-
采用考虑Davidson修正的内收缩多参考组态相互作用(icMRCI+Q)方法结合相关一致基组aug-cc-pV5Z和aug-cc-pV6Z首次计算了一氟化碳(CF)11个Λ-S 态(X2Π , a4Σ-, A2Σ+, B2Δ, 14Π, 12Σ-, 24Π, 1{4}Δ , 14Σ+, 22Σ-和24Σ-) 所产生的25个Ω 态的势能曲线. 计算中考虑了旋轨耦合效应、核价相关和标量相对论修正以及将参考能和相关能分别外推至完全基组极限. 基于得到的势能曲线, 获得了束缚和准束缚的Λ-S态和Ω 态的光谱常数, 与已有的实验结果非常符合. 分析了束缚和准束缚的Λ-S态在各自平衡核间距Re处的主要电子组态. 由于14Π 和24Π态的避免交叉, 发现准束缚态24Π. 由Λ-S态势能曲线的交叉现象, 借助于计算的旋轨耦合矩阵元, 分析了a4Σ-和B2Δ 态的预解离机理. 计算了25个Ω 态的离解关系, 给出了它们的离解极限. 最后研究了A2Σ+-X2Π 跃迁特性, 本文计算得到的A2Σ+-X2Π跃迁的Frank-Condon 因子和辐射寿命与已有实验值也符合得非常好.
-
关键词:
- 旋轨耦合 /
- 光谱常数 /
- 预解离 /
- Frank-Condon因子和辐射寿命
The potential energy curves of twenty-five Ω states generated from the eleven Λ-S states (X2Π, a4Σ-, A2Σ+, B2Δ, 14Π, 12Σ-, 24Π, 14Δ, 14Σ+, 22Σ- and 24Σ-) of the carbon monofluoride are calculated using the internally contracted multireference configuration interaction approach with the Davidson modification (icMRCI+Q) in the correlation-consistent aug-cc-pV5Z and aug-cc-pV6Z basis sets, for the first time so far as we know. The spin-orbit coupling, core-valence correlation, and relativistic corrections are taken into account, and all the potential energy curves are extrapolated to the complete basis set limit by separately extrapolating the Hartree-Fock and correlation energies scheme. Based on the calculated potential energy curves, the spectroscopic parameters of the bound and quasibound Λ-S and Ω states are obtained, and a very good agreement with experiment is achieved. It demonstrates that the spectroscopic parameters of A2Σ+(1st well), 24Π Λ-S and the eleven Ω states reported here for the first time can be expected to be reliably predicted results. The 24Π quasibound state caused by avoiding crossings are found, and the important electronic configurations of the bound and quasibound Λ-S states near the equilibrium positions Re are given. Various crossings in curves of Λ-S states are revealed, and with the help of our computed spin-orbit coupling matrix elements, the predissociation mechanisms of the a4Σ- and B2Δ states are analyzed. Dissociation relationships and dissociation channels of the twenty-five Ω states also are given. The transition properties of the A2Σ+-X2Π transitions are finally predicted, and our computed Franck-Condon factors and radiative lifetimes match the available experimental results very well.-
Keywords:
- spin-orbit coupling /
- spectroscopic parameters /
- predissociation /
- Franck-Condon factors and radiative lifetimes
[1] Morino I, Yamada K M T, Belov S P, Winnewisser G 2000 Astrophys. J. 532 377
[2] Reid C J 1996 Chem. Phys. 210 501
[3] Coburn J W 1982 Plasma Chem. Plasma Proc. 2 1
[4] Booth J P, Hancock G, Perry N D 1987 Appl. Phys. Lett. 50 318
[5] Miyata K, Hori M, Goto T 1996 J. Vac. Sci. Technol. A 14 2343
[6] Georgieva V, Bogaerts A, Gijbels R 2003 J. Appl. Phys. 94 3748
[7] Luquea J, Hudson E A, Booth J P 2003 J. Chem. Phys. 118 622
[8] Andrews E B, Barrow R F 1950 Nature 165 890
[9] Andrews E B, Barrow R F 1951 Proc. Phys. Soc. A 64 481
[10] Huber K P, Herzberg G 1979 Molecular Spectra and Molecular Structure (Vol. Ⅳ): Constants of Diatomic Molecules (New York: Van Nostrand Reinhold Company) pp138
[11] Kawaguchi K, Yamada C, Hamada Y, Hirota E 1981 J. Mol. Spectrosc. 86 136
[12] Grieman F J, Droege A T, Engelking P C 1983 J. Chem. Phys. 78 2248
[13] Gondal M A, Rohrbeck W, Urban W 1983 J. Mol. Spectrosc. 100 290
[14] Brown J M, Schubert J E, Saykally R J, Evenson K M 1986 J. Mol. Spectrosc. 120 421
[15] Booth J P, Hancock G 1988 Chem. Phys. Lett 150 457
[16] Nakanaga T, Ito F, Takeo H 1994 J. Mol. Spectrosc. 165 88
[17] Liu Y Y, Liu Z A, Davies P B 1995 J. Mol. Spectrosc. 171 402
[18] Booth J P, Hancock G, Toogood M J, McKendrick K G 1996 J. Phys. Chem. 100 47
[19] Wollbrandt J, Rossberg M, Strube W, Linke E 1996 J. Mol. Spectrosc. 176 385
[20] Nizamov B, Dagdigian P J 2001 J. Phys. Chem. A 105 29
[21] O’Hare P A G, Wahl A C 1971 J. Chem. Phys. 5 666
[22] Hall J A, Richards W G 1972 Mol. Phys. 23 331
[23] Dunning T H, White W P, Pitzer R M, Mathews C W 1979 J. Mol. Spectrosc. 75 297
[24] White W P, Pitzer R M, Mathews C W, Dunning T H 1979 J. Mol. Spectrosc. 75 318
[25] Hess B A, Buenker R J 1986 Chem. Phys. 101 211
[26] Rendell A P, Bauschlicher C W Jr, Langhoff S R 1989 Chem. Phys. Lett. 163 354
[27] Gutsev G L, Ziegler T 1991 J. Phys. Chem. 95 7220
[28] Petsalakis I D 1999 J. Chem. Phys. 110 10730
[29] Petsalakis I D, Theodorakopoulos G 2011 Chem. Phys. Lett. 508 17
[30] Li R, Wei C L, Sun Q X, Sun E P, Jin M X, Xu H F, Yan B 2013 Chin. Phys. B 22 123103
[31] Li R, Zhang X M, Jin M X, Xu H F, Yan B 2014 Chin. Phys. B 23 053101
[32] Chakraborty S, Ahmed M, Jackson T L, Thiemens M H 2008 Science 321 1328
[33] Langhoff S R, Davidson E R 1974 Int. J. Quantum Chem. 8 61
[34] Richartz A, Buenker R J 1978 Chem. Phys. 28 305
[35] Woon D E, Dunning T H 1993 J. Chem. Phys. 98 1358
[36] Mourik T V, Wilson A K, Dunning T H 1999 Mol. Phys. 96 529
[37] Peterson K A, Dunning T H 2002 J. Chem. Phys. 117 10548
[38] Reiher M, Wolf A 2004 J. Chem. Phys. 121 2037
[39] Wolf A, Reiher M, Hess B A 2002 J. Chem. Phys. 117 9215
[40] Truhlar D G 1998 Chem. Phys. Lett. 294 45
[41] Xing W, Liu H, Shi D H, Sun J F, Zhu Z L 2012 Acta Phys. Sin. 61 243102 (in Chinese) [邢伟, 刘慧, 施德恒, 孙金峰, 朱遵略 2012 61 243102]
[42] Liu H, Xing W, Shi D H, Sun J F, Zhu Z L 2013 Acta Phys. Sin. 62 203104 (in Chinese) [刘慧, 邢伟, 施德恒, 孙金峰, 朱遵略 2013 62 203104]
[43] Xing W, Shi D H, Sun J F, Liu H, Zhu Z L 2013 Mol. Phys. 111 673
[44] Xing W, Shi D H, Sun J F, Zhu Z L 2013 Eur. Phys. J. D 67 228
[45] Le Roy R J 2007 LEVEL 8.0: A Computer Program for Solving the Radial Schrödinger Equation for Bound and Quasibound levels. (University of Waterloo Chemical Physics Research Report CP-663)
[46] Moore C E 1971 Atomic energy levels (Vol. 1) (Washington, DC: National Bureau of Standard) pp 21-60
-
[1] Morino I, Yamada K M T, Belov S P, Winnewisser G 2000 Astrophys. J. 532 377
[2] Reid C J 1996 Chem. Phys. 210 501
[3] Coburn J W 1982 Plasma Chem. Plasma Proc. 2 1
[4] Booth J P, Hancock G, Perry N D 1987 Appl. Phys. Lett. 50 318
[5] Miyata K, Hori M, Goto T 1996 J. Vac. Sci. Technol. A 14 2343
[6] Georgieva V, Bogaerts A, Gijbels R 2003 J. Appl. Phys. 94 3748
[7] Luquea J, Hudson E A, Booth J P 2003 J. Chem. Phys. 118 622
[8] Andrews E B, Barrow R F 1950 Nature 165 890
[9] Andrews E B, Barrow R F 1951 Proc. Phys. Soc. A 64 481
[10] Huber K P, Herzberg G 1979 Molecular Spectra and Molecular Structure (Vol. Ⅳ): Constants of Diatomic Molecules (New York: Van Nostrand Reinhold Company) pp138
[11] Kawaguchi K, Yamada C, Hamada Y, Hirota E 1981 J. Mol. Spectrosc. 86 136
[12] Grieman F J, Droege A T, Engelking P C 1983 J. Chem. Phys. 78 2248
[13] Gondal M A, Rohrbeck W, Urban W 1983 J. Mol. Spectrosc. 100 290
[14] Brown J M, Schubert J E, Saykally R J, Evenson K M 1986 J. Mol. Spectrosc. 120 421
[15] Booth J P, Hancock G 1988 Chem. Phys. Lett 150 457
[16] Nakanaga T, Ito F, Takeo H 1994 J. Mol. Spectrosc. 165 88
[17] Liu Y Y, Liu Z A, Davies P B 1995 J. Mol. Spectrosc. 171 402
[18] Booth J P, Hancock G, Toogood M J, McKendrick K G 1996 J. Phys. Chem. 100 47
[19] Wollbrandt J, Rossberg M, Strube W, Linke E 1996 J. Mol. Spectrosc. 176 385
[20] Nizamov B, Dagdigian P J 2001 J. Phys. Chem. A 105 29
[21] O’Hare P A G, Wahl A C 1971 J. Chem. Phys. 5 666
[22] Hall J A, Richards W G 1972 Mol. Phys. 23 331
[23] Dunning T H, White W P, Pitzer R M, Mathews C W 1979 J. Mol. Spectrosc. 75 297
[24] White W P, Pitzer R M, Mathews C W, Dunning T H 1979 J. Mol. Spectrosc. 75 318
[25] Hess B A, Buenker R J 1986 Chem. Phys. 101 211
[26] Rendell A P, Bauschlicher C W Jr, Langhoff S R 1989 Chem. Phys. Lett. 163 354
[27] Gutsev G L, Ziegler T 1991 J. Phys. Chem. 95 7220
[28] Petsalakis I D 1999 J. Chem. Phys. 110 10730
[29] Petsalakis I D, Theodorakopoulos G 2011 Chem. Phys. Lett. 508 17
[30] Li R, Wei C L, Sun Q X, Sun E P, Jin M X, Xu H F, Yan B 2013 Chin. Phys. B 22 123103
[31] Li R, Zhang X M, Jin M X, Xu H F, Yan B 2014 Chin. Phys. B 23 053101
[32] Chakraborty S, Ahmed M, Jackson T L, Thiemens M H 2008 Science 321 1328
[33] Langhoff S R, Davidson E R 1974 Int. J. Quantum Chem. 8 61
[34] Richartz A, Buenker R J 1978 Chem. Phys. 28 305
[35] Woon D E, Dunning T H 1993 J. Chem. Phys. 98 1358
[36] Mourik T V, Wilson A K, Dunning T H 1999 Mol. Phys. 96 529
[37] Peterson K A, Dunning T H 2002 J. Chem. Phys. 117 10548
[38] Reiher M, Wolf A 2004 J. Chem. Phys. 121 2037
[39] Wolf A, Reiher M, Hess B A 2002 J. Chem. Phys. 117 9215
[40] Truhlar D G 1998 Chem. Phys. Lett. 294 45
[41] Xing W, Liu H, Shi D H, Sun J F, Zhu Z L 2012 Acta Phys. Sin. 61 243102 (in Chinese) [邢伟, 刘慧, 施德恒, 孙金峰, 朱遵略 2012 61 243102]
[42] Liu H, Xing W, Shi D H, Sun J F, Zhu Z L 2013 Acta Phys. Sin. 62 203104 (in Chinese) [刘慧, 邢伟, 施德恒, 孙金峰, 朱遵略 2013 62 203104]
[43] Xing W, Shi D H, Sun J F, Liu H, Zhu Z L 2013 Mol. Phys. 111 673
[44] Xing W, Shi D H, Sun J F, Zhu Z L 2013 Eur. Phys. J. D 67 228
[45] Le Roy R J 2007 LEVEL 8.0: A Computer Program for Solving the Radial Schrödinger Equation for Bound and Quasibound levels. (University of Waterloo Chemical Physics Research Report CP-663)
[46] Moore C E 1971 Atomic energy levels (Vol. 1) (Washington, DC: National Bureau of Standard) pp 21-60
计量
- 文章访问数: 5981
- PDF下载量: 168
- 被引次数: 0