.7498/aps.61.093105
    [15] 邢伟, 刘慧, 施德恒, 孙金锋, 朱遵略. SO+离子b4∑-态光谱常数和分子常数研究.  , 2012, 61(24): 243102. doi: 10.7498/aps.61.243102
    [16] 刘慧, 邢伟, 施德恒, 朱遵略, 孙金锋. 用MRCI方法研究CS+同位素离子X2Σ+和A2Π态的光谱常数与分子常数.  , 2011, 60(4): 043102. doi: 10.7498/aps.60.043102
    [17] 刘慧, 施德恒, 孙金锋, 朱遵略. MRCI方法研究CSe(X1Σ+)自由基的光谱常数和分子常数.  , 2011, 60(6): 063101. doi: 10.7498/aps.60.063101
    [18] 施德恒, 刘玉芳, 孙金锋, 张金平, 朱遵略. 基态O和D原子的低能弹性碰撞及OD(X2Π)自由基的准确解析势与分子常数.  , 2009, 58(4): 2369-2375. doi: 10.7498/aps.58.2369
    [19] 施德恒, 张金平, 孙金锋, 刘玉芳, 朱遵略. 基态S和D原子的低能弹性碰撞及SD(X2Π)自由基的准确相互作用势与分子常数.  , 2009, 58(11): 7646-7653. doi: 10.7498/aps.58.7646
    [20] 钱 琪, 杨传路, 高 峰, 张晓燕. 多参考组态相互作用方法计算研究XOn(X=S, Cl;n=0,±1)的解析势能函数和光谱常数.  , 2007, 56(8): 4420-4427. doi: 10.7498/aps.56.4420
计量
  • 文章访问数:  5981
  • PDF下载量:  168
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-12-23
  • 修回日期:  2015-03-20
  • 刊出日期:  2015-08-05

/

返回文章
返回
Baidu
map