搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

电磁控制两自由度涡生振荡的机理研究

刘梦珂 张辉 范宝春 韩洋 归明月

引用本文:
Citation:

电磁控制两自由度涡生振荡的机理研究

刘梦珂, 张辉, 范宝春, 韩洋, 归明月

The mechanism investigation of two-degree-of-freedom vortex-induced vibration with electro-magnetic forces

Liu Meng-Ke, Zhang Hui, Fan Bao-Chun, Han Yang, Gui Ming-Yue
PDF
导出引用
  • 电介质溶液中,电磁场产生的电磁力可以控制流体的运动.本文对两自由度圆柱涡生振荡及其电磁控制机理进行了数值研究.将坐标原点建立在振动圆柱上,推导了非惯性参考系指数极坐标下的涡量流函数方程、初始边界条件及水动力表达式.对圆柱沿法向和流向的流场、受力和位移的相互影响和瞬时对应规律进行了讨论,结果表明,圆柱的涡生振荡同时受到尾涡脱落和圆柱位移的影响.其作用方式沿法向通过影响圆柱上下两侧剪切层的强度,沿流向通过改变圆柱尾部二次涡的强度,从而改变圆柱的受力和运动.其中圆柱位移的作用效果与尾涡脱落的作用效果相反且占主导.另外,在电磁力的作用下,分离点被消除,使得圆柱的尾涡和推吸壁面的效果被抑制,从而使振动的诱因被消除,圆柱迅速达到稳定状态,并在电磁推力的作用下,圆柱的位置向上游移动.
    The electro-magnetic forces generated by electromagnetic field take control of the flow in the electrolyte solution. In this paper, the mechanism of two-degree-of-freedom vortex-induced vibration controlled by electro-magnetic forces is investigated numerically. With the coordinate at the moving cylinder, the stream function-vorticity equations, the initial and boundary conditions and distribution of hydrodynamic force are deduced in the exponential-polar coordinate. The equation of vorticity transport is solved by the alternative-direction implicit algorithm. The equation of stream function is integrated by means of a fast Fourier transform algorithm. The cylinder motion is calculated by the Runge-Kutta method. The flow field, pressure, lift/drag and cylinder displacement are interacted along the transverse and streamwise direction, where the instantaneous variations are discussed. The derivation shows that the vibration displacement in one direction, whose effects on the flow field influence the vortex-induced forces in both directions, affects the inertial force only in the corresponding direction and is independent of that in the other direction. The numerical calculations show that the vortex-induced vibration is affected by two factors, i.e., the vortex shedding and the cylinder shift. Both of the two factors have influences on the shear layers in the transverse direction and the secondary vortex in the streamwise direction, which further leads to the variations of lift/drag and the cylinder motion. Along the transverse direction, the strength of shear layer on one side is increased by the vortex shedding while the strength of shear layer on the other side is increased by the cylinder shift. Along the streamwise direction, the pressure of cylinder tail is varied with the effect of shedding vortex on the secondary vortex while the effect of cylinder shift on the secondary vortex is also opposite to that of shedding vortex. Notably, the effect of cylinder shift prevails over the effect of shedding vortex so that the former is dominated in the total effects. The flow separation and vortex shedding are suppressed as the fluid of boundary layer is accelerated under the action of electro-magnetic forces. Meanwhile, the vibration displacements decrease gradually along both the transverse and streamwise directions, which also suppresses the effects of pressure/suction sides. Therefore, the vibration is suppressed and the cylinder turns steady rapidly. In addition, the thrust generated by the wall electro-magnetic force counteracts the drag generated by the fluid electro-magnetic force, which means that the final position is at the upstream of the initial position. The experimental results show that the vortexes on the cylinder are suppressed fully and the flow field is steady under the action of electro-magnetic force, which agrees well with the numerical results.
      通信作者: 张辉, zhanghui1902@126.com
    • 基金项目: 国家自然科学基金(批准号:11672135,11202102)和高等学校全国优秀博士学位论文作者专项资金(批准号:201461)资助的课题.
      Corresponding author: Zhang Hui, zhanghui1902@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11672135, 11202102) and the Foundation for the Author of National Excellent Doctoral Dissertation of China (Grant No. 201461).
    [1]

    Wang L, Luo Z B, Xia Z X, Liu B 2013 Acta Phys. Sin. 62 125207 (in Chinese)[王林, 罗振兵, 夏智勋, 刘冰2013 62 125207]

    [2]

    Meng X S, Wang J L, Cai J S, Luo S J, Liu F 2013 Acta Aerodyn. Sin. 31 647 (in Chinese)[孟宣市, 王健磊, 蔡晋生, 罗时钧, 刘锋2013空气动力学学报 31 647]

    [3]

    Cao Y F, Gu Y S, Cheng K M, Xiao Z Y, Chen Z B, He K F 2015 Acta Aeronaut. Astron. 36 757 (in Chinese)[曹永飞, 顾蕴松, 程克明, 肖中云, 陈作斌, 何开锋2015航空学报 36 757]

    [4]

    Braun E M, Lu F K, Wilson D R 2009 Prog. Aerosp. Sci. 45 30

    [5]

    Reddy P D S, Bandyopadhyay D, Joo S W, Sharma A, Qian S Z 2011 Phys. Rev. 83 036313

    [6]

    Gailitis A, Lielausis O 1961 Appl. Magnetohydrodynam. Rep. Phys. Inst. 12 143(in Russian)

    [7]

    Weier T, Gerbeth G, Mutschke G, Platacis E, Lielausis O 1998 Exp. Therm Fluid Sci. 16 84

    [8]

    Crawford C, Karniadakis G E 1997 Phys. Fluids 9 788

    [9]

    Kim S, Lee C M 2001 Fluid Dyn. Res. 29 47

    [10]

    Posdziech O, Grundmann R 2001 Eur. J. Mech. B 20 255

    [11]

    Zhang H, Fan B C, Chen Z H 2011 Chin. Phys. Lett. 28 124701

    [12]

    Zhang H, Fan B C, Chen Z H, Chen S, Li H Z 2013 Chin. Phys. B 22 104701

    [13]

    Zhang H, Fan B C, Chen Z H, Li H Z 2014 Comput. Fluids 100 30

    [14]

    Zhang H, Fan B C, Chen Z H, Li H Z 2014 J. Fluids Struct. 48 62

    [15]

    Zhang H, Fan B C, Chen Z H, Li Y L 2011 Fluid Dyn. Res. 43 015506

  • [1]

    Wang L, Luo Z B, Xia Z X, Liu B 2013 Acta Phys. Sin. 62 125207 (in Chinese)[王林, 罗振兵, 夏智勋, 刘冰2013 62 125207]

    [2]

    Meng X S, Wang J L, Cai J S, Luo S J, Liu F 2013 Acta Aerodyn. Sin. 31 647 (in Chinese)[孟宣市, 王健磊, 蔡晋生, 罗时钧, 刘锋2013空气动力学学报 31 647]

    [3]

    Cao Y F, Gu Y S, Cheng K M, Xiao Z Y, Chen Z B, He K F 2015 Acta Aeronaut. Astron. 36 757 (in Chinese)[曹永飞, 顾蕴松, 程克明, 肖中云, 陈作斌, 何开锋2015航空学报 36 757]

    [4]

    Braun E M, Lu F K, Wilson D R 2009 Prog. Aerosp. Sci. 45 30

    [5]

    Reddy P D S, Bandyopadhyay D, Joo S W, Sharma A, Qian S Z 2011 Phys. Rev. 83 036313

    [6]

    Gailitis A, Lielausis O 1961 Appl. Magnetohydrodynam. Rep. Phys. Inst. 12 143(in Russian)

    [7]

    Weier T, Gerbeth G, Mutschke G, Platacis E, Lielausis O 1998 Exp. Therm Fluid Sci. 16 84

    [8]

    Crawford C, Karniadakis G E 1997 Phys. Fluids 9 788

    [9]

    Kim S, Lee C M 2001 Fluid Dyn. Res. 29 47

    [10]

    Posdziech O, Grundmann R 2001 Eur. J. Mech. B 20 255

    [11]

    Zhang H, Fan B C, Chen Z H 2011 Chin. Phys. Lett. 28 124701

    [12]

    Zhang H, Fan B C, Chen Z H, Chen S, Li H Z 2013 Chin. Phys. B 22 104701

    [13]

    Zhang H, Fan B C, Chen Z H, Li H Z 2014 Comput. Fluids 100 30

    [14]

    Zhang H, Fan B C, Chen Z H, Li H Z 2014 J. Fluids Struct. 48 62

    [15]

    Zhang H, Fan B C, Chen Z H, Li Y L 2011 Fluid Dyn. Res. 43 015506

  • [1] 于博文, 何孝天, 徐进良. 超临界CO2池式传热流固耦合传热特性数值模拟.  , 2024, 73(10): 104401. doi: 10.7498/aps.73.20231953
    [2] 黄亚冬, 王智河, 周本谋. 圆柱绕流尾迹转捩电磁力控制研究.  , 2022, 71(22): 224702. doi: 10.7498/aps.71.20221357
    [3] 罗仕超, 吴里银, 常雨. 高超声速湍流流动磁流体动力学控制机理.  , 2022, 71(21): 214702. doi: 10.7498/aps.71.20220941
    [4] 牛中国, 许相辉, 王建锋, 蒋甲利, 梁华. 飞翼模型纵向气动特性等离子体流动控制试验.  , 2022, 71(2): 024702. doi: 10.7498/aps.71.20211425
    [5] 牛中国, 许相辉, 王建峰, 蒋甲利, 梁华. 飞翼模型纵向气动特性等离子体流动控制试验研究.  , 2021, (): . doi: 10.7498/aps.70.20211425
    [6] 胡兵, 郁殿龙, 刘江伟, 朱付磊, 张振方. 流固耦合声子晶体管路冲击振动特性研究.  , 2020, 69(19): 194301. doi: 10.7498/aps.69.20200414
    [7] 王鹏, 沈赤兵. 等离子体合成射流对超声速混合层的混合增强.  , 2019, 68(17): 174701. doi: 10.7498/aps.68.20190683
    [8] 谭康伯, 路宏敏, 官乔, 张光硕, 陈冲冲. 电磁诱导透明暗孤子的耗散变分束缚分析.  , 2018, 67(6): 064207. doi: 10.7498/aps.67.20172567
    [9] 王宏宇, 李军, 金迪, 代辉, 甘甜, 吴云. 激波/边界层干扰对等离子体合成射流的响应特性.  , 2017, 66(8): 084705. doi: 10.7498/aps.66.084705
    [10] 吴晓笛, 刘华坪, 陈浮. 基于浸入边界-多松弛时间格子玻尔兹曼通量求解法的流固耦合算法研究.  , 2017, 66(22): 224702. doi: 10.7498/aps.66.224702
    [11] 张鑫, 黄勇, 王万波, 唐坤, 李华星. 对称式布局介质阻挡放电等离子体激励器诱导启动涡.  , 2016, 65(17): 174701. doi: 10.7498/aps.65.174701
    [12] 赵光银, 李应红, 梁华, 化为卓, 韩孟虎. 纳秒脉冲表面介质阻挡等离子体激励唯象学仿真.  , 2015, 64(1): 015101. doi: 10.7498/aps.64.015101
    [13] 史冬岩, 王志凯, 张阿漫. 任意复杂流-固边界的格子Boltzmann处理方法.  , 2014, 63(7): 074703. doi: 10.7498/aps.63.074703
    [14] 尹纪富, 尤云祥, 李巍, 胡天群. 电磁力控制湍流边界层分离圆柱绕流场特性数值分析.  , 2014, 63(4): 044701. doi: 10.7498/aps.63.044701
    [15] 孙东科, 项楠, 陈科, 倪中华. 格子玻尔兹曼方法模拟弯流道中粒子的惯性迁移行为.  , 2013, 62(2): 024703. doi: 10.7498/aps.62.024703
    [16] 刘诗序, 关宏志, 严海. 网络交通流动态演化的混沌现象及其控制.  , 2012, 61(9): 090506. doi: 10.7498/aps.61.090506
    [17] 孙健, 刘伟强. 疏导式结构在头锥热防护中的应用.  , 2012, 61(17): 174401. doi: 10.7498/aps.61.174401
    [18] 孙健, 刘伟强. 翼前缘层板对流冷却结构的防热效果分析.  , 2012, 61(12): 124701. doi: 10.7498/aps.61.124701
    [19] 梅栋杰, 范宝春, 陈耀慧, 叶经方. 槽道湍流展向振荡电磁力控制的实验研究.  , 2010, 59(12): 8335-8342. doi: 10.7498/aps.59.8335
    [20] 李钢, 李轶明, 徐燕骥, 张翼, 李汉明, 聂超群, 朱俊强. 介质阻挡放电等离子体对近壁区流场的控制的实验研究.  , 2009, 58(6): 4026-4033. doi: 10.7498/aps.58.4026
计量
  • 文章访问数:  5757
  • PDF下载量:  184
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-05-18
  • 修回日期:  2016-07-04
  • 刊出日期:  2016-12-05

/

返回文章
返回
Baidu
map