-
The problem of turbulence has been puzzling relevant researchers for more than 300 years. Although some feasible solutions and models have been proposed, the turbulence still brings trouble in the foreseeable future. Turbulence is caused mainly by buoyant thermal bubbles and wind shear, which transports matter and energy between the earth surface and the atmosphere. Based on the analysis of the measured data obtained from the Sea Monsoon Experiment-II (SMEX-II), carried out on the ‘Shenkuo’ scientific research ship, the vertical spatial distribution of meteorological data overseas was explored when the air sounding balloons were released at relatively fixed times during June 2019. Through the Tatarski model, the main influencing factors of fitting turbulence profile over the sea and the turbulence evolution of boundary layer top and tropopause are discussed. Meanwhile, the effect of offshore distance of the scientific research ship on the vertical profile of optical turbulence strength is analyzed. The results show that the outer scale plays a decisive role in the distribution of turbulence over the seas. The inverse growth section between the boundary layer top and the tropopause depends on the sudden change of temperature gradient. The underlying land surface has a significant influence on the inverse growth section to the boundary layer top, while the underlying sea surface has a more pronounced influence on the inverse growth section of the tropopause. Based on the obtained data and corresponding analysis, the spatiotemporal distribution characteristics of optical turbulence overseas are grasped, which provides necessary references for selecting the astronomical observation sites, atmospheric laser transmission, and satellite remote sensing observations over the sea.
-
Keywords:
- atmospheric refractive index constant /
- Tatarski model /
- atmospheric optical turbulence profile /
- radiosonde
[1] Liang J, Zhang L, Wang Y, Cao X, Zhang Q, Wang H, Zhang B 2014 J. Geophys. Res. Atmos. 119 6009Google Scholar
[2] Pahlow M, Parlange M B, Porté-Agel F 2001 Boundary Layer Meteorol. 99 225Google Scholar
[3] Hu X, Klein P M, Xue M 2013 J. Geophys. Res. Atmos. 118 10
[4] 王倩, 梅海平, 钱仙妹, 饶瑞中 2015 64 114212Google Scholar
Wang Q, Mei H P, Qian X M, Rao R Z 2015 Acta Phys. Sin. 64 114212Google Scholar
[5] 许满满, 邵士勇, 刘庆, 程雪玲, 宋小全 2020 光学学报 40 1201002Google Scholar
Xu M M, Shao S Y, Liu Q, Cheng X Z, Song X Q 2020 Acta Optic. Sin. 40 1201002Google Scholar
[6] Chowdhury S, Zhang J, Messac A, Castillo L 2012 Renewable Energy 38 16Google Scholar
[7] 王倩, 梅海平, 李玉剑, 邵士勇, 李学彬, 饶瑞中 2016 65 074206Google Scholar
Wang Q, Mei H P, Li Y J, Shao S Y, Li X B, Rao R Z 2016 Acta Phys. Sin. 65 074206Google Scholar
[8] 饶瑞中 2012 现代大气光学 (北京: 科学出版社) 第155页
Rao R Z 2012 Modern Atmospheric Optics (Beijing: Science Press) p156 (in Chinese)
[9] Fried D L, Mevers G E, Keister M P 1967 J. Opt. Soc. Am. 57 787Google Scholar
[10] Cui L, Xue B, Zhou F 2014 J. Opt. Soc. Am. A 31 829
[11] Huang Y, Zeng A, Gao Z, Zhang B 2015 Opt. Lett. 40 1619Google Scholar
[12] Chiba T 1971 Appl. Opt. 10 2456Google Scholar
[13] Avila R, Vernin J, Masciadri E 1997 Appl. Opt. 36 7898Google Scholar
[14] Kornilov V, Safonov B, Kornilov M, Shatsky N, Voziakova O, Potanin S, Gorbunov I, Senik V, Cheryasov D 2014 Publ. Astron. Soc. Pac. 126 482Google Scholar
[15] Bufton J, Minott P, Fitzmaurice M, Titterton P 1972 J. Opt. Soc. Am. 62 1068Google Scholar
[16] Trinqueta H, Agabia A, Vernina J, Azouita M, Aristidia E, Fossat E 2008 Proc. SPIE 7012 701225
[17] Mchugh J, Sharman R 2013 J. R. Meteorolog. Soc. 139 1632Google Scholar
[18] 张彩云, 翁宁泉, 高慧, 姚远成, 孙刚, 刘庆 2013 光学学报 33 0301004
Zhang C Y, Weng L Q, Gao H, Yao Y C, Sun G, Liu Q 2013 Acta Optic. Sin. 33 0301004
[19] Abahamid A, Jabiri A, Vernin J, Benkhaldoun Z, Azouit M, Agabi A 2004 Astron. Astrophys. 416 1193Google Scholar
[20] Shao S Y, Qin F Q, Xu M M, Liu Q, Han Y, Xu Z Q 2020 Results in Engineering 9 100191Google Scholar
[21] 王倩, 梅海平, 钱仙妹, 饶瑞中 2015 64 224216Google Scholar
Wang Q, Mei H P, Qian X M, Rao R Z 2015 Acta Phys. Sin. 64 224216Google Scholar
[22] Qing C, Wu X Q, Huang H H, Tian Q, Zhu W Y, Rao R Z, Li X B 2016 Opt. Express 24 20424Google Scholar
[23] 张鹏飞, 乔春红, 冯晓星, 黄童, 李南, 范承玉, 王英俭 2017 66 244210Google Scholar
Zhang P F, Qiao C H, Feng X X, Huang T, Li N, Fan C Y, Wang Y J 2017 Acta Phys. Sin. 66 244210Google Scholar
[24] 吴晓庆, 钱仙妹, 黄宏华, 汪平, 崔朝龙, 青春 2014 天文学报 55 114Google Scholar
Wu X Q, Qian X M, Huang H H, Wang P, Cui C L, Qing C 2014 Acta Astron. Sin. 55 114Google Scholar
[25] Ruggiero F H, Debenedictis D A 2002 DOD High Performance Computer Users Group Conference Austin, Texas, January 13–14, 2002 p11
[26] 蔡俊, 李学彬, 詹国伟, 武鹏飞, 徐春燕, 青春, 吴晓庆 2018 67 014206Google Scholar
Cai J, Li X B, Zhan G W, Wu P F, Xu C Y, Qin C, Wu X Q 2018 Acta Phys. Sin. 67 014206Google Scholar
[27] 罗兰B 著 (扬长新 译) 1991 边界层气象学导论 (北京: 气象出版社) 第13—20页
Roland B (translated by Yang C X) 1991 An Introduction to Boundary Layer Meteorology (Beijing: Meteorological Press) pp13–20 (in Chinese)
[28] Peng S Q, Zhu Y H, Huang H, Ding X R, Shi R, Wu D M, Feng Y R, Wang D X 2016 Atmos. Sci. Lett. 17 564Google Scholar
-
图 3 2019年6月16日昼夜探空气象数据和拟合折射率结构常数廓线 (a) 风速; (b) 风向; (c) 温度; (d) 温度梯度; (e) 风切变; (f) 外尺度; (g) 位势折射率梯度; (h) 拟合折射率结构常数
Figure 3. Noon and night meteorological data in June 16, 2019 and fitted refractive index structure constant profile: (a) Wind velocity; (b) wind direction; (c) temperature; (d) temperature gradient; (e) wind shear gradient; (f) the outer scale; (g) potential refractive index gradient; (h) fitted
$C_n^2$ .图 6 (a) 微波辐射计湿度廓线; (b) 白天探空气球湿度廓线; (c) 白天探空气
$C_n^2$ 拟合廓线; (d) 白天探空气球温度梯度廓线; (e) 微波辐射计温度梯度廓线Figure 6. (a) Humidity profile of microwave radiometer; (b) noon humidity profile of radiosonde; (c) noon
$C_n^2$ fitted profile of radiosonde; (d) noon temperature gradient profile of radiosonde; (e) temperature gradient profile of microwave radiometer.表 1 海洋探空记录
Table 1. Record of balloon soundings over sea.
气球
编号放球时间 放球地点 离岸距
离/km1# 6.9 00:16 22º36.937' N 114º36.070' E 2 2# 6.9 13:10 22º27.274' N 115º32.432' E 25 3# 6.9 23:51 22º11.285' N 116º33.254' E 84 4# 6.10 12:21 21º59.770' N 117º23.151' E 143 5# 6.12 00:00 22º00.268' N 118º15.526' E 193 6# 6.12 11:57 21º52.084' N 118º10.958' E 201 7# 6.13 11:55 21º08.895' N 118º18.099' E 271 8# 6.14 00:08 21º00.147' N 118º02.701' E 269 9# 6.14 11:55 20º59.029' N 117º42.500' E 249 10# 6.15 11:53 21º14.780' N 117º15.068' E 204 11# 6.16 11:55 21º27.236' N 117º23.100' E 189 12# 6.17 11:52 22º18.545' N 117º40.370' E 135 13# 6.17 23:54 21º41.589' N 116º23.622' E 129 14# 6.18 12:01 21º53.905' N 115º08.470' E 89 -
[1] Liang J, Zhang L, Wang Y, Cao X, Zhang Q, Wang H, Zhang B 2014 J. Geophys. Res. Atmos. 119 6009Google Scholar
[2] Pahlow M, Parlange M B, Porté-Agel F 2001 Boundary Layer Meteorol. 99 225Google Scholar
[3] Hu X, Klein P M, Xue M 2013 J. Geophys. Res. Atmos. 118 10
[4] 王倩, 梅海平, 钱仙妹, 饶瑞中 2015 64 114212Google Scholar
Wang Q, Mei H P, Qian X M, Rao R Z 2015 Acta Phys. Sin. 64 114212Google Scholar
[5] 许满满, 邵士勇, 刘庆, 程雪玲, 宋小全 2020 光学学报 40 1201002Google Scholar
Xu M M, Shao S Y, Liu Q, Cheng X Z, Song X Q 2020 Acta Optic. Sin. 40 1201002Google Scholar
[6] Chowdhury S, Zhang J, Messac A, Castillo L 2012 Renewable Energy 38 16Google Scholar
[7] 王倩, 梅海平, 李玉剑, 邵士勇, 李学彬, 饶瑞中 2016 65 074206Google Scholar
Wang Q, Mei H P, Li Y J, Shao S Y, Li X B, Rao R Z 2016 Acta Phys. Sin. 65 074206Google Scholar
[8] 饶瑞中 2012 现代大气光学 (北京: 科学出版社) 第155页
Rao R Z 2012 Modern Atmospheric Optics (Beijing: Science Press) p156 (in Chinese)
[9] Fried D L, Mevers G E, Keister M P 1967 J. Opt. Soc. Am. 57 787Google Scholar
[10] Cui L, Xue B, Zhou F 2014 J. Opt. Soc. Am. A 31 829
[11] Huang Y, Zeng A, Gao Z, Zhang B 2015 Opt. Lett. 40 1619Google Scholar
[12] Chiba T 1971 Appl. Opt. 10 2456Google Scholar
[13] Avila R, Vernin J, Masciadri E 1997 Appl. Opt. 36 7898Google Scholar
[14] Kornilov V, Safonov B, Kornilov M, Shatsky N, Voziakova O, Potanin S, Gorbunov I, Senik V, Cheryasov D 2014 Publ. Astron. Soc. Pac. 126 482Google Scholar
[15] Bufton J, Minott P, Fitzmaurice M, Titterton P 1972 J. Opt. Soc. Am. 62 1068Google Scholar
[16] Trinqueta H, Agabia A, Vernina J, Azouita M, Aristidia E, Fossat E 2008 Proc. SPIE 7012 701225
[17] Mchugh J, Sharman R 2013 J. R. Meteorolog. Soc. 139 1632Google Scholar
[18] 张彩云, 翁宁泉, 高慧, 姚远成, 孙刚, 刘庆 2013 光学学报 33 0301004
Zhang C Y, Weng L Q, Gao H, Yao Y C, Sun G, Liu Q 2013 Acta Optic. Sin. 33 0301004
[19] Abahamid A, Jabiri A, Vernin J, Benkhaldoun Z, Azouit M, Agabi A 2004 Astron. Astrophys. 416 1193Google Scholar
[20] Shao S Y, Qin F Q, Xu M M, Liu Q, Han Y, Xu Z Q 2020 Results in Engineering 9 100191Google Scholar
[21] 王倩, 梅海平, 钱仙妹, 饶瑞中 2015 64 224216Google Scholar
Wang Q, Mei H P, Qian X M, Rao R Z 2015 Acta Phys. Sin. 64 224216Google Scholar
[22] Qing C, Wu X Q, Huang H H, Tian Q, Zhu W Y, Rao R Z, Li X B 2016 Opt. Express 24 20424Google Scholar
[23] 张鹏飞, 乔春红, 冯晓星, 黄童, 李南, 范承玉, 王英俭 2017 66 244210Google Scholar
Zhang P F, Qiao C H, Feng X X, Huang T, Li N, Fan C Y, Wang Y J 2017 Acta Phys. Sin. 66 244210Google Scholar
[24] 吴晓庆, 钱仙妹, 黄宏华, 汪平, 崔朝龙, 青春 2014 天文学报 55 114Google Scholar
Wu X Q, Qian X M, Huang H H, Wang P, Cui C L, Qing C 2014 Acta Astron. Sin. 55 114Google Scholar
[25] Ruggiero F H, Debenedictis D A 2002 DOD High Performance Computer Users Group Conference Austin, Texas, January 13–14, 2002 p11
[26] 蔡俊, 李学彬, 詹国伟, 武鹏飞, 徐春燕, 青春, 吴晓庆 2018 67 014206Google Scholar
Cai J, Li X B, Zhan G W, Wu P F, Xu C Y, Qin C, Wu X Q 2018 Acta Phys. Sin. 67 014206Google Scholar
[27] 罗兰B 著 (扬长新 译) 1991 边界层气象学导论 (北京: 气象出版社) 第13—20页
Roland B (translated by Yang C X) 1991 An Introduction to Boundary Layer Meteorology (Beijing: Meteorological Press) pp13–20 (in Chinese)
[28] Peng S Q, Zhu Y H, Huang H, Ding X R, Shi R, Wu D M, Feng Y R, Wang D X 2016 Atmos. Sci. Lett. 17 564Google Scholar
Catalog
Metrics
- Abstract views: 4830
- PDF Downloads: 57
- Cited By: 0