-
The density, temperature and length of the plasma used in the backward Raman amplification will all influence the result. To explore the influence of the plasma density and the pump intensity, this work uses the one-dimensional particle in cell (PIC) algorithm to simulate the process of the 800 nm pump laser injecting into the plasma. By analyzing the Raman scattered light, it is found that as the density of plasma increases, the wavelengths of the scattered light shorten. It is also found that the forward Raman scattering will cause the plasma density to change, which in turn influences the scattered light wavelength. Therefore, we should choose the plasma density based on the wavelength of the pump and the scattered light, while the amplification of the scattered is related to the pump intensity.
-
Keywords:
- plasma /
- laser amplification /
- backward Raman scattering /
- particle in cell algorithm
[1] Strickland D, Mourou G 1985 Opt. Commun. 56 219
Google Scholar
[2] Capjack C E, James C R, McMullin J N 1982 J. Appl. Phys. 53 4046
Google Scholar
[3] Murray J R, Goldhar J, Eimeri D, Szöke A 1979 IEEE J. Quantum Electron. 15 342
Google Scholar
[4] Ping Y, Cheng W, Suckewer S, Clark D S, Fisch N J 2004 Phys. Rev. Lett. 92 175007
Google Scholar
[5] Cheng W, Avitzour Y, Ping Y, Suckewer S, Fisch N J, Hur M S, Wurtele J S 2005 Phys. Rev. Lett. 94 045003
Google Scholar
[6] Ren J, Li S, Morozov A, Suckewer S, Yampolsky N A, Malkin V M, Fisch N J 2008 Phys. Plasmas 15 056702
Google Scholar
[7] Pai C H, Lin M W, Ha L C, Huang S T, Tsou Y C, Chu H H, Lin J Y, Wang J, Chen S Y 2008 Phys. Rev. Lett. 101 065005
Google Scholar
[8] Malkin V M, Shvets G, Fisch N J 1999 Phys. Rev. Lett. 82 4448
Google Scholar
[9] Ping Y, Kirkwood R K, Wang T L, Clark D S, Wilks S C, Meezan N, Berger R L, Wurtele J, Fisch N J, Malkin V M, Valeo E J, Martins S F, Joshi C 2009 Phys. Plasmas 16 123113
Google Scholar
[10] Barth I, Toroker Z, Balakin A A, Fisch N J 2016 Phys. Rev. E 93 063210
Google Scholar
[11] Ren J, Cheng W, Li S, Suckewer S 2007 Nat. Phys. 3 732
Google Scholar
[12] Wu Z, Chen Q, Morozov A, Suckewer S 2019 Phys. Plasmas 26 103111
Google Scholar
[13] Vieux G, Cipiccia S, Grant D W, Lemos N, Grant P, Ciocarlan C, Ersfeld B, Hur M S, Lepipas P, Manahan G G, Raj G, Reboredo Gil D, Subiel A, Welsh G H, Wiggins S M, Yoffe S R, Farmer J P, Aniculaesei C, Brunetti E, Yang X, Heathcote R, Nersisyan G, Lewis C L S, Pukhov A, Dias J M, Jaroszynski D A 2017 Sci. Rep. 7 2399
Google Scholar
[14] Shuanglei L 2013 Ph. D. Dissertation (Princeton: Princeton University)
[15] Ping Y, Geltner I, Morozov A, Fisch N J, Suckewer S 2002 Phys. Rev. E 66 6
Google Scholar
[16] Arber T D, Bennett K, Brady C S, Lawrence-Douglas A, Ramsay M G, Sircombe N J, Gillies P, Evans R G, Schmitz H, Bell A R, Ridgers C P 2015 Plasma Phys. Controlled Fusion 57 113001
Google Scholar
[17] Yampolsky N A, Fisch N J 2011 Phys. Plasmas 18 056711
Google Scholar
[18] Toroker Z, Malkin V M, Fisch N J 2012 Phys. Rev. Lett. 109 085003
Google Scholar
[19] Farmer J P, Ersfeld B, Jaroszynski D A 2010 Phys. Plasmas 17 113301
Google Scholar
[20] Yang X, Vieux G, Brunetti E, Ersfeld B, Farmer J P, Hur M S, Issac R C, Raj G, Wiggins S M, Welsh G H, Yoffe S R, Jaroszynski D A 2015 Sci. Rep. 5 13333
Google Scholar
-
-
[1] Strickland D, Mourou G 1985 Opt. Commun. 56 219
Google Scholar
[2] Capjack C E, James C R, McMullin J N 1982 J. Appl. Phys. 53 4046
Google Scholar
[3] Murray J R, Goldhar J, Eimeri D, Szöke A 1979 IEEE J. Quantum Electron. 15 342
Google Scholar
[4] Ping Y, Cheng W, Suckewer S, Clark D S, Fisch N J 2004 Phys. Rev. Lett. 92 175007
Google Scholar
[5] Cheng W, Avitzour Y, Ping Y, Suckewer S, Fisch N J, Hur M S, Wurtele J S 2005 Phys. Rev. Lett. 94 045003
Google Scholar
[6] Ren J, Li S, Morozov A, Suckewer S, Yampolsky N A, Malkin V M, Fisch N J 2008 Phys. Plasmas 15 056702
Google Scholar
[7] Pai C H, Lin M W, Ha L C, Huang S T, Tsou Y C, Chu H H, Lin J Y, Wang J, Chen S Y 2008 Phys. Rev. Lett. 101 065005
Google Scholar
[8] Malkin V M, Shvets G, Fisch N J 1999 Phys. Rev. Lett. 82 4448
Google Scholar
[9] Ping Y, Kirkwood R K, Wang T L, Clark D S, Wilks S C, Meezan N, Berger R L, Wurtele J, Fisch N J, Malkin V M, Valeo E J, Martins S F, Joshi C 2009 Phys. Plasmas 16 123113
Google Scholar
[10] Barth I, Toroker Z, Balakin A A, Fisch N J 2016 Phys. Rev. E 93 063210
Google Scholar
[11] Ren J, Cheng W, Li S, Suckewer S 2007 Nat. Phys. 3 732
Google Scholar
[12] Wu Z, Chen Q, Morozov A, Suckewer S 2019 Phys. Plasmas 26 103111
Google Scholar
[13] Vieux G, Cipiccia S, Grant D W, Lemos N, Grant P, Ciocarlan C, Ersfeld B, Hur M S, Lepipas P, Manahan G G, Raj G, Reboredo Gil D, Subiel A, Welsh G H, Wiggins S M, Yoffe S R, Farmer J P, Aniculaesei C, Brunetti E, Yang X, Heathcote R, Nersisyan G, Lewis C L S, Pukhov A, Dias J M, Jaroszynski D A 2017 Sci. Rep. 7 2399
Google Scholar
[14] Shuanglei L 2013 Ph. D. Dissertation (Princeton: Princeton University)
[15] Ping Y, Geltner I, Morozov A, Fisch N J, Suckewer S 2002 Phys. Rev. E 66 6
Google Scholar
[16] Arber T D, Bennett K, Brady C S, Lawrence-Douglas A, Ramsay M G, Sircombe N J, Gillies P, Evans R G, Schmitz H, Bell A R, Ridgers C P 2015 Plasma Phys. Controlled Fusion 57 113001
Google Scholar
[17] Yampolsky N A, Fisch N J 2011 Phys. Plasmas 18 056711
Google Scholar
[18] Toroker Z, Malkin V M, Fisch N J 2012 Phys. Rev. Lett. 109 085003
Google Scholar
[19] Farmer J P, Ersfeld B, Jaroszynski D A 2010 Phys. Plasmas 17 113301
Google Scholar
[20] Yang X, Vieux G, Brunetti E, Ersfeld B, Farmer J P, Hur M S, Issac R C, Raj G, Wiggins S M, Welsh G H, Yoffe S R, Jaroszynski D A 2015 Sci. Rep. 5 13333
Google Scholar
Catalog
Metrics
- Abstract views: 4764
- PDF Downloads: 86
- Cited By: 0