Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

PI-SiO2/NiI2 colorimetric humidity sensor with fast response and recovery

Xu Shi-Yao Wu Yi-Wei Zhou Yan Yin Xiang-Yang Gan Li Li Ya-Juan Liu Ming-Yu Song Hong-Jia Wang Jin-Bin Zhong Xiang-Li

Citation:

PI-SiO2/NiI2 colorimetric humidity sensor with fast response and recovery

Xu Shi-Yao, Wu Yi-Wei, Zhou Yan, Yin Xiang-Yang, Gan Li, Li Ya-Juan, Liu Ming-Yu, Song Hong-Jia, Wang Jin-Bin, Zhong Xiang-Li
科大讯飞翻译 (iFLYTEK Translation)
PDF
HTML
Get Citation
  • The organic-inorganic hybrid colorimetric humidity sensor which can obtain environmental humidity by electrical signals and color changes has broad application prospects in the field of humidity monitoring because of its high feature color discrimination, excellent stability, and simple preparation process. However, its long response-recovery time is generally not conducive to real-time humidity monitoring. In this paper, nanometer silica particles are doped into polyimide(PI)-nickel(II) iodide(NiI2) organic-inorganic hybrid materials to fabricate PI-SiO2/NiI2 composite films and colorimetric humidity sensors. Then their surface morphologies and humidity sensing properties are studied. It is found that PI-SiO2/NiI2 film possesses a honeycomb-like surface morphology, the humidity sensitivity of PI-SiO2/NiI2 colorimetric humidity sensor is better than that of other NiI2 based humidity sensors, its characteristic color is distinct in a range of 11%–97% RH humidity, and the humidity response time of the PI-SiO2/NiI2 colorimetric humidity sensor is less than 1.5 s, and the recovery time is less than 18 s. The research result indicates that the doping of nanometer silica particles can effectively improve response-recovery properties of the organic-inorganic hybrid colorimetric humidity sensor, which is helpful in improving the performance of the sensor.
      Corresponding author: Wu Yi-Wei, 201921001409@smail.xtu.edu.cn ; Zhong Xiang-Li, xlzhong@xtu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51872251, 51902275)
    [1]

    Mergu N, Kim H, Ryu J, Son Y 2020 Sens. Actuators. B 311 127906Google Scholar

    [2]

    Dai J X, Zhang T, Zhao H R, Fei T 2017 Sens. Actuators. B 242 1108Google Scholar

    [3]

    Wei Z Q, Zhou Z K, Li Q Y, Xue J C, Falco A D, Yang Z J, Zhou J H 2017 Small 13 7

    [4]

    Hu X, Mu H, Miao J, Wang X W, Meng X S, Wang Z, Yan J L 2020 Polym. Chem. 11 4172Google Scholar

    [5]

    Alrammouz R, Podlecki J, Abboud P, Sorli B, Habchi R 2018 Sens. Actuators. A 284 209Google Scholar

    [6]

    You M H, Yan X, Zhang J, Wang X X, He X X, Yu M, Ning X, Long Y Z 2017 Nanoscale Res. Lett. 12 20Google Scholar

    [7]

    盛熙淳 2020 硕士学位论文 (湘潭: 湘潭大学)

    Sheng X C 2020 M. S. Thesis (Xiangtan: Xiangtan University) (in Chinese)

    [8]

    Shinbo K, Otuki S, Kanbayashi Y, Ohdaira Y, Baba A, Kato K, Kaneko F, Miyadera N 2009 Thin Solid Films 518 629Google Scholar

    [9]

    Konstantaki M, Pissadakis S, Pispas S, Madamopoulos N, Vainos N A 2006 Appl. Opt. 45 4567Google Scholar

    [10]

    Zhang Y, Ren J X, Wu Y W, Zhong X L, Luo T, Cao J X, Yin M Q, Huang M P, Zhang Z Y 2020 Sens. Actuators, B 309 1

    [11]

    Wang Z H, Zhang Y H, Wang W J, An Q, Tong W S 2019 Chem. Phys. Lett. 727 90Google Scholar

    [12]

    Hosokawa H, Mochida T 2015 Langmuir 31 13048Google Scholar

    [13]

    Liaw D J, Wang K L, Huang Y C, Lee K R, Lai J W, Ha C S 2012 Prog. Polym. Sci. 37 907Google Scholar

    [14]

    Agag T, Koga T, Takeichi T 2001 Polymer 42 3399Google Scholar

    [15]

    Gouzman I, Grossman E, Verker R, Atar N, Bolker A, Eliaz N 2019 Adv. Mater. 31 1807738Google Scholar

    [16]

    Cindro N, Tireli M, Karadeniz B, Mrla T, Užarević K 2019 ACS Sustainable Chem. Eng. 7 16301Google Scholar

    [17]

    Zhu K M, Tang Y, Zhong X L, Xiong L, Zhang Yong, Tan C B, Song H J, Wang J B 2020 Adv. Electron. Mater. 6 1901330Google Scholar

    [18]

    李应龙, 饶元元, 王维, 谈发堂, 陈建国, 乔学亮 2014 高分子学报 4 970Google Scholar

    Li Y L, Rao Y Y, Wang W, Tan F T, Chen J G, Qiao X L 2014 Acta Polym. Sin. 4 970Google Scholar

    [19]

    段翠佳, 曹义鸣, 介兴明, 王丽娜, 袁权 2014 高等学校化学学报 35 1584Google Scholar

    Duan C J, Cao Y M, Jie X M, Wang L N, Yuan Q 2014 Chem. J. Chin. Univ. 35 1584Google Scholar

    [20]

    Yu L, Xu H L, Monro T M, Lancaster D G, Xie Y, Zeng H B, Chen G Y, Liu X K 2017 Mater. Horiz. 4 72Google Scholar

    [21]

    Yu Y, Zhang X M, Ma J P, Liu Q K, Wang P, Dong Y B 2014 Chem. Commun. 50 1444Google Scholar

    [22]

    吕鑫 2008 博士学位论文 (杭州: 浙江大学)

    Lü X 2008 Ph. D. Dissertation (Hangzhou: Zhejiang University) (in Chinese)

    [23]

    王兴磊, 何宽新, 张校刚, 米红宇, 罗建民 2007 无机化学学报 4 1533Google Scholar

    Wang X L, He K X, Zhang X G, Mi H Y, Luo J M 2007 Chin. J. Inorg. Chem. 4 1533Google Scholar

    [24]

    康卫民, 范兰兰, 邓南平, 何宏升, 鞠敬鸽, 程博闻 2017 纺织学报 38 168

    Kang W M, Fan L L, Deng N P, He H S, Ju J G, Cheng B W 2017 J. Text. Res. 38 168

    [25]

    Feng L, Zhang Y, Xi J M, et al. 2008 Langmuir 24 4114Google Scholar

  • 图 1  湿敏测试系统示意图

    Figure 1.  Schematic diagram of humidity sensitive test system.

    图 2  PI-SiO2/NiI2粉末样品在不同气氛下的TG-DTG曲线 (a) 空气气氛; (b) 氮气气氛

    Figure 2.  TG/DTG curve of powdered samples of PI-SiO2/NiI2 in different atmospheres: (a) Air atmosphere; (b) N2 atmosphere.

    图 3  不同薄膜的表面形貌 (a) NiI2; (b) PI-NiI2; (c) PI-SiO2/NiI2

    Figure 3.  The surface morphology of different films: (a) NiI2; (b) PI-NiI2; (c) PI-SiO2/NiI2.

    图 4  PI-SiO2/NiI2薄膜中的Ni, I, Si元素分布情况

    Figure 4.  Distribution of Ni, I and Si elements in PI-SiO2/NiI2 thin films.

    图 5  (a), (b) PI-SiO2/NiI2比色湿度传感器在11%和97% RH的湿度环境中的响应恢复曲线

    Figure 5.  (a), (b) Response recovery curve of PI-SiO2/NiI2 colorimetric humidity sensor in the humidity environment of 11% and 97% RH.

    图 6  (a) PI-SiO2/NiI2比色湿度传感器的动态湿度响应曲线; (b) PI-SiO2/NiI2比色湿度传感器在11%—97% RH的湿度范围内的长期稳定性测试; (c) PI-SiO2/NiI2比色湿度传感器湿滞曲线图

    Figure 6.  (a) Dynamic humidity response curve of PI-SiO2/NiI2 humidity sensor under various RH; (b) long-term stability test of PI-SiO2/NiI2 humidity sensor at humidity range of 11%–97% RH; (c) hysteresis characteristics of PI-SiO2/NiI2 humidity sensor.

    表 1  比色湿度传感器的性能指标对比

    Table 1.  Performance comparison of colorimetric humidity sensors.

    器件类型响应范围/% RH响应时间/s恢复时间/s稳定性
    NiI2[10]无机0—70 > 10 > 600较好
    PI-NiI2[7]有机-无机杂化11—75 < 1 > 150
    PI-SiO2/NiI2有机-无机杂化11—97 < 1.5 < 18
    BTB-TiO2[11]有机-无机杂化11—75 > 100 > 300较差
    CoCl2/PA66[6]有机-无机杂化5—75~3000较差
    Ni-SAP[12]有机-无机杂化11—97~8000较差
    DownLoad: CSV
    Baidu
  • [1]

    Mergu N, Kim H, Ryu J, Son Y 2020 Sens. Actuators. B 311 127906Google Scholar

    [2]

    Dai J X, Zhang T, Zhao H R, Fei T 2017 Sens. Actuators. B 242 1108Google Scholar

    [3]

    Wei Z Q, Zhou Z K, Li Q Y, Xue J C, Falco A D, Yang Z J, Zhou J H 2017 Small 13 7

    [4]

    Hu X, Mu H, Miao J, Wang X W, Meng X S, Wang Z, Yan J L 2020 Polym. Chem. 11 4172Google Scholar

    [5]

    Alrammouz R, Podlecki J, Abboud P, Sorli B, Habchi R 2018 Sens. Actuators. A 284 209Google Scholar

    [6]

    You M H, Yan X, Zhang J, Wang X X, He X X, Yu M, Ning X, Long Y Z 2017 Nanoscale Res. Lett. 12 20Google Scholar

    [7]

    盛熙淳 2020 硕士学位论文 (湘潭: 湘潭大学)

    Sheng X C 2020 M. S. Thesis (Xiangtan: Xiangtan University) (in Chinese)

    [8]

    Shinbo K, Otuki S, Kanbayashi Y, Ohdaira Y, Baba A, Kato K, Kaneko F, Miyadera N 2009 Thin Solid Films 518 629Google Scholar

    [9]

    Konstantaki M, Pissadakis S, Pispas S, Madamopoulos N, Vainos N A 2006 Appl. Opt. 45 4567Google Scholar

    [10]

    Zhang Y, Ren J X, Wu Y W, Zhong X L, Luo T, Cao J X, Yin M Q, Huang M P, Zhang Z Y 2020 Sens. Actuators, B 309 1

    [11]

    Wang Z H, Zhang Y H, Wang W J, An Q, Tong W S 2019 Chem. Phys. Lett. 727 90Google Scholar

    [12]

    Hosokawa H, Mochida T 2015 Langmuir 31 13048Google Scholar

    [13]

    Liaw D J, Wang K L, Huang Y C, Lee K R, Lai J W, Ha C S 2012 Prog. Polym. Sci. 37 907Google Scholar

    [14]

    Agag T, Koga T, Takeichi T 2001 Polymer 42 3399Google Scholar

    [15]

    Gouzman I, Grossman E, Verker R, Atar N, Bolker A, Eliaz N 2019 Adv. Mater. 31 1807738Google Scholar

    [16]

    Cindro N, Tireli M, Karadeniz B, Mrla T, Užarević K 2019 ACS Sustainable Chem. Eng. 7 16301Google Scholar

    [17]

    Zhu K M, Tang Y, Zhong X L, Xiong L, Zhang Yong, Tan C B, Song H J, Wang J B 2020 Adv. Electron. Mater. 6 1901330Google Scholar

    [18]

    李应龙, 饶元元, 王维, 谈发堂, 陈建国, 乔学亮 2014 高分子学报 4 970Google Scholar

    Li Y L, Rao Y Y, Wang W, Tan F T, Chen J G, Qiao X L 2014 Acta Polym. Sin. 4 970Google Scholar

    [19]

    段翠佳, 曹义鸣, 介兴明, 王丽娜, 袁权 2014 高等学校化学学报 35 1584Google Scholar

    Duan C J, Cao Y M, Jie X M, Wang L N, Yuan Q 2014 Chem. J. Chin. Univ. 35 1584Google Scholar

    [20]

    Yu L, Xu H L, Monro T M, Lancaster D G, Xie Y, Zeng H B, Chen G Y, Liu X K 2017 Mater. Horiz. 4 72Google Scholar

    [21]

    Yu Y, Zhang X M, Ma J P, Liu Q K, Wang P, Dong Y B 2014 Chem. Commun. 50 1444Google Scholar

    [22]

    吕鑫 2008 博士学位论文 (杭州: 浙江大学)

    Lü X 2008 Ph. D. Dissertation (Hangzhou: Zhejiang University) (in Chinese)

    [23]

    王兴磊, 何宽新, 张校刚, 米红宇, 罗建民 2007 无机化学学报 4 1533Google Scholar

    Wang X L, He K X, Zhang X G, Mi H Y, Luo J M 2007 Chin. J. Inorg. Chem. 4 1533Google Scholar

    [24]

    康卫民, 范兰兰, 邓南平, 何宏升, 鞠敬鸽, 程博闻 2017 纺织学报 38 168

    Kang W M, Fan L L, Deng N P, He H S, Ju J G, Cheng B W 2017 J. Text. Res. 38 168

    [25]

    Feng L, Zhang Y, Xi J M, et al. 2008 Langmuir 24 4114Google Scholar

Metrics
  • Abstract views:  5733
  • PDF Downloads:  103
  • Cited By: 0
Publishing process
  • Received Date:  25 July 2021
  • Accepted Date:  11 September 2021
  • Available Online:  11 January 2022
  • Published Online:  20 January 2022

/

返回文章
返回
Baidu
map