-
A hybrid-Fabry-Perot (F-P) interferometer based on an in-fiber ellipsoidal cavity is presented, and the refractive index sensing properties are studied. The ellipsoidal air-microcavity is formed by splicing together a single-mode fiber and a photonic crystal fiber with special arc-discharge technique. The cavity loss is analyzed by using a Gaussian beam model and the ABCD law, and the physical model of electromagnetic transmission is established. According to the cavity length ratio, there are two kinds of the influences of environment refractive index on interference fringe: contrast modulation and wavelength modulation. A fiber refractive index sensor with an enclosed air cavity based on wavelength demodulation is proposed in this paper. The result of simulation shows that the sensors has no turning point in a range of 1-1.6. A wavelength interrogation technique is used to demodulate refractive-index with high sensitivity (~ 37.088 nm·RIU-1) and high resolution (~ 2.69× 10-5) and with low temperature crosstalk. Experimental results are in good agreement with the theoretical ones. The F-P fiber sensor also holds advantages such as compactness, low cost, easy fabrication, high contrast, high resolution, no turning point, and low temperature crosstalk.
-
Keywords:
- fiber sensing /
- hybrid Fabry-Perot /
- refractive-index measurement /
- wavelength interrogation
[1] Zhao H J 2012 Chin. Phys. B 21 087104
[2] Sang X Z, Yu C X, Mayteevarunyoo T, Wang K, Zhang Q, Chu P L 2007 Sens. Actuat. B: Chemical 120 754
[3] Chen X F, Zhou K M, Zhang L, Bennion I 2007 Appl. Opt. 46 451
[4] Li H D, Fu H W, Shao M, Zhao N, Qiao X G, Liu Y G, Li Y, Yan X 2013 Acta Phys. Sin. 62 214209 (in Chinese) [李辉栋, 傅海威, 邵敏, 赵娜, 乔学光, 刘颖刚, 李岩, 闫旭 2013 62 214209]
[5] Wei T, Han Y K, Li Y J, Tsai H L, Xiao H 2008 Opt. Express 16 5764
[6] Ran Z L, Rao Y J, Liu W J, Liao X, Chiang K S 2008 Opt. Express 16 2252
[7] Gong Y, Guo Y, Rao Y J, Zhao T, Wu Y, Ran Z L 2011 Acta Phys. Sin. 60 064202 (in Chinese) [龚元, 郭宇, 饶云江, 赵天, 吴宇, 冉曾令 2011 60 064202]
[8] Deng M, Rao Y J, Zhu T, Duan D W 2009 Acta Opt. Sin. 29 1790 (in Chinese) [邓明, 饶云江, 朱涛, 段德稳 2009 光学学报 29 1790]
[9] Wang T T, Wang M, Ni H B 2012 IEEE Photon. Technol. Lett. 24 948
[10] Wang T T, Wang M 2012 IEEE Photon. Technol. Lett. 24 1733
[11] Chu T S 1966 Bell Syst. Tech. J. 45 287
[12] Marcuse D 1977 Bell Syst. Tech. J. 56 703
-
[1] Zhao H J 2012 Chin. Phys. B 21 087104
[2] Sang X Z, Yu C X, Mayteevarunyoo T, Wang K, Zhang Q, Chu P L 2007 Sens. Actuat. B: Chemical 120 754
[3] Chen X F, Zhou K M, Zhang L, Bennion I 2007 Appl. Opt. 46 451
[4] Li H D, Fu H W, Shao M, Zhao N, Qiao X G, Liu Y G, Li Y, Yan X 2013 Acta Phys. Sin. 62 214209 (in Chinese) [李辉栋, 傅海威, 邵敏, 赵娜, 乔学光, 刘颖刚, 李岩, 闫旭 2013 62 214209]
[5] Wei T, Han Y K, Li Y J, Tsai H L, Xiao H 2008 Opt. Express 16 5764
[6] Ran Z L, Rao Y J, Liu W J, Liao X, Chiang K S 2008 Opt. Express 16 2252
[7] Gong Y, Guo Y, Rao Y J, Zhao T, Wu Y, Ran Z L 2011 Acta Phys. Sin. 60 064202 (in Chinese) [龚元, 郭宇, 饶云江, 赵天, 吴宇, 冉曾令 2011 60 064202]
[8] Deng M, Rao Y J, Zhu T, Duan D W 2009 Acta Opt. Sin. 29 1790 (in Chinese) [邓明, 饶云江, 朱涛, 段德稳 2009 光学学报 29 1790]
[9] Wang T T, Wang M, Ni H B 2012 IEEE Photon. Technol. Lett. 24 948
[10] Wang T T, Wang M 2012 IEEE Photon. Technol. Lett. 24 1733
[11] Chu T S 1966 Bell Syst. Tech. J. 45 287
[12] Marcuse D 1977 Bell Syst. Tech. J. 56 703
Catalog
Metrics
- Abstract views: 6169
- PDF Downloads: 442
- Cited By: 0