搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

万瓦级光纤激光焊接过程中小孔内外等离子体研究

李时春 陈根余 周聪 陈晓锋 周宇

引用本文:
Citation:

万瓦级光纤激光焊接过程中小孔内外等离子体研究

李时春, 陈根余, 周聪, 陈晓锋, 周宇

Plasma inside and outside keyhole during 10 kW level fiber laser welding

Li Shi-Chun, Chen Gen-Yu, Zhou Cong, Chen Xiao-Feng, Zhou Yu
PDF
导出引用
  • 为了进一步深入了解超高功率光纤激光深熔焊接过程中等离子体特征,试验拍摄了深熔小孔内外等离子体形态,并采用光谱仪检测分析了光纤激光致等离子体光谱信号. 利用检测得到的等离子体光谱信号,计算研究了等离子体的电子温度、电子密度、电离度以及等离子体压力特征,并分析了在小孔内不同深度处及孔外等离子体的变化规律. 结果表明,孔内等离子体呈现不均匀分布特征,孔外金属蒸气远多于等离子体. 等离子体光谱分析显示,光纤激光致等离子体辐射出的谱线较少,即电离程度较低. 进一步的计算结果同样证实了光纤激光致等离子体处于弱电离状态,但等离子体电子密度仍然处于较高水平,且等离子体瞬态压力可达到数百个大气压.
    In order to understand in depth plasma behavior during ultra-high power fiber laser deep penetration welding, the plasma inside and outside the keyhole is observed, and the spectrum of fiber laser-induced plasma is measured and analyzed. Based on the measured data of plasma, the electron temperature and electron density, ionization degree and pressure are calculated, and the characteristics of plasma parameters at different values of keyhole depth and outside the keyhole are investigated. The results indicate that the distribution of plasma inside the keyhole is uneven, and the vapor plume is much bigger outside the keyhole. The spectrum of plasma show that the fiber laser-induced plasma is weakly ionized and radiates a few spectral lines. The further calculation results also confirm that the plasma induced by fiber laser is in a weakly ionized state. However, the electron density of plasma still stays in a high level, and the transient pressure of plasma is up to hundreds of times as large as atmospheric pressure.
    • 基金项目: 国家自然科学基金(批准号:51175165)和国家科技重大专项基金(批准号:2013ZX04001131)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51175165) and the Special Foundation of National Science and Technology Major Program of China (Grant No. 2013ZX04001131).
    [1]

    Tang X H, Zhu H H, Zhu G F, Li S M 2000 China Mech. Eng. 11 741 (in Chinese) [唐霞辉, 朱海红, 朱国富, 李适民 2000 中国机械工程 11 741]

    [2]

    Su Y D 2000 China Mech. Eng. 11 1389 (in Chinese) [苏彦东 2000 中国机械工程 11 1389]

    [3]

    Zhang Y, Chen G Y, Li L J 2008 Manuf. Technol. Machine Tool 3 98 (in Chinese)[张屹, 陈根余, 李力钧 2008 制造技术与机床 3 98]

    [4]

    Zhao Q, Wu Q B, Wang W 2006 Infrared Laser Eng. 35(S3) 70 (in Chinese) [赵强, 吴清彬, 王伟 2006 红外与激光工程 35(S3) 70]

    [5]

    Zhang Y, Li L J, Zhang G 2005 J. Phys. D: Appl. Phys. 38 703

    [6]

    Greses J, Hilton P A, Barlow C Y, Steen W M 2003 Proceedings International Congress on Applications of Lasers and Electro-Optics (Orlando: Laser Institute of America) p546

    [7]

    Kawahito Y, Matsumoto N, Mizutani M, Katayama S 2008 Sci. Technol. Weld. Joining 13 744

    [8]

    Kulish M, Fertman A, Golubev A, Tauschwitz A, Turtikov V 2011 Rev. Sci. Instrum. 72 2294

    [9]

    Bedenko D V, Kovalev O B, Krivtsun I V 2010 J. Phys. D: Appl. Phys. 43 105501

    [10]

    Fuerschbach P W, Norris J T, He X, DebRoy T 2003 Understanding Metal Vaporization from Laser Welding (Albuquerque: Sandia National Laboratories) p69

    [11]

    Griem H R 1964 Plasma Spectroscopy (New York: McGraw-Hill) p580

    [12]

    Lacroix D, Jeandel G, Boudot C 1997 J. Appl. Phys. 81 6599

    [13]

    Ribic B, Burgardt P, DebRoy T 2011 J. Appl. Phys. 109 083301

    [14]

    Konjević N, Dimitrijević M S, Wiese W L 1984 J. Phys. Chem. Ref. Data 13 619

    [15]

    Jin X Z 2002 Ph. D. Dissertation (Changsha: Hunan University) (in Chinese) [金湘中 2002 博士学位论文 (长沙: 湖南大学)]

    [16]

    Sibillano T, Rizzi D, Ancona A, Saludes-Rodil S, Nieto J R, Chmelíčková H, Šebestová H 2012 J. Mater. Process. Technol. 212 910

    [17]

    Rizzi D, Sibillano T, Calabrese P P, Ancona A, Lugará P M 2011 Opt. Laser Eng. 49 892

    [18]

    National Institute of Standards and Technology 2013 Atomic Spectra Database Lines Form (Gaithersberg: National Institute of Standards and Technology)

    [19]

    Lu J Y, Wang J, Ma Y G, Chen B 2004 Opt. Precis. Eng. 12 550 (in Chinese) [鲁建业, 王军, 马玉刚, 陈波 2004 光学精密工程 12 550]

    [20]

    Li S X, Bai Z C, Huang Z, Zhang X, Qin S J, Mao W X 2012 Acta Phys. Sin. 61 115201 (in Chinese) [李世雄, 白忠臣, 黄政, 张欣, 秦水介, 毛文雪 2012 61 115201]

    [21]

    Wang Y N, Liu Y, Zheng S, Lin G Q 2012 Chin. Phys. B 21 075202

  • [1]

    Tang X H, Zhu H H, Zhu G F, Li S M 2000 China Mech. Eng. 11 741 (in Chinese) [唐霞辉, 朱海红, 朱国富, 李适民 2000 中国机械工程 11 741]

    [2]

    Su Y D 2000 China Mech. Eng. 11 1389 (in Chinese) [苏彦东 2000 中国机械工程 11 1389]

    [3]

    Zhang Y, Chen G Y, Li L J 2008 Manuf. Technol. Machine Tool 3 98 (in Chinese)[张屹, 陈根余, 李力钧 2008 制造技术与机床 3 98]

    [4]

    Zhao Q, Wu Q B, Wang W 2006 Infrared Laser Eng. 35(S3) 70 (in Chinese) [赵强, 吴清彬, 王伟 2006 红外与激光工程 35(S3) 70]

    [5]

    Zhang Y, Li L J, Zhang G 2005 J. Phys. D: Appl. Phys. 38 703

    [6]

    Greses J, Hilton P A, Barlow C Y, Steen W M 2003 Proceedings International Congress on Applications of Lasers and Electro-Optics (Orlando: Laser Institute of America) p546

    [7]

    Kawahito Y, Matsumoto N, Mizutani M, Katayama S 2008 Sci. Technol. Weld. Joining 13 744

    [8]

    Kulish M, Fertman A, Golubev A, Tauschwitz A, Turtikov V 2011 Rev. Sci. Instrum. 72 2294

    [9]

    Bedenko D V, Kovalev O B, Krivtsun I V 2010 J. Phys. D: Appl. Phys. 43 105501

    [10]

    Fuerschbach P W, Norris J T, He X, DebRoy T 2003 Understanding Metal Vaporization from Laser Welding (Albuquerque: Sandia National Laboratories) p69

    [11]

    Griem H R 1964 Plasma Spectroscopy (New York: McGraw-Hill) p580

    [12]

    Lacroix D, Jeandel G, Boudot C 1997 J. Appl. Phys. 81 6599

    [13]

    Ribic B, Burgardt P, DebRoy T 2011 J. Appl. Phys. 109 083301

    [14]

    Konjević N, Dimitrijević M S, Wiese W L 1984 J. Phys. Chem. Ref. Data 13 619

    [15]

    Jin X Z 2002 Ph. D. Dissertation (Changsha: Hunan University) (in Chinese) [金湘中 2002 博士学位论文 (长沙: 湖南大学)]

    [16]

    Sibillano T, Rizzi D, Ancona A, Saludes-Rodil S, Nieto J R, Chmelíčková H, Šebestová H 2012 J. Mater. Process. Technol. 212 910

    [17]

    Rizzi D, Sibillano T, Calabrese P P, Ancona A, Lugará P M 2011 Opt. Laser Eng. 49 892

    [18]

    National Institute of Standards and Technology 2013 Atomic Spectra Database Lines Form (Gaithersberg: National Institute of Standards and Technology)

    [19]

    Lu J Y, Wang J, Ma Y G, Chen B 2004 Opt. Precis. Eng. 12 550 (in Chinese) [鲁建业, 王军, 马玉刚, 陈波 2004 光学精密工程 12 550]

    [20]

    Li S X, Bai Z C, Huang Z, Zhang X, Qin S J, Mao W X 2012 Acta Phys. Sin. 61 115201 (in Chinese) [李世雄, 白忠臣, 黄政, 张欣, 秦水介, 毛文雪 2012 61 115201]

    [21]

    Wang Y N, Liu Y, Zheng S, Lin G Q 2012 Chin. Phys. B 21 075202

  • [1] 赵鑫, 杨晓虎, 张国博, 马燕云, 刘彦鹏, 郁明阳. 高功率激光辐照平面靶后辐射冷却效应对等离子体成丝的影响.  , 2022, 71(23): 235202. doi: 10.7498/aps.71.20220870
    [2] 王媛媛, 王羡之, 宋贾俊, 张旭, 王兆华, 魏志义. 超强激光在均匀等离子体中的背向拉曼散射放大机制.  , 2022, 71(5): 055202. doi: 10.7498/aps.71.20211270
    [3] 徐新荣, 仲丛林, 张铱, 刘峰, 王少义, 谭放, 张玉雪, 周维民, 乔宾. 强激光等离子体相互作用驱动高次谐波与阿秒辐射研究进展.  , 2021, 70(8): 084206. doi: 10.7498/aps.70.20210339
    [4] 李曜均, 岳东宁, 邓彦卿, 赵旭, 魏文青, 葛绪雷, 远晓辉, 刘峰, 陈黎明. 相对论强激光与近临界密度等离子体相互作用的质子成像.  , 2019, 68(15): 155201. doi: 10.7498/aps.68.20190610
    [5] 赵法刚, 张宇, 张雷, 尹王保, 董磊, 马维光, 肖连团, 贾锁堂. 基于自吸收量化的激光诱导等离子体表征方法.  , 2018, 67(16): 165201. doi: 10.7498/aps.67.20180374
    [6] 蔡颂, 陈根余, 周聪, 周枫林, 李光. 脉冲激光烧蚀材料等离子体反冲压力物理模型研究与应用.  , 2017, 66(13): 134205. doi: 10.7498/aps.66.134205
    [7] 曹亚南, 王贵师, 谈图, 汪磊, 梅教旭, 蔡廷栋, 高晓明. 基于可调谐二极管激光吸收光谱技术的密闭玻璃容器中水汽浓度及压力的探测.  , 2016, 65(8): 084202. doi: 10.7498/aps.65.084202
    [8] 刘玉峰, 张连水, 和万霖, 黄宇, 杜艳君, 蓝丽娟, 丁艳军, 彭志敏. 激光诱导击穿火焰等离子体光谱研究.  , 2015, 64(4): 045202. doi: 10.7498/aps.64.045202
    [9] 刘明伟, 龚顺风, 李劲, 姜春蕾, 张禹涛, 周并举. 低密等离子体通道中的非共振激光直接加速.  , 2015, 64(14): 145201. doi: 10.7498/aps.64.145201
    [10] 刘玉峰, 丁艳军, 彭志敏, 黄宇, 杜艳君. 激光诱导击穿空气等离子体时间分辨特性的光谱研究.  , 2014, 63(20): 205205. doi: 10.7498/aps.63.205205
    [11] 刘月华, 陈明, 刘向东, 崔清强, 赵明文. 透镜到靶材的距离对脉冲激光诱导等离子体的影响机理研究.  , 2013, 62(2): 025203. doi: 10.7498/aps.62.025203
    [12] 李世雄, 白忠臣, 黄政, 张欣, 秦水介, 毛文雪. 激光诱导等离子体加工石英微通道机理研究.  , 2012, 61(11): 115201. doi: 10.7498/aps.61.115201
    [13] 高勋, 宋晓伟, 郭凯敏, 陶海岩, 林景全. 飞秒激光烧蚀硅表面产生等离子体的发射光谱研究.  , 2011, 60(2): 025203. doi: 10.7498/aps.60.025203
    [14] 夏志林, 郭培涛, 薛亦渝, 黄才华, 李展望. 短脉冲激光诱导薄膜损伤的等离子体爆炸过程分析.  , 2010, 59(5): 3523-3530. doi: 10.7498/aps.59.3523
    [15] 张秋菊, 武慧春, 王兴海, 盛政明, 张 杰. 超短激光脉冲在等离子体中的分裂以及类孤子结构的形成.  , 2007, 56(12): 7106-7113. doi: 10.7498/aps.56.7106
    [16] 张秋菊, 盛政明, 张 杰. 周期量级超短激光脉冲在近临界密度等离子体中形成的光孤子.  , 2004, 53(3): 798-802. doi: 10.7498/aps.53.798
    [17] 张端明, 关 丽, 李智华, 钟志成, 侯思普, 杨凤霞, 郑克玉. 脉冲激光制膜过程中等离子体演化规律的研究.  , 2003, 52(1): 242-246. doi: 10.7498/aps.52.242
    [18] 张军, 张杰, 陈清, 彭练矛, 苍宇, 王怀斌, 仲佳勇. 利用飞秒激光等离子体产生的超热电子进行衍射实验的可行性研究.  , 2002, 51(8): 1764-1767. doi: 10.7498/aps.51.1764
    [19] 傅喜泉, 刘承宜, 郭弘. 等离子体中X射线激光传输与电子密度诊断的理论及数值比较.  , 2002, 51(6): 1326-1331. doi: 10.7498/aps.51.1326
    [20] 何斌, 常铁强, 张家泰, 许林宝. 超强激光场等离子体中电子纵向运动的研究.  , 2001, 50(10): 1939-1945. doi: 10.7498/aps.50.1939
计量
  • 文章访问数:  6233
  • PDF下载量:  576
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-12-09
  • 修回日期:  2014-01-28
  • 刊出日期:  2014-05-05

/

返回文章
返回
Baidu
map