Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Self-propulsion droplet induced via periodic explosive boiling

Cao Chun-Lei Xu Jin-Liang Ye Wen-Li

Citation:

Self-propulsion droplet induced via periodic explosive boiling

Cao Chun-Lei, Xu Jin-Liang, Ye Wen-Li
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • When a droplet is placed on a surface with a temperature higher than Leidenfrost temperature, it will be levitated on its own vapor cushion, which makes the droplet have amazing mobility. Generally, the vapor flow under the droplet is corrected by constructing asymmetry micro/nano textured surfaces to realize the self-propulsion of the droplet. However, the control of droplet dynamics becomes uncertain due to the complicated interaction among liquid-vapor-solid phases, and the direction of droplet motion and droplet transport velocity (10-40 cm/s) have limitations. Leidenfrost heat transfer surface and impact surface are constructed in this experiment. When the surface of Leidenfrost heat transfer for droplet levitation contacts the droplet which the sufficient energy flows towards, the rough ring surface acts as an igniter. When a warm Leidenfrsot droplet (fuel) contacts skirt ring (igniter), abundant micro/nano cavities of rough skirt ring not only generate additional radiation heat flux towards droplet but also provide nucleation sites to trigger explosive boiling on a ~10 ms time scale. The thrust force Fth generated by periodic explosive boiling realizes the self-propulsion of droplets. In the initial stage of droplet motion, the inertial force Fi is dominant, and the droplet impact is mostly specular reflection, and the droplet trajectory is chaotic. With the decrease of droplet diameter, the pulsed thrust Fth is dominant, and the droplet trajectory passes through the center of the Leidenfrost heat transfer surface. Our experimental results show that the droplet passes through the center of the Leidenfrost heat transfer surface in a wide diameter range (D = 0.671-1.576 mm). For the last (150th) collision with the rough ring, the curved trajectory exists instead of line trajectory with $ D \sim 0.105 $ mm. For a very small droplet, the drag force Fd is dominant, which prevents the droplet from continuing to move. The droplet is followed by sessile droplet evaporation until it totally disappears. At the same time, the droplet transport velocity is as high as 68.91 cm/s, which has not been realized before. The present work provides a new method to manipulate droplet motion at a high temperature. Our Leidenfrost system is simple, cost-effective and lasts long-term operation because it does not depend on complicated micro/nano fabrications, which is expected to be used in microfluidic and heat transfer two-phase systems.
      Corresponding author: Xu Jin-Liang, xjl@ncepu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51821004) and the Key Laboratories for National Defense Science and Technology (Grant No. 6142702200510).
    [1]

    Leidenfrost J G 1966 Int. J. Heat Mass Transfer 9 1153Google Scholar

    [2]

    Vakarelski I U, Marston J O, Chan D Y, Thoroddsen S T 2011 Phys. Rev. Lett. 106 214501Google Scholar

    [3]

    Sengupta S, Patra D, Ortiz-Rivera I, Agrawal A, Shklyaev S, Dey K K, Cordova-Figueroa U, Mallouk T E, Sen A 2014 Nat. Chem. 6 415Google Scholar

    [4]

    Baylis J R, Yeon J H, Thomson M H, Kazerooni A, Wang X, John A E S, Lim E B, Chien D, Lee A, Zhang J Q 2015 Sci. Adv. 1 e1500379Google Scholar

    [5]

    Dittrich P S, Manz A 2006 Nat. Rev. Drug discovery 5 210Google Scholar

    [6]

    Chen M Y, Jia Z H, Zhang T, Fei Y Y 2018 Appl. Surf. Sci. 433 336Google Scholar

    [7]

    Chu F, Luo J, Hao C, Zhang J, Wu X, Wen D 2020 Langmuir 36 5855Google Scholar

    [8]

    王宏, 廖强, 朱恂 2007 化工学报 58 2313Google Scholar

    Wang H, Liao Q, Zhu X 2007 J. Chem. Ind. Eng. 58 2313Google Scholar

    [9]

    Li J, Hou Y, Liu Y, Hao C, Li M, Chaudhury M K, Yao S, Wang Z 2016 Nat. Phys. 12 606Google Scholar

    [10]

    Sobac B, Rednikov A, Dorbolo S, Colinet P 2017 Phys. Fluids 29 082101Google Scholar

    [11]

    Linke H, Aleman B J, Melling L D, Taormina M J, Francis M J, Dow-Hygelund C C, Narayanan V, Taylor R P, Stout A 2006 Phys. Rev. Lett. 96 154502Google Scholar

    [12]

    Quéré D 2013 Annu. Rev. Fluid Mech. 45 197Google Scholar

    [13]

    Scriven L, Sternling C 1960 Nature 187 186Google Scholar

    [14]

    Jia Z H, Chen M Y, Zhu H T 2017 Appl. Phys. Lett. 110 091603Google Scholar

    [15]

    Lagubeau G, Le Merrer M, Clanet C, Quéré D 2011 Nat. Phys. 7 395Google Scholar

    [16]

    Wang B, Xu J L, Zhang W, Li Y X 2011 Sens. Actuators, A 169 194Google Scholar

    [17]

    Xu J, Zhang W 2008 Int. J. Heat Mass Transfer 51 389Google Scholar

    [18]

    Lyu S, Mathai V, Wang Y, Sobac B, Colinet P, Lohse D, Sun C 2019 Sci. Adv. 5 eaav8081Google Scholar

    [19]

    Ok J T, Lopez-Oña E, Nikitopoulos D E, Wong H, Park S 2010 Microfluid. Nanofluid. 10 1045

    [20]

    Grounds A, Still R, Takashina K 2012 Sci. Rep. 2 720Google Scholar

    [21]

    Shahriari A, Wilson P S, Bahadur V 2018 Phys. Rev. E 98 013103Google Scholar

    [22]

    Cole R 1974 Adv. Heat Transfer 10 85Google Scholar

    [23]

    Kandlikar S G 2004 J. Heat Transfer 126 8Google Scholar

    [24]

    Kandlikar S G 2020 J. Heat Transfer 142 100801Google Scholar

    [25]

    Zhu B, Xu J, Yan C, Xie J 2020 Int. J. Heat Mass Transfer 148 119080

    [26]

    张海松, 朱鑫杰, 朱兵国, 徐进良, 刘欢 2020 69 064401Google Scholar

    Zhang H S, Zhu X J, Zhu B G, Xu J L, Liu H 2020 Acta Phys. Sin. 69 064401Google Scholar

    [27]

    Shati A K A, Blakey S G, Beck S B M 2011 Energy Build. 43 400Google Scholar

    [28]

    Yan X, Xu J, Meng Z, Xie J, Wang H 2020 Small 16 e2001548Google Scholar

    [29]

    Ishii M, Zuber N 1979 AIChE J. 25 843Google Scholar

  • 图 1  爆炸沸腾触发液滴自驱动的新方法

    Figure 1.  A new method of explosive boiling to trigger the self-propulsion of droplet.

    图 2  (a)实验装置图. 1, 紫铜环; 2, 黄铜加热块; 3, 加热棒; 4, 不锈钢底座; 5, 调压器; 6, 继电器; 7, PID温控仪; 8, K型热电偶; 9, 麦克风; 10, 高速数据采集仪(ScopeCorder DL750); 11, 同步器(MotionPro Timing Hub); 12, 高速相机(MotionPro Y4, IDT); 13, 微注射泵(RSP01-BDG); 14, 安捷伦34970A. (b) 黄铜加热块和紫铜环尺寸 (单位: mm)

    Figure 2.  (a) Experimental setup. 1, copper skirt ring; 2, brass heating block; 3, cartridge heater; 4, stainless steel base; 5, voltage transformer; 6, electric relay; 7, PID temperature controller; 8, K thermocouple; 9, microphone; 10, high speed data acquisition system (ScopeCorder DL750; 11, synchronizer (MotionPro Timing Hub); 12, high speed camera (MotionPro Y4, IDT); 13, micro-syringe pump (RSP01-BDG); 14, Agilent 34970A. (b) Brass heating block and copper ring size (all dimensions are in mm).

    图 3  采用与两个圆环样品相同的制造技术制备的两个平表面的表征 (a)抛光紫铜表面的扫描电子显微镜图像和接触角; (b)粗糙紫铜表面的扫描电子显微镜图像和接触角; (c), (d)抛光紫铜表面的表面形貌测量; (e), (f) 粗糙紫铜表面的表面形貌测量

    Figure 3.  Characterization of two flat surfaces having the same fabrication technique as two skirt ring samples: (a) Scanning electronic microscope (ESEM) image and contact angles for polished copper surface; (b) ESME image and contact angles for rough copper surface; (c), (d) surface morphology measured for smooth copper surface; (e), (f) surface morphology measured for rough copper surface

    图 4  液滴整个寿命周期内液滴运动轨迹 (a)在Tw = 223.0 ℃, Tr = 191.4 ℃下, 液滴在粗糙环的运动轨迹; (b)在Tw = 223.0 ℃, Tr = 191.4 ℃下, 液滴在抛光环的运动轨迹; (c)在Tw = 304.5 ℃, Tr = 256.3 ℃下, 液滴在粗糙环的运动轨迹

    Figure 4.  Droplet trajectory during the whole droplet lifetime: (a) Droplet trajectory on rough ring at Tw = 223.0 ℃, Tr = 191.4 ℃; (b) droplet trajectory on polished ring at Tw = 223.0 ℃, Tr = 191.4 ℃; (c) droplet trajectory on rough ring at Tw = 304.5 ℃, Tr = 256.3 ℃.

    图 5  液滴整个寿命周期内液滴撞击频率 (a)在Tw = 223.0 ℃, Tr = 191.4 ℃下, 粗糙环; (b)在Tw = 223.0 ℃, Tr = 191.4 ℃下, 抛光环; (c) Tw = 304.5 ℃, Tr = 256.3 ℃下, 粗糙环

    Figure 5.  Droplet collision frequency during the whole droplet lifetime: (a) Tw = 223.0 ℃, Tr = 191.4 ℃, rough ring; (b) Tw = 223.0 ℃, Tr = 191.4 ℃, polished ring; (c) Tw = 304.5 ℃, Tr = 256.3 ℃, rough ring.

    图 7  液滴整个寿命周期内液滴的声音信号 (a)在Tw = 223.0 ℃, Tr = 191.4 ℃下, 粗糙环; (b)在Tw = 223.0 ℃, Tr = 191.4 ℃下, 抛光环; (c) Tw = 304.5 ℃, Tr = 256.3 ℃下, 粗糙环

    Figure 7.  Droplet sound voltage during the whole droplet lifetime: (a) Tw = 223.0 ℃, Tr = 191.4 ℃, rough ring; (b) Tw = 223.0 ℃, Tr = 191.4 ℃, polished ring; (c) Tw = 304.5 ℃, Tr = 256.3 ℃, rough ring.

    图 6  液滴整个寿命周期内液滴运动速度 (a) 在Tw = 223.0 ℃, Tr = 191.4 ℃下, 粗糙环; (b)在Tw = 223.0 ℃, Tr = 191.4 ℃下, 抛光环; (c) Tw = 304.5 ℃, Tr = 256.3 ℃下, 粗糙环

    Figure 6.  Droplet traveling velocity during the whole droplet lifetime: (a) Tw = 223.0 ℃, Tr = 191.4 ℃, rough ring; (b) Tw = 223.0 ℃, Tr = 191.4 ℃, polished ring; (c) Tw = 304.5 ℃, Tr = 256.3 ℃, rough ring.

    图 8  液滴撞击瞬间 (a)在Tw = 223.0 ℃, Tr = 191.4 ℃下, 粗糙环; (b)在Tw = 223.0 ℃, Tr = 191.4 ℃下, 抛光环; (c) Tw = 304.5 ℃, Tr = 256.3 ℃下, 粗糙环; (d)液滴内汽泡运动机理

    Figure 8.  Droplet impact moment: (a) Tw = 223.0 ℃, Tr = 191.4 ℃, rough ring; (b) Tw = 223.0 ℃, Tr = 191.4 ℃, polished ring; (c) Tw = 304.5 ℃, Tr = 256.3 ℃, rough ring; (d) movement mechanism of bubble in droplets.

    图 9  爆炸沸腾触发液滴自驱动机理 (a)液滴自驱动机理; (b)蒸发动量力(即推力Fth)示意图

    Figure 9.  Self-propulsion mechanism of droplet triggered by explosive boiling: (a) Self-propulsion mechanism of droplet; (b) schematic diagram of evaporative momentum force (thrust force Fth).

    Baidu
  • [1]

    Leidenfrost J G 1966 Int. J. Heat Mass Transfer 9 1153Google Scholar

    [2]

    Vakarelski I U, Marston J O, Chan D Y, Thoroddsen S T 2011 Phys. Rev. Lett. 106 214501Google Scholar

    [3]

    Sengupta S, Patra D, Ortiz-Rivera I, Agrawal A, Shklyaev S, Dey K K, Cordova-Figueroa U, Mallouk T E, Sen A 2014 Nat. Chem. 6 415Google Scholar

    [4]

    Baylis J R, Yeon J H, Thomson M H, Kazerooni A, Wang X, John A E S, Lim E B, Chien D, Lee A, Zhang J Q 2015 Sci. Adv. 1 e1500379Google Scholar

    [5]

    Dittrich P S, Manz A 2006 Nat. Rev. Drug discovery 5 210Google Scholar

    [6]

    Chen M Y, Jia Z H, Zhang T, Fei Y Y 2018 Appl. Surf. Sci. 433 336Google Scholar

    [7]

    Chu F, Luo J, Hao C, Zhang J, Wu X, Wen D 2020 Langmuir 36 5855Google Scholar

    [8]

    王宏, 廖强, 朱恂 2007 化工学报 58 2313Google Scholar

    Wang H, Liao Q, Zhu X 2007 J. Chem. Ind. Eng. 58 2313Google Scholar

    [9]

    Li J, Hou Y, Liu Y, Hao C, Li M, Chaudhury M K, Yao S, Wang Z 2016 Nat. Phys. 12 606Google Scholar

    [10]

    Sobac B, Rednikov A, Dorbolo S, Colinet P 2017 Phys. Fluids 29 082101Google Scholar

    [11]

    Linke H, Aleman B J, Melling L D, Taormina M J, Francis M J, Dow-Hygelund C C, Narayanan V, Taylor R P, Stout A 2006 Phys. Rev. Lett. 96 154502Google Scholar

    [12]

    Quéré D 2013 Annu. Rev. Fluid Mech. 45 197Google Scholar

    [13]

    Scriven L, Sternling C 1960 Nature 187 186Google Scholar

    [14]

    Jia Z H, Chen M Y, Zhu H T 2017 Appl. Phys. Lett. 110 091603Google Scholar

    [15]

    Lagubeau G, Le Merrer M, Clanet C, Quéré D 2011 Nat. Phys. 7 395Google Scholar

    [16]

    Wang B, Xu J L, Zhang W, Li Y X 2011 Sens. Actuators, A 169 194Google Scholar

    [17]

    Xu J, Zhang W 2008 Int. J. Heat Mass Transfer 51 389Google Scholar

    [18]

    Lyu S, Mathai V, Wang Y, Sobac B, Colinet P, Lohse D, Sun C 2019 Sci. Adv. 5 eaav8081Google Scholar

    [19]

    Ok J T, Lopez-Oña E, Nikitopoulos D E, Wong H, Park S 2010 Microfluid. Nanofluid. 10 1045

    [20]

    Grounds A, Still R, Takashina K 2012 Sci. Rep. 2 720Google Scholar

    [21]

    Shahriari A, Wilson P S, Bahadur V 2018 Phys. Rev. E 98 013103Google Scholar

    [22]

    Cole R 1974 Adv. Heat Transfer 10 85Google Scholar

    [23]

    Kandlikar S G 2004 J. Heat Transfer 126 8Google Scholar

    [24]

    Kandlikar S G 2020 J. Heat Transfer 142 100801Google Scholar

    [25]

    Zhu B, Xu J, Yan C, Xie J 2020 Int. J. Heat Mass Transfer 148 119080

    [26]

    张海松, 朱鑫杰, 朱兵国, 徐进良, 刘欢 2020 69 064401Google Scholar

    Zhang H S, Zhu X J, Zhu B G, Xu J L, Liu H 2020 Acta Phys. Sin. 69 064401Google Scholar

    [27]

    Shati A K A, Blakey S G, Beck S B M 2011 Energy Build. 43 400Google Scholar

    [28]

    Yan X, Xu J, Meng Z, Xie J, Wang H 2020 Small 16 e2001548Google Scholar

    [29]

    Ishii M, Zuber N 1979 AIChE J. 25 843Google Scholar

  • [1] Feng Shan-Qing, Gong Lu-Yuan, Quan Sheng-Lin, Guo Ya-Li, Shen Sheng-Qiang. Molecular dynamics simulation of nanodroplet impacting on high-temperature plate wall. Acta Physica Sinica, 2024, 73(10): 103106. doi: 10.7498/aps.73.20240034
    [2] Liu He, Yang Ya-Jing, Tang Yu-Ning, Wei Yan-Ju. Dynamics of acoustically-induced droplet instability. Acta Physica Sinica, 2024, 73(20): 204204. doi: 10.7498/aps.73.20240965
    [3] Bai Pu, Wang Deng-Jia, Liu Yan-Feng. Molecular dynamics study on effect of wettability on boiling heat transfer of thin liquid films. Acta Physica Sinica, 2024, 73(9): 090201. doi: 10.7498/aps.73.20232026
    [4] Tang Xiu-Xing, Chen Hong-Yue, Wang Jing-Jing, Wang Zhi-Jun, Zang Du-Yang. Marangoni effect of surfactant droplet in transition boiling and formation of secondary droplet. Acta Physica Sinica, 2023, 72(19): 196801. doi: 10.7498/aps.72.20230919
    [5] Wang Hao, Xu Jin-Liang. Interaction and motion of two neighboring Leidenfrost droplets on oil surface. Acta Physica Sinica, 2023, 72(5): 054401. doi: 10.7498/aps.72.20221822
    [6] Pan Ling, Zhang Hao, Lin Guo-Bin. Molecular dynamics simulation on dynamic behaviors of nanodroplets impinging on solid surfaces decorated with nanopillars. Acta Physica Sinica, 2021, 70(13): 134704. doi: 10.7498/aps.70.20210094
    [7] Lin Ze-Peng, XU Sheng-Zhuo, Bao Yun. Characteristics of heat flow as well as process of heat conduction and transport in partitioned thermal convection. Acta Physica Sinica, 2020, 69(1): 014401. doi: 10.7498/aps.69.20191193
    [8] Zhao Ke, She Yang-Zi, Jiang Yan-Long, Qin Jing, Zhang Zhen-Hao. Numerical study on phase change behavior of liquid nitrogen droplets impinging on solid surface. Acta Physica Sinica, 2019, 68(24): 244401. doi: 10.7498/aps.68.20190945
    [9] Ma Li-Qiang, Su Tie-Xiong, Liu Han-Tao, Meng-Qing. Numerical simulation on oscillation of micro-drops by means of smoothed particle hydrodynamics. Acta Physica Sinica, 2015, 64(13): 134702. doi: 10.7498/aps.64.134702
    [10] Lin Lin, Yuan Ru-Qiang, Zhang Xin-Xin, Wang Xiao-Dong. Spreading dynamics of liquid droplet on gradient micro-structured surfaces. Acta Physica Sinica, 2015, 64(15): 154705. doi: 10.7498/aps.64.154705
    [11] Wang Yu-Xiang, Chen Shuo. Drops on microstructured surfaces: A numerical study using many-body dissipative particle dynamics. Acta Physica Sinica, 2015, 64(5): 054701. doi: 10.7498/aps.64.054701
    [12] Jiang Tao, Lu Lin-Guang, Lu Wei-Gang. Numerical study of collision process between two equal diameter liquid micro-droplets using a modified smoothed particle hydrodynamics method. Acta Physica Sinica, 2013, 62(22): 224701. doi: 10.7498/aps.62.224701
    [13] Qiu Feng, Wang Meng, Zhou Hua-Guang, Zheng Xuan, Lin Xin, Huang Wei-Dong. Molecular dynamics simulation of the wetting behavior of Pb droplet on Ni substrate. Acta Physica Sinica, 2013, 62(12): 120203. doi: 10.7498/aps.62.120203
    [14] Yao Yi, Zhou Zhe-Wei, Hu Guo-Hui. Movement of a droplet on a structured substrate: A dissipative particle dynamics simulation study. Acta Physica Sinica, 2013, 62(13): 134701. doi: 10.7498/aps.62.134701
    [15] Qiu Liu-Chao. Numerical simulation of deformation process of viscous liquid drop based on the incompressible smoothed particle hydrodynamics. Acta Physica Sinica, 2013, 62(12): 124702. doi: 10.7498/aps.62.124702
    [16] Su Tie-Xiong, Ma Li-Qiang, Liu Mou-Bin, Chang Jian-Zhong. A numerical analysis of drop impact on solid surfaces by using smoothed particle hydrodynamics method. Acta Physica Sinica, 2013, 62(6): 064702. doi: 10.7498/aps.62.064702
    [17] Ma Li-Qiang, Liu Mou-Bin, Chang Jian-Zhong, Su Tie-Xiong, Liu Han-Tao. Numerical simulation of droplet impact onto liquid films with smoothed particle hydrodynamics. Acta Physica Sinica, 2012, 61(24): 244701. doi: 10.7498/aps.61.244701
    [18] Ma Li-Qiang, Chang Jian-Zhong, Liu Han-Tao, Liu Mou-Bin. Numerical simulation of droplet impact on liquid with smoothed particle hydrodynamics method. Acta Physica Sinica, 2012, 61(5): 054701. doi: 10.7498/aps.61.054701
    [19] Jiang Tao, Ouyang Jie, Zhao Xiao-Kai, Ren Jin-Lian. The deformation process of viscous liquid drop studied by using kernel gradient corrected SPH method. Acta Physica Sinica, 2011, 60(5): 054701. doi: 10.7498/aps.60.054701
    [20] Chang Jian-Zhong, Liu Mou-Bin, Liu Han-Tao. Simulation of multiphase micro-drop dynamics using dissipative particle dynamics. Acta Physica Sinica, 2008, 57(7): 3954-3961. doi: 10.7498/aps.57.3954
Metrics
  • Abstract views:  6055
  • PDF Downloads:  112
  • Cited By: 0
Publishing process
  • Received Date:  26 July 2021
  • Accepted Date:  17 August 2021
  • Available Online:  25 August 2021
  • Published Online:  20 December 2021

/

返回文章
返回
Baidu
map