搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于探空数据分析低云对大气折射率结构常数的影响

张坤 罗涛 王菲菲 孙刚 刘庆 青春 李学彬 翁宁泉 朱文越

引用本文:
Citation:

基于探空数据分析低云对大气折射率结构常数的影响

张坤, 罗涛, 王菲菲, 孙刚, 刘庆, 青春, 李学彬, 翁宁泉, 朱文越

Influence of low clouds on atmospheric refractive index structure constant based on radiosonde data

Zhang Kun, Luo Tao, Wang Fei-Fei, Sun Gang, Liu Qing, Qing Chun, Li Xue-Bin, Weng Ning-Quan, Zhu Wen-Yue
PDF
HTML
导出引用
  • 本文基于实测的热力湍流探空数据, 使用WR95方法识别低云的垂直结构, 对比分析了低云与晴空天气下大气折射率结构参数$ C_n^2 $、气象条件和大气稳定度的平均统计结果. 结果表明, 低层薄云对$ {C}_{n}^{2} $起伏变化的影响微乎甚微, 仅仅表现出轻微增大的趋势, 云底$ {C}_{n}^{2} $相对于晴空天气平均增大1.6倍, 云顶之上最大程度增大2.5倍. 低层中厚云在云顶处$ {C}_{n}^{2} $相对于晴空天气增大了3.80—6.61倍, 且云顶区域$ C_n^2 $增大的幅度大于云底区域. 云底区域大气湍流特性受到地面热力驱动与低云冷却的联合作用, 沉降气流与地面向上气流发生了耦合, 增强了风切变, $ C_n^2 $在这一高度附近也出现了增强. 综合对比晴空和有云天气$ C_n^2 $大小可知, 云对$ C_n^2 $的增强效应大致在10–16量级. 一方面, 风切变在云顶处或者云顶之上达到最大值; 另一方面, 因为云顶短波辐射增温和长波辐射冷却的共同作用, 云顶之上会形成不同厚度的逆温层, 致使云顶处位温变化率急剧增大, Brunt-Vaisala频率$ {N^2} $值较晴空天气下增大了0.5—3.0倍; 而云底区域$ {N}^{2} $均小于晴空天气. 由于云层多尺度活动引发的湍流效应, 势必会引起对激光传输大气效应评估和订正的偏差. 正确掌握不同相态云层及边界处湍流的变化规律, 也可以为进一步建立云层周围大气湍流的变化规律模型奠定基础.
    Based on the measured thermal radiosondes, the WR95 method is used to identify the vertical structure of low clouds. The atmospheric refractive index structure constant$C_{n}^2$, meteorological conditions and atmospheric stability are contrastively analyzed under cloudy and clear sky weather. The results show that the influence of low-level thin clouds on the fluctuation of $ C_n^2 $ is negligible, showing only a slight increase trend. The $ C_n^2 $ at low-level thin clouds base and top is about 1.6 and 2.5 times that under clear sky weather to a greatest extent, respectively. The $ C_n^2 $ at the low-level medium-thick clouds top is 3.8–6.61 times the amplitude of that under clear sky weather, and enhanced amplitude of $ C_n^2 $ near the cloud top is greater than that near the cloud base. Atmospheric turbulence near the cloud base is driven by the combined effect of ground heat and low clouds cooling. The sinking airflow from clouds is coupled with the upward airflow from ground, which motivates wind shear, resulting $ C_n^2 $ increases near this height. A comprehensive comparison of the $ C_n^2 $ between clear sky and cloudy weather shows that the enhancement effect of clouds on $ C_n^2 $ is roughly on the order of 10–16. Wind shear reaches its maximum value at or above the cloud top. Because of the combined effect of short-wave radiation warming and long-wave radiation cooling near the cloud top, temperature inversion layers with different thickness will be formed obove the cloud top, resulting in a sharp increase in the potential temperature lapse rate at the cloud top, and the Brunt-Vaisala frequency $ {N^2} $ is increased by 0.5–3.0 times. And $ {N^2} $ near the cloud base is less than that under the clear sky weather. Owing to the turbulent effect caused by cloud multi-scale activities, it is inevitable to cause assessment and correction deviations in the laser transmission. A deep understanding of how turbulence behave within different phase clouds or around cloud boundaries can also lay the foundation for further modeling the atmospheric turbulence around clouds.
      通信作者: 朱文越, zhuwenyue@aiofm.ac.cn
    • 基金项目: 中国科学院战略性先导科技专项(批准号: XDA17010104)、国家重点研发计划(批准号: 2018YFC0213101)和国家自然科学基金(批准号: 41875041)资助的课题
      Corresponding author: Zhu Wen-Yue, zhuwenyue@aiofm.ac.cn
    • Funds: Project supported by the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDA17010104), the National Key R&D Program of China (Grant No. 2018YFC0213101), and the National Natural Science Foundation of China (Grant No. 41875041)
    [1]

    Ipcc A R 2013 Clouds and Aerosols. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change Report

    [2]

    Bodenschatz E, Malinowski S P, Shaw R A, Stratmann F 2010 Science 327 970Google Scholar

    [3]

    Paredes Quintanilla M E, Abdunabiev S, Allegretti M, Merlone A, Musacchio C, Pasero E G A, Tordella D, Canavero F 2021 Sensors 21 1351Google Scholar

    [4]

    Stechmann S N, Stevens B 2010 J. Atmos. Sci. 67 3269Google Scholar

    [5]

    Driedonks A G M, Duynkerke P G 1989 Bound-Lay. Meteorol. 46 275Google Scholar

    [6]

    Blyth A M, Cooper W A, Jensen J B 1988 J. Atmos. Sci. 45 3944Google Scholar

    [7]

    Boing S J, Jonker H J J, Nawara W A, Siebesma A P 2014 J. Atmos. Sci. 71 56Google Scholar

    [8]

    Paluch I R 1979 J. Atmos. Sci. 36 2467Google Scholar

    [9]

    Bera S, Prabha T V, Grabowski W W 2016 J. Geophys. Res. Atmos. 121 9767Google Scholar

    [10]

    Brenguier J L, Pawlowska H, Schuller L, Preusker R, Fischer J, Fouquart Y 2000 J. Atmos. Sci. 57 803Google Scholar

    [11]

    Jeffery C A 2007 J. Geophys. Res. Atmos 112 D24S21

    [12]

    Brost R A, Wyngaard J C, Lenschow D H 1982 J. Atmos. Sci. 39 818Google Scholar

    [13]

    Lilly D K 1968 Q. J. R. Meteorol. Soc. 94 292Google Scholar

    [14]

    Lane T P, Sharman R D, Trier S B, Fovell R G, Williams J K 2012 Bull. Am. Meteorol. Soc. 93 499Google Scholar

    [15]

    Siebert H, Franke H, Lehmann K, Maser R, Saw E W, Schell D, Shaw R A, Wendisch M 2006 Bull. Am. Meteorol. Soc. 87 1727Google Scholar

    [16]

    Wang D, Guo J, Xu H, Li J, Lv Y, Solanki R, Guo X, Han Y, Chen T, Ding M, Chen A, Bian L, Rinke A 2021 Atmos. Res. 254 105530Google Scholar

    [17]

    Hill A A, Feingold G, Jiang H 2009 J. Atmos. Sci. 66 1450Google Scholar

    [18]

    Stevens B 2010 J. Fluid Mech. 660 1Google Scholar

    [19]

    Paluch I R, Baumgardner D G 1989 J. Atmos. Sci. 46 261Google Scholar

    [20]

    Garcia-Zambrana A, Castillo-Vazquez C, Castillo-Vazquez B 2010 Opt. Express 18 5356Google Scholar

    [21]

    Andrews L C, Phillips R L, Yu P T 1995 Appl. Opt. 34 7742Google Scholar

    [22]

    Kazaura K, Omae K, Suzuki T, Matsumoto M, Mutafungwa E, Korhonen T O, Murakami T, Takahashi K, Matsumoto H, Wakamori K, Arimoto Y 2006 Opt. Express 14 4958Google Scholar

    [23]

    王飞, 余佳益, 刘显龙, 蔡阳健 2018 67 184203Google Scholar

    Wang F, Yu J Y, Liu X L, Cai Y J 2018 Acta Phys. Sin. 67 184203Google Scholar

    [24]

    季小玲, 肖希, 吕百达 2004 53 3996Google Scholar

    Ji X L, Xiao X, Lv B D 2004 Acta Phys. Sin. 53 3996Google Scholar

    [25]

    肖黎明, 翁宁泉, 孙刚, 余申伟 中国专利 CN200610097731.8 [2008-06-04]

    Xiao L M, Weng N Q, Sun G, Yu S W China Patent CN200610097731.8 [2008-06-04](in Chinese)

    [26]

    Bufton J L 1975 A Radiosonde Thermal Sensor Technique for Measurement of Atmospheric Turbulence Report No. NASA TN D-7867

    [27]

    McFarquhar G M, Cober S G 2004 J. Clim. 17 3799Google Scholar

    [28]

    Morrison H, McCoy R B, Klein S A, et al. 2009 Q. J. R. Meteorol. Soc. 135 1003Google Scholar

    [29]

    Poore K D, Wang J H, Rossow W B 1995 J. Clim. 8 550Google Scholar

    [30]

    Chernykh I V, Eskridge R E 1996 J. Appl. Meteorol. 35 1362Google Scholar

    [31]

    Wang J, Rossow W B 1995 J. Appl. Meteorol. 34 2243Google Scholar

    [32]

    Naud C M, Muller J P, Clothiaux E E 2003 J. Geophys. Res. Atmos. 108 4140Google Scholar

    [33]

    周毓荃, 欧建军 2010 气象 36 50

    Zhou Y Q, Ou J J 2010 Meteorol. Mon. 36 50

    [34]

    Chylek P, Robinson S, Dubey M K, King M D, Fu Q, Clodius W B 2006 J. Geophys. Res. Atmos. 111 D20203Google Scholar

    [35]

    Cober S G, Isaac G A, Korolev A V, Strapp J W 2001 J. Appl. Meteorol. 40 1967Google Scholar

    [36]

    Yan W, Han D, Lu W, Lei X L 2012 Chin. J. Geophys. -Chin. Ed. 55 1Google Scholar

    [37]

    Goff J A 1957 Transactions of the American Society of Heating and Ventilating Engineers 63 347

    [38]

    Zhang J, Chen H, Li Z, Fan X, Peng L, Yu Y, Cribb M 2010 J. Geophys. Res. Atmos. 115 D00k30

    [39]

    孙丽, 赵姝慧 2018 地球科学进展 33 85Google Scholar

    Sun L, Zhao S H 2018 Adv. Earth Sci. 33 85Google Scholar

    [40]

    刘爽, 王慧, 黄奕武, 尹尽勇, 董林, 杨正龙, 邢闯 2018 海洋气象学报 38 69

    Liu S, Wang H, Huang Y W, Yin J Y, Dong L, Yang Z L, Xing C 2018 J. Mar. Meteorol. 38 69

    [41]

    曹越男, 刘涛, 王慧, 杨正龙, 柳龙生 2018 海洋气象学报 38 76

    Cao Y N, Liu T, Wang H, Yang Z L, Liu L S 2018 J. Mar. Meteorol. 38 76

    [42]

    Wood R 2011 Mon. Weather Rev. 140 2373

    [43]

    Zhang J, Chen H, Xia X, Wang W C 2016 Adv. Atm. Sci. 33 21Google Scholar

    [44]

    Bretherton C S, Wyant M C 1997 J. Atmos. Sci. 54 148Google Scholar

    [45]

    Ching J, Riemer N, Dunn M, Miller M 2010 Geophys. Res. Lett. 37 L21808

    [46]

    Frisch A S, Lenschow D H, Fairall C W, Schubert W H, Gibson J S 1995 J. Atmos. Sci. 52 2800Google Scholar

    [47]

    Baker M B, Corbin R G, Latham J 2010 Q. J. R. Meteorol. Soc. 106 581

    [48]

    Mellado J P 2017 Annu. Rev. Fluid. Mech. 49 145Google Scholar

  • 图 1  WR95法识别云层垂直结构示意图(2017年11月15日07:40在A站点的探空数据), 蓝色圆圈中即为厚度为20 m (小于30.5 m)的湿层

    Fig. 1.  Schematic diagram of WR95 method to identify the vertical structure of clouds (Radiosonde at Station A lunched at 07:40 on November 15, 2017). The blue circle is the wet layer with a thickness of 20 m (less than 30.5 m).

    图 2  WR95法识别低云垂直结构结果, 数字表示每个样本的云层厚度(单位为m) (a) A站点; (b) B站点, 黑色和红色分别代表早晨和晚上组; (c) 云层归一化高度示意图, 其中, 云层厚度$\Delta $H = HCTHCB, “圆点”代表云中高度(cloud middle height, CMH(HCM)), HCM = (HCB+HCT)/2

    Fig. 2.  The WR95 method identifies the results of the vertical structure of low clouds, and the numbers indicate the thickness of the each cloud layer (unit: m): (a) Station A; (b) station B. Black and red represent the morning and evening groups, respectively; (c) schematic diagram of cloud normalized height. Where, cloud thickness $\Delta $H = HCTHCB, and the dots represent the height of the cloud middle height (CMH(HCM)), HCM = (HCB+HCT)/2.

    图 3  A站点薄云和晴空天气下$ C_n^2 $廓线对比 (a) 彩色实线分别表示四个薄云周围$ C_n^2 $廓线, 线上的彩色圆圈和*分别表示相应云层的CBH, CTH; (b) 四个薄云样本$ C_n^2 $与同时段晴空天气平均廓线的比值Ratio. (注: $ {\text{Ratio}} = {\log _{10}}({A_{C_n^2}}/{B_{C_n^2}}) $, $ {A_{C_n^2}} $为样本(有云)$ C_n^2 $, $ {B_{C_n^2}} $为对照组(晴空)$ C_n^2 $

    Fig. 3.  Contrast of $ C_n^2 $ profile under thin clouds and clear sky at Station A: (a) The colored solid lines indicate the $ C_n^2 $ profiles around the four thin clouds, the colored “o” and “*” on the lines indicate CBH and CTH of the corresponding clouds, respectively; (b) $ {\text{Ratio}} = {\log _{10}}({A_{C_n^2}}/{B_{C_n^2}}) $. $ {A_{C_n^2}} $is the $ C_n^2 $ of four thin clouds, $ {B_{C_n^2}} $ is $ C_n^2 $ of the control group under clear sky.

    图 4  有云与晴空天气下$ {C}_{n}^{2} $对比 (a) A站点早晨组; (b) A站点晚上组; (c) B站点晚上组

    Fig. 4.  $ C_n^2 $ for clouds and for clear sky: (a) The morning group at Station A; (b) the evening group at Station A; (c) the evening group at Station B.

    图 5  A, B站点中厚云层与晴空天气下$ C_n^2 $的比值

    Fig. 5.  The ratio of $ C_n^2 $ with medium-thick clouds to $ C_n^2 $ under clear sky.

    图 6  A, B站点有云与晴空情况下气象条件(温度和风速)对比 (a), (d) A站点早晨组; (b), (e) A站点晚上组; (c), (f) B站点晚上组

    Fig. 6.  Comparison of meteorological parameters (temperature and wind speed) for clouds and for clear sky at Station A and B: (a), (d) The morning group at Station A; (b), (e) the evening group at Station A; (c), (f) the evening group at Station B.

    图 7  A, B站点有云与晴空天气下动力(风切变)和热力特征(Brunt-Vaisala频率和位温)对比 (a), (d) A站点早晨组; (b), (e) A站点晚上组; (c), (f) B站点晚上组

    Fig. 7.  Comparison of dynamic (wind shear) and thermal characteristics (Brunt-Vaisala frequency and potential temperature) with clouds and clear sky: (a), (d) The morning group at Station A; (b), (e) the evening group at Station A; (c), (f) the evening group at Station B.

    表 1  TD2型气象探空传感器参数

    Table 1.  Sensor parameters of TD2 type meteorological radiosonde.

    测量参数探测范围探测精度
    温度+50— –90 ℃ ≤0.2 ℃ (+50— –70 ℃)
    ≤0.3 ℃ (–80— –90 ℃)
    气压20—1060 hPa≤1.5 hPa (500—1060 hPa)
    ≤0.7 hPa (5—500 hPa)
    相对
    湿度
    1%—100%≤ 4% (常温条件下)
    ≤8% (温度小于–25 ℃)
    风速0—150 m/s< 0.3 m/s
    风向0—360°< 3°
    下载: 导出CSV

    表 2  2017年11月—12月A, B站点云垂直结构筛选结果(括号内表示“早晨组样本数量” + “晚上组样本数量”)

    Table 2.  Recognition results of the cloud vertical structure at Station A and B from November to December, 2017 (“sample number in the morning group” + “sample number in the evening group” in parentheses).

    站点探空总数量晴空低云
    薄云
    (厚度 < 0.15 km)
    中厚云
    (0.15 km $\leqslant$ 厚度 $\leqslant$ 2 km)
    深对流云
    (厚度 > 2 km)
    A56(30 + 26)33(19 + 14)4 (3 + 1)9 (3 + 6)0
    B51(26 + 25)31(16 + 15)09 (3 + 6)7 (1 + 6)
    下载: 导出CSV

    表 3  A, B站点云层垂直结构平均参数

    Table 3.  Average parameters of cloud vertical structure at Station A and B.

    HCB/kmHCT/kmH/km
    Station A (morning)1.361.610.25
    Station A (night)1.161.760.6
    Station B (night)1.061.670.61
    下载: 导出CSV
    Baidu
  • [1]

    Ipcc A R 2013 Clouds and Aerosols. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change Report

    [2]

    Bodenschatz E, Malinowski S P, Shaw R A, Stratmann F 2010 Science 327 970Google Scholar

    [3]

    Paredes Quintanilla M E, Abdunabiev S, Allegretti M, Merlone A, Musacchio C, Pasero E G A, Tordella D, Canavero F 2021 Sensors 21 1351Google Scholar

    [4]

    Stechmann S N, Stevens B 2010 J. Atmos. Sci. 67 3269Google Scholar

    [5]

    Driedonks A G M, Duynkerke P G 1989 Bound-Lay. Meteorol. 46 275Google Scholar

    [6]

    Blyth A M, Cooper W A, Jensen J B 1988 J. Atmos. Sci. 45 3944Google Scholar

    [7]

    Boing S J, Jonker H J J, Nawara W A, Siebesma A P 2014 J. Atmos. Sci. 71 56Google Scholar

    [8]

    Paluch I R 1979 J. Atmos. Sci. 36 2467Google Scholar

    [9]

    Bera S, Prabha T V, Grabowski W W 2016 J. Geophys. Res. Atmos. 121 9767Google Scholar

    [10]

    Brenguier J L, Pawlowska H, Schuller L, Preusker R, Fischer J, Fouquart Y 2000 J. Atmos. Sci. 57 803Google Scholar

    [11]

    Jeffery C A 2007 J. Geophys. Res. Atmos 112 D24S21

    [12]

    Brost R A, Wyngaard J C, Lenschow D H 1982 J. Atmos. Sci. 39 818Google Scholar

    [13]

    Lilly D K 1968 Q. J. R. Meteorol. Soc. 94 292Google Scholar

    [14]

    Lane T P, Sharman R D, Trier S B, Fovell R G, Williams J K 2012 Bull. Am. Meteorol. Soc. 93 499Google Scholar

    [15]

    Siebert H, Franke H, Lehmann K, Maser R, Saw E W, Schell D, Shaw R A, Wendisch M 2006 Bull. Am. Meteorol. Soc. 87 1727Google Scholar

    [16]

    Wang D, Guo J, Xu H, Li J, Lv Y, Solanki R, Guo X, Han Y, Chen T, Ding M, Chen A, Bian L, Rinke A 2021 Atmos. Res. 254 105530Google Scholar

    [17]

    Hill A A, Feingold G, Jiang H 2009 J. Atmos. Sci. 66 1450Google Scholar

    [18]

    Stevens B 2010 J. Fluid Mech. 660 1Google Scholar

    [19]

    Paluch I R, Baumgardner D G 1989 J. Atmos. Sci. 46 261Google Scholar

    [20]

    Garcia-Zambrana A, Castillo-Vazquez C, Castillo-Vazquez B 2010 Opt. Express 18 5356Google Scholar

    [21]

    Andrews L C, Phillips R L, Yu P T 1995 Appl. Opt. 34 7742Google Scholar

    [22]

    Kazaura K, Omae K, Suzuki T, Matsumoto M, Mutafungwa E, Korhonen T O, Murakami T, Takahashi K, Matsumoto H, Wakamori K, Arimoto Y 2006 Opt. Express 14 4958Google Scholar

    [23]

    王飞, 余佳益, 刘显龙, 蔡阳健 2018 67 184203Google Scholar

    Wang F, Yu J Y, Liu X L, Cai Y J 2018 Acta Phys. Sin. 67 184203Google Scholar

    [24]

    季小玲, 肖希, 吕百达 2004 53 3996Google Scholar

    Ji X L, Xiao X, Lv B D 2004 Acta Phys. Sin. 53 3996Google Scholar

    [25]

    肖黎明, 翁宁泉, 孙刚, 余申伟 中国专利 CN200610097731.8 [2008-06-04]

    Xiao L M, Weng N Q, Sun G, Yu S W China Patent CN200610097731.8 [2008-06-04](in Chinese)

    [26]

    Bufton J L 1975 A Radiosonde Thermal Sensor Technique for Measurement of Atmospheric Turbulence Report No. NASA TN D-7867

    [27]

    McFarquhar G M, Cober S G 2004 J. Clim. 17 3799Google Scholar

    [28]

    Morrison H, McCoy R B, Klein S A, et al. 2009 Q. J. R. Meteorol. Soc. 135 1003Google Scholar

    [29]

    Poore K D, Wang J H, Rossow W B 1995 J. Clim. 8 550Google Scholar

    [30]

    Chernykh I V, Eskridge R E 1996 J. Appl. Meteorol. 35 1362Google Scholar

    [31]

    Wang J, Rossow W B 1995 J. Appl. Meteorol. 34 2243Google Scholar

    [32]

    Naud C M, Muller J P, Clothiaux E E 2003 J. Geophys. Res. Atmos. 108 4140Google Scholar

    [33]

    周毓荃, 欧建军 2010 气象 36 50

    Zhou Y Q, Ou J J 2010 Meteorol. Mon. 36 50

    [34]

    Chylek P, Robinson S, Dubey M K, King M D, Fu Q, Clodius W B 2006 J. Geophys. Res. Atmos. 111 D20203Google Scholar

    [35]

    Cober S G, Isaac G A, Korolev A V, Strapp J W 2001 J. Appl. Meteorol. 40 1967Google Scholar

    [36]

    Yan W, Han D, Lu W, Lei X L 2012 Chin. J. Geophys. -Chin. Ed. 55 1Google Scholar

    [37]

    Goff J A 1957 Transactions of the American Society of Heating and Ventilating Engineers 63 347

    [38]

    Zhang J, Chen H, Li Z, Fan X, Peng L, Yu Y, Cribb M 2010 J. Geophys. Res. Atmos. 115 D00k30

    [39]

    孙丽, 赵姝慧 2018 地球科学进展 33 85Google Scholar

    Sun L, Zhao S H 2018 Adv. Earth Sci. 33 85Google Scholar

    [40]

    刘爽, 王慧, 黄奕武, 尹尽勇, 董林, 杨正龙, 邢闯 2018 海洋气象学报 38 69

    Liu S, Wang H, Huang Y W, Yin J Y, Dong L, Yang Z L, Xing C 2018 J. Mar. Meteorol. 38 69

    [41]

    曹越男, 刘涛, 王慧, 杨正龙, 柳龙生 2018 海洋气象学报 38 76

    Cao Y N, Liu T, Wang H, Yang Z L, Liu L S 2018 J. Mar. Meteorol. 38 76

    [42]

    Wood R 2011 Mon. Weather Rev. 140 2373

    [43]

    Zhang J, Chen H, Xia X, Wang W C 2016 Adv. Atm. Sci. 33 21Google Scholar

    [44]

    Bretherton C S, Wyant M C 1997 J. Atmos. Sci. 54 148Google Scholar

    [45]

    Ching J, Riemer N, Dunn M, Miller M 2010 Geophys. Res. Lett. 37 L21808

    [46]

    Frisch A S, Lenschow D H, Fairall C W, Schubert W H, Gibson J S 1995 J. Atmos. Sci. 52 2800Google Scholar

    [47]

    Baker M B, Corbin R G, Latham J 2010 Q. J. R. Meteorol. Soc. 106 581

    [48]

    Mellado J P 2017 Annu. Rev. Fluid. Mech. 49 145Google Scholar

  • [1] 关建飞, 俞潇, 丁冠天, 陈陶, 陆云清. 金属光栅覆盖分布式布拉格反射镜结构的透射增强效应.  , 2024, 73(11): 117301. doi: 10.7498/aps.73.20240357
    [2] 王明军, 席建霞, 王婉柔, 李勇俊, 张佳琳. 声波扰动对大气湍流内外尺度与折射率功率谱函数的影响分析.  , 2023, 72(12): 124303. doi: 10.7498/aps.72.20230003
    [3] 张廷龙, 余海, 陈阳, 赵小平, 陈洁, 文中海, 李哲, 蒋贤玲, 张茂华. 1907号台风“韦帕”登陆期间眼壁区的垂直电场探空观测.  , 2021, 70(13): 139201. doi: 10.7498/aps.70.20202183
    [4] 徐自强, 吴晓庆, 许满满, 毕翠翠, 韩永, 邵士勇. 海洋上空折射率结构常数廓线估算.  , 2021, 70(24): 244204. doi: 10.7498/aps.70.20211201
    [5] 李小龙, 陆妩, 王信, 郭旗, 何承发, 孙静, 于新, 刘默寒, 贾金成, 姚帅, 魏昕宇. 典型模拟电路低剂量率辐照损伤增强效应的研究与评估.  , 2018, 67(9): 096101. doi: 10.7498/aps.67.20180027
    [6] 张凯, 杜春光, 高健存. 长程表面等离子体的增强效应.  , 2017, 66(22): 227302. doi: 10.7498/aps.66.227302
    [7] 戴伟, 刘清惓, 杨杰, 宿恺峰, 韩上邦, 施佳驰. 探空温度传感器的计算流体动力学分析与实验研究.  , 2016, 65(11): 114701. doi: 10.7498/aps.65.114701
    [8] 王丽吉, 陈泽宇, 凌超, 吕达仁. 中层大气静力稳定性减弱趋势——历史火箭探空数据分析.  , 2015, 64(16): 169201. doi: 10.7498/aps.64.169201
    [9] 冒晓莉, 肖韶荣, 刘清惓, 李敏, 张加宏. 探空湿度测量太阳辐射误差修正流体动力学研究.  , 2014, 63(14): 144701. doi: 10.7498/aps.63.144701
    [10] 陈薪羽, 董渊, 管佳音, 李述涛, 于永吉, 吕彦飞. 湍流介质折射率结构常数Cn2对双半高斯空心光束传输特性影响的研究.  , 2014, 63(16): 164208. doi: 10.7498/aps.63.164208
    [11] 赵小峰, 黄思训. 垂直天线阵观测信息反演大气折射率廓线.  , 2011, 60(11): 119203. doi: 10.7498/aps.60.119203
    [12] 杜凌霄, 胡炼, 张兵坡, 才玺坤, 楼腾刚, 吴惠桢. 微腔中CdSe量子点荧光增强效应.  , 2011, 60(11): 117803. doi: 10.7498/aps.60.117803
    [13] 高博, 余学峰, 任迪远, 崔江维, 兰博, 李明, 王义元. p型金属氧化物半导体场效应晶体管低剂量率辐射损伤增强效应模型研究.  , 2011, 60(6): 068702. doi: 10.7498/aps.60.068702
    [14] 梁忠诚, 赵瑞, 包刚. 磁旋光增强效应与旋光增强器特性分析.  , 2009, 58(8): 5479-5483. doi: 10.7498/aps.58.5479
    [15] 曾 然, 许静平, 羊亚平, 刘树田. 负折射率材料对Casimir效应的影响.  , 2007, 56(11): 6446-6450. doi: 10.7498/aps.56.6446
    [16] 杨立森, 刘思敏, 张光寅, 许京军, 郭 儒, 高垣梅, 黄春福, 陆 猗, 汪大云. 快速响应的光致折射率改变效应的实验研究.  , 2004, 53(2): 461-467. doi: 10.7498/aps.53.461
    [17] 陈 龙, 何赛灵, 沈林放. 含负折射率介质的多层结构中倏逝波传播及隧道效应的分析.  , 2003, 52(10): 2386-2392. doi: 10.7498/aps.52.2386
    [18] 胡响明, 彭金生. 无驱动系统中的折射率增强.  , 1997, 46(7): 1344-1348. doi: 10.7498/aps.46.1344
    [19] 龚尚庆, 徐至展, 潘少华. 简单三能级原子介质中由量子干涉引起的折射率增强.  , 1995, 44(7): 1051-1055. doi: 10.7498/aps.44.1051
    [20] 冯洪安, 余玉贞, 黄炳忠. 椭偏光谱对复数折射率薄膜的研究——ITO膜光学常数的色散和生长规律.  , 1986, 35(3): 319-328. doi: 10.7498/aps.35.319
计量
  • 文章访问数:  4795
  • PDF下载量:  62
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-27
  • 修回日期:  2021-12-27
  • 上网日期:  2022-01-26
  • 刊出日期:  2022-04-20

/

返回文章
返回
Baidu
map