搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微粗糙结构表面液滴浸润特性的多体耗散粒子动力学研究

王宇翔 陈硕

引用本文:
Citation:

微粗糙结构表面液滴浸润特性的多体耗散粒子动力学研究

王宇翔, 陈硕

Drops on microstructured surfaces: A numerical study using many-body dissipative particle dynamics

Wang Yu-Xiang, Chen Shuo
PDF
导出引用
  • 超疏水表面因其优异的自洁作用一直是表面科学领域关注的重点.本文使用多体耗散粒子动力学(many-body dissipative particle dynamics, MDPD)方法模拟研究了不同粗糙结构下液滴的浸润特性, 并与Cassie-Baxter理论进行了对比. 研究使用了一种具有长吸短斥作用的流固作用函数来获得不同的液滴浸润性, 并利用一种简洁的数值方法来测量接触角. 模拟结果表明本研究方法能够稳定地捕捉到液滴在粗糙表面的静态和动态特性. 模拟了粗糙结构对三相接触线运动的黏滞作用, 与物理实验结果相符合, 表明Cassie-Baxter理论在实际应用中尚存在一定局限性. 研究分析了在动态铺展过程中的能量转化关系, 并指出在低值表面容易引起液滴反弹.
    Because of their ability of self-clean, superhydrophobic surfaces have received substantial attention for years especially in surface science field. In this paper, the drop's wettability on different rough surfaces is simulated by using many-body dissipative particle dynamics (MDPD) and a contrast with the Cassie-Baxter theory's predictions is made. A combination of short-range repulsive and long-range attractive forces is used as wall-fluid interaction to generate different wettability, and a simple but efficient numerical method is introduced to measure the contact angle. The simulation could capture the static and dynamic properties of drop on textured surfaces, it is also shown that the microstructured surfaces can pin the three-phase (solid-liquid-vapour) contact line and this phenomenon has also been observed by other researchers in their physical experiments, suggesting that people should be careful when using the Cassie-Baxter theory. An analysis was given about energy transformation between kinetic energy and surface energy. The simulated results also show that the low Φs can cause the drop to rebound easily under the same impact velocity.
    • 基金项目: 国家自然科学基金(批准号: 51276130, 10872152)和教育部高等学校博士学科点专项科研基金(批准号: 20120072110037)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51276130, 10872152), and the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 2012007211037).
    [1]

    Youngblood J P, McCarthy T J 1999 Macromolecules 32 6800

    [2]

    Shirtcliffe N J, McHale G, Atherton S, Newton M I 2010 Advances in colloid and interface science 161 124

    [3]

    Mishchenko L, Hatton B, Bahadur V, Taylor J A, Krupenkin T, Aizenberg J 2010 ACS. Nano 4 7699

    [4]

    Gao X, Jiang L 2004 Nature 432 36

    [5]

    Feng X Q, Gao X, Wu Z, Jiang L, Zheng Q S 2007 Langmuir 23 4892

    [6]

    Gao X, Yan X, Yao X, Xu L, Zhang K, Zhang J, Jiang L 2007 Advanced Materials 19 2213

    [7]

    Boreyko J B, Baker C H, Poley C R, Chen C H 2011 Langmuir 27 7502

    [8]

    Yao Y, Zhou Z W, Hu G H 2013 Acta. Phys. Sin. 62 134701 (in Chinese) [姚祎, 周哲玮, 胡国辉 2013 62 134701]

    [9]

    Liu M B, Liu G R, Zhou L V, Chang J Z 2014 Arch. Computat. Methods Eng. DOI:10.1007/s11831-014-9124-x

    [10]

    Singh E, Thomas A V, Mukherjee R, Mi X, Houshmand F, Peles Y, Koratkar N 2013 ACS Nano 7 3512

    [11]

    Weng B H, Liu H Y, Zhang C Y, Wang Q 2009 Chin. Phys. B 18 4353

    [12]

    Yin H H, Yang X F, Wang C F, Li H B 2009 Chin. Phys. B 18 2878

    [13]

    Wenzel R N 1936 Industrial & Engineering Chemistry 28 988

    [14]

    Cassie A B D, Baxter S 1944 Transactions of the Faraday Society 40 546

    [15]

    Warren P B 2003 Phys. Rev. E 68 066702

    [16]

    Trofimov S Y, Nies E L F, Michels M A J 2005 The Journal of Chemical Physics 123 144102

    [17]

    Hoogerbrugge P J, Koelman J M V A 1992 Europhys. Lett. 19 155

    [18]

    Groot R D, Warren P B 1997 The Journal of Chemical Physics 107 4423

    [19]

    Liu M B, Meakin P, Huang H 2006 Phys. Fluids 18 017101

    [20]

    Ma L Q, Chang J Z, Liu H T, Liu M B 2012 Acta. Phys. Sin. 61 054701 (in Chinese) [马理强, 常建忠, 刘汉涛, 刘谋斌 2012 61 054701]

    [21]

    Zhang M K, Chen S, Shang Z 2012 Acta. Phys. Sin. 61 034701 (in Chinese) [张明焜, 陈硕, 尚智 2012 61 034701]

    [22]

    Revenga M, Zuniga I, Espanol P, Pagonabarraga I 1998 International Journal of Modern Physics C 9 1319

    [23]

    Arienti M, Pan W X, Li X, Karniadakis G 2011 The Journal of chemical physics 134 204114

    [24]

    He B, Patankar N A, Lee J 2003 Langmuir 19 4999

    [25]

    Gao L, McCarthy T J 2007 Langmuir 23 3762

    [26]

    Eggers J, Fontelos M A, Josserand C, Zaleski S 2010 Physics of Fluids 22 062101

    [27]

    Deng X, Schellenberger F, Papadopoulos P, Vollmer D, Butt H J 2013 Langmuir 29 7847

  • [1]

    Youngblood J P, McCarthy T J 1999 Macromolecules 32 6800

    [2]

    Shirtcliffe N J, McHale G, Atherton S, Newton M I 2010 Advances in colloid and interface science 161 124

    [3]

    Mishchenko L, Hatton B, Bahadur V, Taylor J A, Krupenkin T, Aizenberg J 2010 ACS. Nano 4 7699

    [4]

    Gao X, Jiang L 2004 Nature 432 36

    [5]

    Feng X Q, Gao X, Wu Z, Jiang L, Zheng Q S 2007 Langmuir 23 4892

    [6]

    Gao X, Yan X, Yao X, Xu L, Zhang K, Zhang J, Jiang L 2007 Advanced Materials 19 2213

    [7]

    Boreyko J B, Baker C H, Poley C R, Chen C H 2011 Langmuir 27 7502

    [8]

    Yao Y, Zhou Z W, Hu G H 2013 Acta. Phys. Sin. 62 134701 (in Chinese) [姚祎, 周哲玮, 胡国辉 2013 62 134701]

    [9]

    Liu M B, Liu G R, Zhou L V, Chang J Z 2014 Arch. Computat. Methods Eng. DOI:10.1007/s11831-014-9124-x

    [10]

    Singh E, Thomas A V, Mukherjee R, Mi X, Houshmand F, Peles Y, Koratkar N 2013 ACS Nano 7 3512

    [11]

    Weng B H, Liu H Y, Zhang C Y, Wang Q 2009 Chin. Phys. B 18 4353

    [12]

    Yin H H, Yang X F, Wang C F, Li H B 2009 Chin. Phys. B 18 2878

    [13]

    Wenzel R N 1936 Industrial & Engineering Chemistry 28 988

    [14]

    Cassie A B D, Baxter S 1944 Transactions of the Faraday Society 40 546

    [15]

    Warren P B 2003 Phys. Rev. E 68 066702

    [16]

    Trofimov S Y, Nies E L F, Michels M A J 2005 The Journal of Chemical Physics 123 144102

    [17]

    Hoogerbrugge P J, Koelman J M V A 1992 Europhys. Lett. 19 155

    [18]

    Groot R D, Warren P B 1997 The Journal of Chemical Physics 107 4423

    [19]

    Liu M B, Meakin P, Huang H 2006 Phys. Fluids 18 017101

    [20]

    Ma L Q, Chang J Z, Liu H T, Liu M B 2012 Acta. Phys. Sin. 61 054701 (in Chinese) [马理强, 常建忠, 刘汉涛, 刘谋斌 2012 61 054701]

    [21]

    Zhang M K, Chen S, Shang Z 2012 Acta. Phys. Sin. 61 034701 (in Chinese) [张明焜, 陈硕, 尚智 2012 61 034701]

    [22]

    Revenga M, Zuniga I, Espanol P, Pagonabarraga I 1998 International Journal of Modern Physics C 9 1319

    [23]

    Arienti M, Pan W X, Li X, Karniadakis G 2011 The Journal of chemical physics 134 204114

    [24]

    He B, Patankar N A, Lee J 2003 Langmuir 19 4999

    [25]

    Gao L, McCarthy T J 2007 Langmuir 23 3762

    [26]

    Eggers J, Fontelos M A, Josserand C, Zaleski S 2010 Physics of Fluids 22 062101

    [27]

    Deng X, Schellenberger F, Papadopoulos P, Vollmer D, Butt H J 2013 Langmuir 29 7847

  • [1] 乔小溪, 张向军, 陈平, 田煜, 孟永钢. 微矩形凹槽表面液滴各向异性浸润行为的研究.  , 2020, 69(3): 034702. doi: 10.7498/aps.69.20191429
    [2] 王建国, 杨松林, 叶永红. 样品表面银膜的粗糙度对钛酸钡微球成像性能的影响.  , 2018, 67(21): 214209. doi: 10.7498/aps.67.20180823
    [3] 张冉, 常青, 李桦. 气体-表面相互作用的分子动力学模拟研究.  , 2018, 67(22): 223401. doi: 10.7498/aps.67.20181608
    [4] 宋延松, 杨建峰, 李福, 马小龙, 王红. 基于杂散光抑制要求的光学表面粗糙度控制方法研究.  , 2017, 66(19): 194201. doi: 10.7498/aps.66.194201
    [5] 宋永锋, 李雄兵, 史亦韦, 倪培君. 表面粗糙度对固体内部超声背散射的影响.  , 2016, 65(21): 214301. doi: 10.7498/aps.65.214301
    [6] 叶学民, 李永康, 李春曦. 平衡接触角对受热液滴在水平壁面上铺展特性的影响.  , 2016, 65(10): 104704. doi: 10.7498/aps.65.104704
    [7] 陈苏婷, 胡海锋, 张闯. 基于激光散斑成像的零件表面粗糙度建模.  , 2015, 64(23): 234203. doi: 10.7498/aps.64.234203
    [8] 林林, 袁儒强, 张欣欣, 王晓东. 液滴在梯度微结构表面上的铺展动力学分析.  , 2015, 64(15): 154705. doi: 10.7498/aps.64.154705
    [9] 周楠, 陈硕. 带自由面流体的多体耗散粒子动力学模拟.  , 2014, 63(8): 084701. doi: 10.7498/aps.63.084701
    [10] 曹洪, 黄勇, 陈素芬, 张占文, 韦建军. 脉冲敲击技术对PI微球表面粗糙度的影响.  , 2013, 62(19): 196801. doi: 10.7498/aps.62.196801
    [11] 柯川, 赵成利, 苟富均, 赵勇. 分子动力学模拟H原子与Si的表面相互作用.  , 2013, 62(16): 165203. doi: 10.7498/aps.62.165203
    [12] 景蔚萱, 王兵, 牛玲玲, 齐含, 蒋庄德, 陈路加, 周帆. ZnO纳米线薄膜的合成参数、表面形貌和接触角关系研究.  , 2013, 62(21): 218102. doi: 10.7498/aps.62.218102
    [13] 葛宋, 陈民. 接触角与液固界面热阻关系的分子动力学模拟.  , 2013, 62(11): 110204. doi: 10.7498/aps.62.110204
    [14] 张明焜, 陈硕, 尚智. 带凹槽的微通道中液滴运动数值模拟.  , 2012, 61(3): 034701. doi: 10.7498/aps.61.034701
    [15] 强洪夫, 刘开, 陈福振. 液滴在气固交界面变形移动问题的光滑粒子流体动力学模拟.  , 2012, 61(20): 204701. doi: 10.7498/aps.61.204701
    [16] 顾春元, 狄勤丰, 施利毅, 吴 非, 王文昌, 余祖斌. 纳米粒子构建表面的超疏水性能实验研究.  , 2008, 57(5): 3071-3076. doi: 10.7498/aps.57.3071
    [17] 周炳卿, 刘丰珍, 朱美芳, 周玉琴, 吴忠华, 陈 兴. 微晶硅薄膜的表面粗糙度及其生长机制的X射线掠角反射研究.  , 2007, 56(4): 2422-2427. doi: 10.7498/aps.56.2422
    [18] 侯海虹, 孙喜莲, 申雁鸣, 邵建达, 范正修, 易 葵. 电子束蒸发氧化锆薄膜的粗糙度和光散射特性.  , 2006, 55(6): 3124-3127. doi: 10.7498/aps.55.3124
    [19] 王 飞, 何 枫. 微管道内两相流数值算法及在电浸润液滴控制中的应用.  , 2006, 55(3): 1005-1010. doi: 10.7498/aps.55.1005
    [20] 曹治觉, 夏伯丽, 张 云. 论小接触角下实现滴状冷凝的可能性.  , 2003, 52(10): 2427-2431. doi: 10.7498/aps.52.2427
计量
  • 文章访问数:  6571
  • PDF下载量:  692
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-07-22
  • 修回日期:  2014-09-01
  • 刊出日期:  2015-03-05

/

返回文章
返回
Baidu
map