-
电介质溶液中,电磁场产生的电磁力可以控制流体的运动.本文对两自由度圆柱涡生振荡及其电磁控制机理进行了数值研究.将坐标原点建立在振动圆柱上,推导了非惯性参考系指数极坐标下的涡量流函数方程、初始边界条件及水动力表达式.对圆柱沿法向和流向的流场、受力和位移的相互影响和瞬时对应规律进行了讨论,结果表明,圆柱的涡生振荡同时受到尾涡脱落和圆柱位移的影响.其作用方式沿法向通过影响圆柱上下两侧剪切层的强度,沿流向通过改变圆柱尾部二次涡的强度,从而改变圆柱的受力和运动.其中圆柱位移的作用效果与尾涡脱落的作用效果相反且占主导.另外,在电磁力的作用下,分离点被消除,使得圆柱的尾涡和推吸壁面的效果被抑制,从而使振动的诱因被消除,圆柱迅速达到稳定状态,并在电磁推力的作用下,圆柱的位置向上游移动.The electro-magnetic forces generated by electromagnetic field take control of the flow in the electrolyte solution. In this paper, the mechanism of two-degree-of-freedom vortex-induced vibration controlled by electro-magnetic forces is investigated numerically. With the coordinate at the moving cylinder, the stream function-vorticity equations, the initial and boundary conditions and distribution of hydrodynamic force are deduced in the exponential-polar coordinate. The equation of vorticity transport is solved by the alternative-direction implicit algorithm. The equation of stream function is integrated by means of a fast Fourier transform algorithm. The cylinder motion is calculated by the Runge-Kutta method. The flow field, pressure, lift/drag and cylinder displacement are interacted along the transverse and streamwise direction, where the instantaneous variations are discussed. The derivation shows that the vibration displacement in one direction, whose effects on the flow field influence the vortex-induced forces in both directions, affects the inertial force only in the corresponding direction and is independent of that in the other direction. The numerical calculations show that the vortex-induced vibration is affected by two factors, i.e., the vortex shedding and the cylinder shift. Both of the two factors have influences on the shear layers in the transverse direction and the secondary vortex in the streamwise direction, which further leads to the variations of lift/drag and the cylinder motion. Along the transverse direction, the strength of shear layer on one side is increased by the vortex shedding while the strength of shear layer on the other side is increased by the cylinder shift. Along the streamwise direction, the pressure of cylinder tail is varied with the effect of shedding vortex on the secondary vortex while the effect of cylinder shift on the secondary vortex is also opposite to that of shedding vortex. Notably, the effect of cylinder shift prevails over the effect of shedding vortex so that the former is dominated in the total effects. The flow separation and vortex shedding are suppressed as the fluid of boundary layer is accelerated under the action of electro-magnetic forces. Meanwhile, the vibration displacements decrease gradually along both the transverse and streamwise directions, which also suppresses the effects of pressure/suction sides. Therefore, the vibration is suppressed and the cylinder turns steady rapidly. In addition, the thrust generated by the wall electro-magnetic force counteracts the drag generated by the fluid electro-magnetic force, which means that the final position is at the upstream of the initial position. The experimental results show that the vortexes on the cylinder are suppressed fully and the flow field is steady under the action of electro-magnetic force, which agrees well with the numerical results.
-
Keywords:
- vortex-induced vibration /
- electro-magnetic control /
- fluid-structure interaction /
- flow control
[1] Wang L, Luo Z B, Xia Z X, Liu B 2013 Acta Phys. Sin. 62 125207 (in Chinese)[王林, 罗振兵, 夏智勋, 刘冰2013 62 125207]
[2] Meng X S, Wang J L, Cai J S, Luo S J, Liu F 2013 Acta Aerodyn. Sin. 31 647 (in Chinese)[孟宣市, 王健磊, 蔡晋生, 罗时钧, 刘锋2013空气动力学学报 31 647]
[3] Cao Y F, Gu Y S, Cheng K M, Xiao Z Y, Chen Z B, He K F 2015 Acta Aeronaut. Astron. 36 757 (in Chinese)[曹永飞, 顾蕴松, 程克明, 肖中云, 陈作斌, 何开锋2015航空学报 36 757]
[4] Braun E M, Lu F K, Wilson D R 2009 Prog. Aerosp. Sci. 45 30
[5] Reddy P D S, Bandyopadhyay D, Joo S W, Sharma A, Qian S Z 2011 Phys. Rev. 83 036313
[6] Gailitis A, Lielausis O 1961 Appl. Magnetohydrodynam. Rep. Phys. Inst. 12 143(in Russian)
[7] Weier T, Gerbeth G, Mutschke G, Platacis E, Lielausis O 1998 Exp. Therm Fluid Sci. 16 84
[8] Crawford C, Karniadakis G E 1997 Phys. Fluids 9 788
[9] Kim S, Lee C M 2001 Fluid Dyn. Res. 29 47
[10] Posdziech O, Grundmann R 2001 Eur. J. Mech. B 20 255
[11] Zhang H, Fan B C, Chen Z H 2011 Chin. Phys. Lett. 28 124701
[12] Zhang H, Fan B C, Chen Z H, Chen S, Li H Z 2013 Chin. Phys. B 22 104701
[13] Zhang H, Fan B C, Chen Z H, Li H Z 2014 Comput. Fluids 100 30
[14] Zhang H, Fan B C, Chen Z H, Li H Z 2014 J. Fluids Struct. 48 62
[15] Zhang H, Fan B C, Chen Z H, Li Y L 2011 Fluid Dyn. Res. 43 015506
-
[1] Wang L, Luo Z B, Xia Z X, Liu B 2013 Acta Phys. Sin. 62 125207 (in Chinese)[王林, 罗振兵, 夏智勋, 刘冰2013 62 125207]
[2] Meng X S, Wang J L, Cai J S, Luo S J, Liu F 2013 Acta Aerodyn. Sin. 31 647 (in Chinese)[孟宣市, 王健磊, 蔡晋生, 罗时钧, 刘锋2013空气动力学学报 31 647]
[3] Cao Y F, Gu Y S, Cheng K M, Xiao Z Y, Chen Z B, He K F 2015 Acta Aeronaut. Astron. 36 757 (in Chinese)[曹永飞, 顾蕴松, 程克明, 肖中云, 陈作斌, 何开锋2015航空学报 36 757]
[4] Braun E M, Lu F K, Wilson D R 2009 Prog. Aerosp. Sci. 45 30
[5] Reddy P D S, Bandyopadhyay D, Joo S W, Sharma A, Qian S Z 2011 Phys. Rev. 83 036313
[6] Gailitis A, Lielausis O 1961 Appl. Magnetohydrodynam. Rep. Phys. Inst. 12 143(in Russian)
[7] Weier T, Gerbeth G, Mutschke G, Platacis E, Lielausis O 1998 Exp. Therm Fluid Sci. 16 84
[8] Crawford C, Karniadakis G E 1997 Phys. Fluids 9 788
[9] Kim S, Lee C M 2001 Fluid Dyn. Res. 29 47
[10] Posdziech O, Grundmann R 2001 Eur. J. Mech. B 20 255
[11] Zhang H, Fan B C, Chen Z H 2011 Chin. Phys. Lett. 28 124701
[12] Zhang H, Fan B C, Chen Z H, Chen S, Li H Z 2013 Chin. Phys. B 22 104701
[13] Zhang H, Fan B C, Chen Z H, Li H Z 2014 Comput. Fluids 100 30
[14] Zhang H, Fan B C, Chen Z H, Li H Z 2014 J. Fluids Struct. 48 62
[15] Zhang H, Fan B C, Chen Z H, Li Y L 2011 Fluid Dyn. Res. 43 015506
计量
- 文章访问数: 5757
- PDF下载量: 184
- 被引次数: 0