-
The classical trajectory Monte Carlo (CTMC) method is a common method to study the charge-transfer and impact-ionization cross sections for the collisions between ions and atoms, and the heavy particle collision in astrophysics and laboratory plasma environment. Here in this work, we use the 4-CTMC method to study a four-body collision process including two bound electrons, and the Hamiltonian equation of the four-body dynamic system is solved numerically. The single/double electron ionization and capture cross sections are calculated for collisions of high charge state ions (Li3+, Be4+ and O7+) with helium atom in a wide range of projectile energy. The calculation results show that the results from the 4-CTMC method and the experimental measurements are in better agreement in a projectile energy range of 50-200 keV/amu for proton-helium collision system. In addition, for incident ions with high charge state, the results calculated by the 4-CTMC method are in better agreement with the experimental measurements or other theoretical values in a projectile energy range of 100-500 keV/amu. Though the double ionization and capture cross sections calculated by 4-CTMC or 3-CTMC method are higher than the experimental results due to ignoring the electron correlation, the results from the 4-CTMC method are in better agreement with the experimental results.
-
Keywords:
- high charge state ion /
- 4-CTMC /
- charge transfer process
[1] Haberli R M, Gombosi T I, DeZeeuw D L, Combi M R, Powell K G 1997 Science 276 939Google Scholar
[2] Cravens T E 1997 Geophys. Res. Lett. 24 105Google Scholar
[3] Apicella M L, Apruzzese G, Mazzitelli G, Ridolfini V P, Alekseyev A G, Lazarev V B, Mirnov S V, Zagórski R 2012 Plasma Phys. Controlled Fusion 54 197Google Scholar
[4] Mavrin A A 2020 Plasma Phys. Controlled Fusion 62 105023Google Scholar
[5] Redmer R, Holst B, Hensel F 2010 Metal-to-Nonmetal Transitions (Berlin, Heidelberg: Springer)
[6] 程锐, 张晟, 申国栋, 陈燕红, 张延师, 陈良文, 张子民, 赵全堂, 杨建成, 王瑜玉, 雷瑜, 林平, 杨杰, 杨磊, 马新文, 肖国青, 赵红卫, 詹文龙 2020 中国科学: 物理学 力学 天文学 50 14Google Scholar
Cheng R, Zhang S, Shen G D, Chen Y H, Zhang Y S, Chen L W, Zhang Z M, Zhao Q T, Yang J C, Wang Y Y, Lei Y, Lin P, Yang J, Yang L, Ma X W, Xiao G Q, Zhao H W, Zhan W L 2020 Sci. Sin.-Phys. Mech. Astron. 50 14Google Scholar
[7] JäKel O, Karger C P, Debus J 2008 Med. Phys. 35 5653Google Scholar
[8] Liamsuwan T, Nikjoo H 2013 Phys. Med. Biol. 58 641Google Scholar
[9] Liamsuwan T, Uehara S, Emfietzoglou D, Nikjoo H 2011 Radiat. Prot. Dosim. 143 152Google Scholar
[10] Benka O, Kropf A 1978 At. Data Nucl. Data Tables 22 219Google Scholar
[11] Brandt W, Lapicki G 1981 Phys. Rev. A 23 1717Google Scholar
[12] 宁烨, 何斌, 刘春雷, 颜君, 王建国 2005 54 3075Google Scholar
Ning Y, He B, Liu C L, Yan J, Wang J G 2005 Acta Phys. Sin. 54 3075Google Scholar
[13] Montanari C C, Montenegro E C, Miraglia J E 2010 J. Phys. B: At. Mol. Opt. Phys. 43 165201Google Scholar
[14] 杨威, 蔡晓红, 于得洋 2005 54 2128Google Scholar
Yang W, Cai X H, Yu D Y 2005 Acta Phys. Sin. 54 2128Google Scholar
[15] Shimakura N, Koizumi S, Suzuki S, Kimura M 1992 Phys. Rev. A 45 7876Google Scholar
[16] Wu Y, Stancil P C, Liebermann H P, Funke P, Havener C C 2011 Phys. Rev. A 84 022711Google Scholar
[17] Hong X, Wang F, Wu Y, Gou B, Wang J 2016 Phys. Rev. A 93 062706Google Scholar
[18] 顾斌, 金年庆, 王志萍, 曾祥华 2005 54 4648Google Scholar
Gu B, Jin N Q, Wang Z P, Zeng X H 2005 Acta Phys. Sin. 54 4648Google Scholar
[19] Abrines R, Percival I C 1966 Proc. Phys. Soc. 88 861Google Scholar
[20] Olson R E, Salop A 1977 Phys. Rev. A 16 531Google Scholar
[21] Reinhold C O, Falcón C 1986 Phys. Rev. A 33 3859Google Scholar
[22] Gray T J, Cocke C L, Justiniano E 1980 Phys. Rev. A 22 849Google Scholar
[23] Pfeifer S J, Olson R E 1982 Phys. Lett. A 92 175Google Scholar
[24] Olson R E 1978 Phys. Rev. A 18 2464Google Scholar
[25] Kirschbaum C L, Wilets L 1980 Phys. Rev. A 21 834Google Scholar
[26] Olson R E, Ullrich J, Schmidt-Böcking H 1989 Phys. Rev. A 39 5572Google Scholar
[27] Frémont F 2018 Atoms 6 68Google Scholar
[28] Frémont F 2020 Atoms 8 19Google Scholar
[29] Bachi N, Otranto S 2019 Eur. Phys. J. D 73 4Google Scholar
[30] Jorge A, Illescas C, Méndez L, Pons B 2016 Phys. Rev. A 94 022710Google Scholar
[31] Pitcher C S, Stangeby P C 1997 Plasma Phys. Controlled Fusion 39 779Google Scholar
[32] Federici G, Skinner C H, Brooks J N 2001 Nucl. Fusion 41 1967Google Scholar
[33] 邓柏权, 谢中友 1986 核聚变与等离子体物理 16 22Google Scholar
Deng B Q, Xie Z Y 1986 Nucl. Fusion Plasma Phys. 16 22Google Scholar
[34] Dunn W R, Branduardi-Raymont G, Elsner R F, Vogt M F, Lamy L, Ford P G, Coates A J, Gladstone G R, Jackman C M, Nichols J D 2016 J. Geophys. Res. Space Phys. 121 2274Google Scholar
[35] Shah M B, Gilbody H B 1999 J. Phys. B: At. Mol. Phys. 18 899Google Scholar
[36] Pivovar L I, Levchenko Y Z, Krivonosov G A 1971 J. Exp. Theor. Phys. 32 11Google Scholar
[37] Santanna M M, Santos A, Coelho L, Jalbert G, Belkic D 2009 Phys. Rev. A 80 042707Google Scholar
[38] Mcguire J H, Burgdorfer J 1987 Phys. Rev. A 36 4089Google Scholar
-
表 1 4-CTMC程序中反应类型判据方法
Table 1. Criteria followed for the determination of reactions in 4-CTMC method.
反应类型 ECB EDB ECA EDA 双电子激发 C和D被激发 < 0 < 0 ≥ 0 ≥ 0 双电子俘获 C和D被俘获 ≥ 0 ≥ 0 < 0 < 0 单电子俘获 C被俘获、D被激发 ≥ 0 < 0 < 0 ≥ 0 D被俘获、C被激发 < 0 ≥ 0 ≥ 0 < 0 双电子电离 C和D被电离 ≥ 0 ≥ 0 ≥ 0 ≥ 0 单电子电离 C被电离、D被激发 ≥ 0 < 0 ≥ 0 ≥ 0 D被电离、C被激发 < 0 ≥ 0 ≥ 0 ≥ 0 转移电离 C被电离、D被俘获 ≥ 0 ≥ 0 ≥ 0 < 0 D被电离、C被俘获 ≥ 0 ≥ 0 < 0 ≥ 0 -
[1] Haberli R M, Gombosi T I, DeZeeuw D L, Combi M R, Powell K G 1997 Science 276 939Google Scholar
[2] Cravens T E 1997 Geophys. Res. Lett. 24 105Google Scholar
[3] Apicella M L, Apruzzese G, Mazzitelli G, Ridolfini V P, Alekseyev A G, Lazarev V B, Mirnov S V, Zagórski R 2012 Plasma Phys. Controlled Fusion 54 197Google Scholar
[4] Mavrin A A 2020 Plasma Phys. Controlled Fusion 62 105023Google Scholar
[5] Redmer R, Holst B, Hensel F 2010 Metal-to-Nonmetal Transitions (Berlin, Heidelberg: Springer)
[6] 程锐, 张晟, 申国栋, 陈燕红, 张延师, 陈良文, 张子民, 赵全堂, 杨建成, 王瑜玉, 雷瑜, 林平, 杨杰, 杨磊, 马新文, 肖国青, 赵红卫, 詹文龙 2020 中国科学: 物理学 力学 天文学 50 14Google Scholar
Cheng R, Zhang S, Shen G D, Chen Y H, Zhang Y S, Chen L W, Zhang Z M, Zhao Q T, Yang J C, Wang Y Y, Lei Y, Lin P, Yang J, Yang L, Ma X W, Xiao G Q, Zhao H W, Zhan W L 2020 Sci. Sin.-Phys. Mech. Astron. 50 14Google Scholar
[7] JäKel O, Karger C P, Debus J 2008 Med. Phys. 35 5653Google Scholar
[8] Liamsuwan T, Nikjoo H 2013 Phys. Med. Biol. 58 641Google Scholar
[9] Liamsuwan T, Uehara S, Emfietzoglou D, Nikjoo H 2011 Radiat. Prot. Dosim. 143 152Google Scholar
[10] Benka O, Kropf A 1978 At. Data Nucl. Data Tables 22 219Google Scholar
[11] Brandt W, Lapicki G 1981 Phys. Rev. A 23 1717Google Scholar
[12] 宁烨, 何斌, 刘春雷, 颜君, 王建国 2005 54 3075Google Scholar
Ning Y, He B, Liu C L, Yan J, Wang J G 2005 Acta Phys. Sin. 54 3075Google Scholar
[13] Montanari C C, Montenegro E C, Miraglia J E 2010 J. Phys. B: At. Mol. Opt. Phys. 43 165201Google Scholar
[14] 杨威, 蔡晓红, 于得洋 2005 54 2128Google Scholar
Yang W, Cai X H, Yu D Y 2005 Acta Phys. Sin. 54 2128Google Scholar
[15] Shimakura N, Koizumi S, Suzuki S, Kimura M 1992 Phys. Rev. A 45 7876Google Scholar
[16] Wu Y, Stancil P C, Liebermann H P, Funke P, Havener C C 2011 Phys. Rev. A 84 022711Google Scholar
[17] Hong X, Wang F, Wu Y, Gou B, Wang J 2016 Phys. Rev. A 93 062706Google Scholar
[18] 顾斌, 金年庆, 王志萍, 曾祥华 2005 54 4648Google Scholar
Gu B, Jin N Q, Wang Z P, Zeng X H 2005 Acta Phys. Sin. 54 4648Google Scholar
[19] Abrines R, Percival I C 1966 Proc. Phys. Soc. 88 861Google Scholar
[20] Olson R E, Salop A 1977 Phys. Rev. A 16 531Google Scholar
[21] Reinhold C O, Falcón C 1986 Phys. Rev. A 33 3859Google Scholar
[22] Gray T J, Cocke C L, Justiniano E 1980 Phys. Rev. A 22 849Google Scholar
[23] Pfeifer S J, Olson R E 1982 Phys. Lett. A 92 175Google Scholar
[24] Olson R E 1978 Phys. Rev. A 18 2464Google Scholar
[25] Kirschbaum C L, Wilets L 1980 Phys. Rev. A 21 834Google Scholar
[26] Olson R E, Ullrich J, Schmidt-Böcking H 1989 Phys. Rev. A 39 5572Google Scholar
[27] Frémont F 2018 Atoms 6 68Google Scholar
[28] Frémont F 2020 Atoms 8 19Google Scholar
[29] Bachi N, Otranto S 2019 Eur. Phys. J. D 73 4Google Scholar
[30] Jorge A, Illescas C, Méndez L, Pons B 2016 Phys. Rev. A 94 022710Google Scholar
[31] Pitcher C S, Stangeby P C 1997 Plasma Phys. Controlled Fusion 39 779Google Scholar
[32] Federici G, Skinner C H, Brooks J N 2001 Nucl. Fusion 41 1967Google Scholar
[33] 邓柏权, 谢中友 1986 核聚变与等离子体物理 16 22Google Scholar
Deng B Q, Xie Z Y 1986 Nucl. Fusion Plasma Phys. 16 22Google Scholar
[34] Dunn W R, Branduardi-Raymont G, Elsner R F, Vogt M F, Lamy L, Ford P G, Coates A J, Gladstone G R, Jackman C M, Nichols J D 2016 J. Geophys. Res. Space Phys. 121 2274Google Scholar
[35] Shah M B, Gilbody H B 1999 J. Phys. B: At. Mol. Phys. 18 899Google Scholar
[36] Pivovar L I, Levchenko Y Z, Krivonosov G A 1971 J. Exp. Theor. Phys. 32 11Google Scholar
[37] Santanna M M, Santos A, Coelho L, Jalbert G, Belkic D 2009 Phys. Rev. A 80 042707Google Scholar
[38] Mcguire J H, Burgdorfer J 1987 Phys. Rev. A 36 4089Google Scholar
Catalog
Metrics
- Abstract views: 4907
- PDF Downloads: 89
- Cited By: 0