-
A subwavelength electromagnetic diode scheme in a microwave waveguide system is proposed by using an asymmetric photonic crystal (PC) cavity side-coupled with electromagnetically induced transparency like (EIT-like) metamaterials. It is found that the composite PC-EIT configuration can generate tenfold Q-factor enlargement, accompanied with enhanced nonreciprocal electromagnetic localization simultaneously. Further study of the measured one-way response exhibits excellent electromagnetic diode performance including 19.7 dB transmission contrast and 7 dBm operating power at a working frequency of 1.329 GHz. We emphasize that such high-contrast transmission and low-threshold diode actions are not at costs of greatly increasing volume and drastically reducing transmission. Our findings may benefit the design of compact nonreciprocal devices in the integrated optical nanocircuits.
-
Keywords:
- electromagnetically induced transparency /
- photonic crystal /
- metamaterials /
- electromagnetic diode
[1] Scalora M, Dowling J P, Bowden C M, Bloemer M J 1994 J. Appl. Phys. 76 2023Google Scholar
[2] Tocci M D, Bloemer M J, Scalora M, Dowling J P, Bowden C M 1995 Appl. Phys. Lett. 66 2324Google Scholar
[3] Yu Z, Fan S 2009 Nat. Photonics 3 91Google Scholar
[4] Feise M W, Shadrivov I V, Kivshar Y S 2005 Phys. Rev. E 71 037602Google Scholar
[5] Hu X, Xin C, Li Z, Gong Q 2010 New J. Phys. 12 023029Google Scholar
[6] Hu X, Li Z, Zhang J, Yang H, Gong Q, Zhang X 2011 Adv. Funct. Mater. 21 1803Google Scholar
[7] Feng L, Ayache M, Huang J, Xu Y, Lu M, Chen Y, Fainman Y, Scherer A 2011 Science 333 729Google Scholar
[8] Wang C, Zhou C, Li Z 2011 Opt. Exp. 19 26948Google Scholar
[9] Bi L, Hu J J, Jiang P, Kim D H, Dionne G F, Kimerling L C, Ross C A 2011 Nat. Photonics 5 758Google Scholar
[10] Wang D W, Zhou H T, Guo M J, Zhang J X, Evers J, Zhu S Y 2013 Phys. Rev. Lett. 110 093901Google Scholar
[11] Shen Z, Zhang Y, Chen Y, Zou C, Xiao Y, Zou X, Sun F, Guo G, Dong C 2016 Nat. Photon. 10 657Google Scholar
[12] 程立锋, 任承, 王萍, 冯帅 2014 63 154213Google Scholar
Cheng L F, Ren C, Wang P, Feng S 2014 Acta Phys. Sin. 63 154213Google Scholar
[13] 刘云凤, 刘彬, 何兴道, 李淑静 2016 65 064207Google Scholar
Liu Y F, Liu B, He X D, Li S J 2016 Acta Phys. Sin. 65 064207Google Scholar
[14] Fan Y, Han J, Wei Z Y, Wu C, Cao Y, Yu X, Li H Q 2011 Appl. Phys. Lett. 98 151903Google Scholar
[15] Xue C H, Jiang H T, Chen H 2010 Opt. Exp. 18 7479Google Scholar
[16] Du G Q, Jiang H T, Wang Z S, Chen H 2009 Opt. Lett. 34 578Google Scholar
[17] Zhou H, Zhou K, Hu W, Guo Q, Lan S, Lin X, Gopal A V 2006 J. Appl. Phys. 99 123111Google Scholar
[18] Zhukovsky S V, Smirnov A G 2011 Phys. Rev. A 83 023818Google Scholar
[19] Cai X, Wang X, Li S 2012 Opt. Commun. 285 1959Google Scholar
[20] Ghaleh K J, Moslemi F 2017 Appl. Opt. 56 4146Google Scholar
[21] Zhang J, Wang P, Ding Y, Wang Y 2019 Opt. Commun. 450 322Google Scholar
[22] Yang P, Xia X, He H, Li S, Han X, Zhang P, Li G, Zhang P, Xu J, Yang Y, Zhang T 2019 Phys. Rev. Lett. 123 233604Google Scholar
[23] Harris S E 1997 Phys. Today 50 36
[24] Hau L V, Harris S E, Dutton Z, Behroozi C H 1999 Nature 397 594Google Scholar
[25] Fleischhauer M, Imamoglu A, Marangos J P 2005 Rev. Mod. Phys. 77 633Google Scholar
[26] Phillips D F, Fleischhauer A, Mair A, Walsworth R L, Lukin M D 2001 Phys. Rev. Lett. 86 783Google Scholar
[27] Zhang S, Genov D A, Wang Y, Liu M, Zhang X 2008 Phys. Rev. Lett. 101 047401Google Scholar
[28] Papasimakis N, Fedotov V A, Zheludev N I, Prosvirnin S L 2008 Phys. Rev. Lett. 101 253903Google Scholar
[29] Tassin P, Zhang L, Koschny T, Economou E N, Soukoulis C M 2009 Phys. Rev. Lett. 102 053901Google Scholar
[30] 张连水, 李晓莉, 王健, 杨丽君, 冯晓敏, 李晓苇, 傅广生 2008 57 4921Google Scholar
Zhang L S, Li X L, Wang J, Yang L J, Feng X M, Li X W, Fu G S 2008 Acta Phys. Sin. 57 4921Google Scholar
[31] Liu N, Langguth L, Weiss T, Kästel J, Fleischhauer M, Pfau T, Giessen H 2009 Nat. Mater. 8 758Google Scholar
[32] Singh R, Rockstuhl C, Lederer F, Zhang W L 2009 Phys. Rev. B 79 085111Google Scholar
[33] Dong Z G, Liu H, Cao J X, Li T, Wang S M, Zhu S N, Zhang X 2010 Appl. Phys. Lett. 97 114101Google Scholar
[34] Sun Y, Jiang H T, Yang Y P, Zhang Y W, Chen H, Zhu S Y 2011 Phys. Rev. B 83 195140Google Scholar
[35] Yang Y, Kravchenko I I, Briggs D P, Valentine J 2014 Nat. Commun. 5 5753Google Scholar
[36] Shao J, Li J Q, Li J, Wang Y K, Dong Z G, Chen P, Wu R X, Zhai Y 2013 Appl. Phys. Lett. 102 034106Google Scholar
[37] Chen Y Q, Dong L J, Fang Y, Wu X Z, Wu Q Y, Jiang J, Shi Y L 2019 Appl. Phys. A 125 1Google Scholar
[38] Sun Y, Tong Y W, Xue C H, Ding Y Q, Li Y H, Jiang H T, Chen H 2013 Appl. Phys. Lett. 103 091904Google Scholar
[39] Gu J Q, Singh R, Liu X J, Zhang X Q, Ma Y F, Zhang S, Maier S A, Tian Z, Azad A K, Chen H T, Taylor A J, Han J G, Zhang W L 2012 Nat. Commun. 3 1151Google Scholar
[40] Fan Y C, Qiao T, Zhang F L, Fu Q H, Dong J J, Kong B T, Li H Q 2017 Sci. Rep. 7 40441Google Scholar
-
图 4 数值仿真得到的在1.374 GHz频率下, 正、反向入射(AB)2D(BA)2(BBAA), 类EIT超材料, (AB)2D(BA)2(BBAA)-EIT复合结构, 以及(AB)2D(BA)2(BBAA)3的电场强度分布
Figure 4. Simulated electric field distributions at 1.374 GHz of (AB)2D(BA)2(BBAA), EIT-like metamaterial, (AB)2D(BA)2(BBAA)-EIT, and (AB)2D(BA)2(BBAA)3 for the left and right incidence.
-
[1] Scalora M, Dowling J P, Bowden C M, Bloemer M J 1994 J. Appl. Phys. 76 2023Google Scholar
[2] Tocci M D, Bloemer M J, Scalora M, Dowling J P, Bowden C M 1995 Appl. Phys. Lett. 66 2324Google Scholar
[3] Yu Z, Fan S 2009 Nat. Photonics 3 91Google Scholar
[4] Feise M W, Shadrivov I V, Kivshar Y S 2005 Phys. Rev. E 71 037602Google Scholar
[5] Hu X, Xin C, Li Z, Gong Q 2010 New J. Phys. 12 023029Google Scholar
[6] Hu X, Li Z, Zhang J, Yang H, Gong Q, Zhang X 2011 Adv. Funct. Mater. 21 1803Google Scholar
[7] Feng L, Ayache M, Huang J, Xu Y, Lu M, Chen Y, Fainman Y, Scherer A 2011 Science 333 729Google Scholar
[8] Wang C, Zhou C, Li Z 2011 Opt. Exp. 19 26948Google Scholar
[9] Bi L, Hu J J, Jiang P, Kim D H, Dionne G F, Kimerling L C, Ross C A 2011 Nat. Photonics 5 758Google Scholar
[10] Wang D W, Zhou H T, Guo M J, Zhang J X, Evers J, Zhu S Y 2013 Phys. Rev. Lett. 110 093901Google Scholar
[11] Shen Z, Zhang Y, Chen Y, Zou C, Xiao Y, Zou X, Sun F, Guo G, Dong C 2016 Nat. Photon. 10 657Google Scholar
[12] 程立锋, 任承, 王萍, 冯帅 2014 63 154213Google Scholar
Cheng L F, Ren C, Wang P, Feng S 2014 Acta Phys. Sin. 63 154213Google Scholar
[13] 刘云凤, 刘彬, 何兴道, 李淑静 2016 65 064207Google Scholar
Liu Y F, Liu B, He X D, Li S J 2016 Acta Phys. Sin. 65 064207Google Scholar
[14] Fan Y, Han J, Wei Z Y, Wu C, Cao Y, Yu X, Li H Q 2011 Appl. Phys. Lett. 98 151903Google Scholar
[15] Xue C H, Jiang H T, Chen H 2010 Opt. Exp. 18 7479Google Scholar
[16] Du G Q, Jiang H T, Wang Z S, Chen H 2009 Opt. Lett. 34 578Google Scholar
[17] Zhou H, Zhou K, Hu W, Guo Q, Lan S, Lin X, Gopal A V 2006 J. Appl. Phys. 99 123111Google Scholar
[18] Zhukovsky S V, Smirnov A G 2011 Phys. Rev. A 83 023818Google Scholar
[19] Cai X, Wang X, Li S 2012 Opt. Commun. 285 1959Google Scholar
[20] Ghaleh K J, Moslemi F 2017 Appl. Opt. 56 4146Google Scholar
[21] Zhang J, Wang P, Ding Y, Wang Y 2019 Opt. Commun. 450 322Google Scholar
[22] Yang P, Xia X, He H, Li S, Han X, Zhang P, Li G, Zhang P, Xu J, Yang Y, Zhang T 2019 Phys. Rev. Lett. 123 233604Google Scholar
[23] Harris S E 1997 Phys. Today 50 36
[24] Hau L V, Harris S E, Dutton Z, Behroozi C H 1999 Nature 397 594Google Scholar
[25] Fleischhauer M, Imamoglu A, Marangos J P 2005 Rev. Mod. Phys. 77 633Google Scholar
[26] Phillips D F, Fleischhauer A, Mair A, Walsworth R L, Lukin M D 2001 Phys. Rev. Lett. 86 783Google Scholar
[27] Zhang S, Genov D A, Wang Y, Liu M, Zhang X 2008 Phys. Rev. Lett. 101 047401Google Scholar
[28] Papasimakis N, Fedotov V A, Zheludev N I, Prosvirnin S L 2008 Phys. Rev. Lett. 101 253903Google Scholar
[29] Tassin P, Zhang L, Koschny T, Economou E N, Soukoulis C M 2009 Phys. Rev. Lett. 102 053901Google Scholar
[30] 张连水, 李晓莉, 王健, 杨丽君, 冯晓敏, 李晓苇, 傅广生 2008 57 4921Google Scholar
Zhang L S, Li X L, Wang J, Yang L J, Feng X M, Li X W, Fu G S 2008 Acta Phys. Sin. 57 4921Google Scholar
[31] Liu N, Langguth L, Weiss T, Kästel J, Fleischhauer M, Pfau T, Giessen H 2009 Nat. Mater. 8 758Google Scholar
[32] Singh R, Rockstuhl C, Lederer F, Zhang W L 2009 Phys. Rev. B 79 085111Google Scholar
[33] Dong Z G, Liu H, Cao J X, Li T, Wang S M, Zhu S N, Zhang X 2010 Appl. Phys. Lett. 97 114101Google Scholar
[34] Sun Y, Jiang H T, Yang Y P, Zhang Y W, Chen H, Zhu S Y 2011 Phys. Rev. B 83 195140Google Scholar
[35] Yang Y, Kravchenko I I, Briggs D P, Valentine J 2014 Nat. Commun. 5 5753Google Scholar
[36] Shao J, Li J Q, Li J, Wang Y K, Dong Z G, Chen P, Wu R X, Zhai Y 2013 Appl. Phys. Lett. 102 034106Google Scholar
[37] Chen Y Q, Dong L J, Fang Y, Wu X Z, Wu Q Y, Jiang J, Shi Y L 2019 Appl. Phys. A 125 1Google Scholar
[38] Sun Y, Tong Y W, Xue C H, Ding Y Q, Li Y H, Jiang H T, Chen H 2013 Appl. Phys. Lett. 103 091904Google Scholar
[39] Gu J Q, Singh R, Liu X J, Zhang X Q, Ma Y F, Zhang S, Maier S A, Tian Z, Azad A K, Chen H T, Taylor A J, Han J G, Zhang W L 2012 Nat. Commun. 3 1151Google Scholar
[40] Fan Y C, Qiao T, Zhang F L, Fu Q H, Dong J J, Kong B T, Li H Q 2017 Sci. Rep. 7 40441Google Scholar
Catalog
Metrics
- Abstract views: 4099
- PDF Downloads: 63
- Cited By: 0