搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

碱金属和碱土金属掺杂二维GaN材料电磁特性的第一性原理计算

陈国祥 樊晓波 李思琦 张建民

引用本文:
Citation:

碱金属和碱土金属掺杂二维GaN材料电磁特性的第一性原理计算

陈国祥, 樊晓波, 李思琦, 张建民

First-principles study of magnetic properties of alkali metals and alkaline earth metals doped two-dimensional GaN materials

Chen Guo-Xiang, Fan Xiao-Bo, Li Si-Qi, Zhang Jian-Min
PDF
HTML
导出引用
  • 基于密度泛函理论和投影缀加波赝势方法, 采用广义梯度近似算法研究了碱金属(Li, Na, K和Rb)和碱土金属(Be, Mg和Sr)掺杂二维GaN单层的电子结构和磁学性质. 研究表明, 除Be原子位于GaN单层平面内之外, 其余掺杂原子均略微隆起于平面. 通过比较七种掺杂体系在不同环境下的形成能, 发现在富N环境中更易实现掺杂. 能带结构表明: 四种碱金属原子掺杂体系是磁性半导体, 总磁矩为2μB; 三种碱土金属掺杂体系呈半金属性, 总磁矩为1μB. 磁耦合计算表明, 七种元素掺杂体系均存在长程铁磁耦合. 采用海森伯平均场模型估算双掺杂体系的居里温度, 发现Li, Be, Mg和Sr的长程铁磁耦合态居里温度均高于室温, 表明这4种原子掺杂的二维GaN单层是很好的室温铁磁性备选材料.
    We systematically study the electronic structure and magnetic properties of alkali metals (Li, Na, K and Rb) and alkaline earth metals (Be, Mg and Sr) doped two-dimensional GaN monolayers using the first-principles calculations based on density functional theory. The results show that Be atom is located in the plane of the GaN monolayer, and the other doped atoms reside slightly above the plane. It is found that doping is easier to achieve under the N-rich condition. The total magnetic moment of the alkali metals doped system and the alkaline earth metals doped system are 2μB and 1μB, respectively, which are presented mainly by the spin-polarized holes of the nearest N atoms of the impurity atoms. The band structures indicate that the four alkali metal atoms doped systems are magnetic semiconductors, and the three alkaline earth metal doped systems are all semi-metallic. For a double M-doped GaN monolayer system, there is a long-range ferromagnetic coupling in the seven elements doped systems, which are realized by the hole-mediated p-p hybrid interaction. The Heisenberg mean field model is used to estimate the Curie temperature. It is found that the long-range ferromagnetic coupling states of Li, Be, Mg and Sr are existent at higher than room temperature, indicating that the four atom-doped two-dimensional GaN monolayers are very good candidates for the room temperature ferromagnetic candidate materials. The alkali metals and alkaline earth metals doped two-dimensional GaN monolayers are expected to play an important role in the studying of spintronics.
      通信作者: 陈国祥, guoxchen@xsyu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11304246, 11804273)、陕西省自然科学基金(批准号: 2019JQ-334)和西安石油大学研究生创新与实践能力培养项目(批准号: YCS18112035)资助的课题
      Corresponding author: Chen Guo-Xiang, guoxchen@xsyu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11304246, 11804273), the Natural Science Foundation of Shaanxi Province, China (Grant No. 2019JQ-334), and the Postgraduate Innovation and Practical Ability Training Program of Xi'an Shiyou University, China (Grant No. YCS17111020)
    [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [2]

    Srivastava P, Hembram K, Mizuseki H, Lee K R, Han S S, Kim S 2015 J. Phys. Chem. C 119 6530Google Scholar

    [3]

    Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N, Strano M S 2012 Nat. Nanotechnol. 7 699Google Scholar

    [4]

    Prinz G A 1998 Science 282 1660Google Scholar

    [5]

    Wolf S A, Awschalom D D, Buhrman R A, Daughton J M, von Molnar S, Roukes M L, Chtchelkanova A Y, Treger D M 2001 Science 294 1488Google Scholar

    [6]

    Feng B J, Ding Z J, Meng S, Yao Y G, He X Y, Cheng P, Chen L, Wu K H 2012 Nano Lett. 12 3507Google Scholar

    [7]

    Liu H, Neal A T, Zhu Z, Luo Z, Xu X F, Tománek D, Ye P D 2014 ACS Nano 8 4033Google Scholar

    [8]

    Li L K, Yu Y J, Ye G J, Ge Q Q, Ou X D, Wu H, Feng D L, Chen X H, Zhang Y B 2014 Nat. Nanotechnol. 9 372Google Scholar

    [9]

    Wei J W, Ma Z W, Zeng H, Wang Z Y, Wei Q, Peng P 2012 Aip Adv. 2 042141Google Scholar

    [10]

    Tongay S, Zhou J, Ataca C, Lo K, Matthews T S, Li J B, Grossman J C, Wu J Q 2012 Nano Lett. 12 5576Google Scholar

    [11]

    Song L, Ci L J, Lu H, Sorokin P B, Jin C H, Ni J, Kvashnin A G, Kvashnin D G, Lou J, Yakobson B I, Ajayan P M 2010 Nano Lett. 10 3209Google Scholar

    [12]

    徐大庆, 赵子涵, 李培咸, 王超, 张岩, 刘树林, 童军 2018 67 087501Google Scholar

    Xu D Q, Zhao Z H, Li P X, Wang C, Zhang Y, Liu S L, Tong J 2018 Acta Phys. Sin. 67 087501Google Scholar

    [13]

    Chen G X, Wang D D, Zhang J M, Xu K W 2013 Phys. Status Solidi B 250 1510Google Scholar

    [14]

    Nakamura S, Mukai T, Senoh M 1994 Appl. Phys. Lett. 64 1687Google Scholar

    [15]

    Nakamura S 1998 Science 281 956Google Scholar

    [16]

    Al Balushi Z Y, Wang K, Ghosh R K, Vilá R A, Eichfeld S M, Caldwell J D, Qin X, Lin Y C, Desario P A, Stone G, Subramanian S, Paul D F, Wallace R M, Datta S, Redwing J M, Robinson J A 2016 Nat. Mater. 15 1166Google Scholar

    [17]

    Dietl T, Ohno H, Matsukura F, Cibert J, Ferrand D 2000 Science 287 1019Google Scholar

    [18]

    Overberg M E, Abernathy C R, Pearton S J, Theodoropoulou N A, McCarthy K T, Hebard A F 2001 Appl. Phys. Lett. 79 1312Google Scholar

    [19]

    Sasaki T, Sonoda S, Yamamoto Y, Suga K I, Shimizu S, Kindo K, Hori H 2002 J. Appl. Phys. 91 7911Google Scholar

    [20]

    Liu H X, Wu S Y, Singh R K, Lin G, Smith D J, Newman N, Dilley N R, Montes L, Simmonds M B 2004 Appl. Phys. Lett. 85 4076Google Scholar

    [21]

    Wu R Q, Peng G W, Liu L, Feng Y P, Huang Z G, Wu Q Y 2006 Appl. Phys. Lett. 89 062505Google Scholar

    [22]

    Fukumura T, Jin Z, Kawasaki M, Shono T, Hasegawa T, Koshihara S, Koinuma H 2001 Appl. Phys. Lett. 78 958Google Scholar

    [23]

    Xiao G, Wang L L, Rong Q Y, Xu H Q, Xiao W Z 2016 Comput. Mater. Sci. 124 98Google Scholar

    [24]

    Venkatesan M, Fitzgerald C B, Coey J M D 2004 Nature 430 630Google Scholar

    [25]

    Coey J M D 2005 Solid State Sci. 7 660Google Scholar

    [26]

    Ren J, Zhang S B, Liu P P 2019 Chin. Phys. Lett. 36 076101Google Scholar

    [27]

    Pan H, Yi J B, Shen L, Wu R Q, Yang J H, Lin J Y, Feng Y P, Ding J, Van L H, Yin J H 2007 Phys. Rev. Lett. 99 127201Google Scholar

    [28]

    Xiao G, Wang L L, Rong Q Y, Xu H Q, Xiao W Z 2016 Phys. Status Solidi B 253 1816Google Scholar

    [29]

    Han R L, Chen X Y, Yan Y 2017 Chin. Phys. B 26 097503Google Scholar

    [30]

    潘凤春, 徐佳楠, 杨花, 林雪玲, 陈焕铭 2017 66 056101Google Scholar

    Pan F C, Xu J N, Yang H, Lin X L, Chen H M 2017 Acta Phys. Sin. 66 056101Google Scholar

    [31]

    张梅玲, 陈玉红, 张材荣, 李公平 2019 68 087101Google Scholar

    Zhang M L, Chen Y H, Zhang C R, Li G P 2019 Acta Phys. Sin. 68 087101Google Scholar

    [32]

    Sundaresan A, Bhargavi R, Rangarajan N 2006 Phys. Rev. B 74 161306Google Scholar

    [33]

    Dev P, Xue Y, Zhang P 2008 Phys. Rev. Lett. 100 117204Google Scholar

    [34]

    Yang K S, Wu R Q, Shen L, Feng Y P, Dai Y, Huang B B 2010 Phys. Rev. B 81 125211Google Scholar

    [35]

    侯清玉, 李勇, 赵春旺 2017 66 067202Google Scholar

    Hou Q Y, Li Y, Zhao C W 2017 Acta Phys. Sin. 66 067202Google Scholar

    [36]

    黄毅华, 江东亮, 张辉, 陈忠明, 黄政仁 2017 66 017501Google Scholar

    Huang Y H, Jiang D L, Zhang H, Chen Z M, Huang Z R 2017 Acta Phys. Sin. 66 017501Google Scholar

    [37]

    Kresse G, Hafner J 1994 Phys. Rev. B 49 14251Google Scholar

    [38]

    Kresse G, Furthmüller J 1996 Comput. Mater. Sci. 6 15Google Scholar

    [39]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar

    [40]

    Blöchl P E 1994 Phys. Rev. B 50 17953Google Scholar

    [41]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758Google Scholar

    [42]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [43]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188Google Scholar

    [44]

    Şahin H, Cahangirov S, Topsakal M, Bekaroglu E, Akturk E, Senger R T, Ciraci S 2009 Phys. Rev. B 80 155453Google Scholar

    [45]

    Lee S M, Lee Y H, Hwang Y G, Elsner J, Porezag D, Frauenheim T 1999 Phys. Rev. B 60 7788Google Scholar

    [46]

    Maruska H P, Tietjen J J 1969 Appl. Phys. Lett. 15 327Google Scholar

    [47]

    Shi C M, Qin H W, Zhang Y J, Hu J F, Ju L 2014 J. Appl. Phys. 115 053907Google Scholar

    [48]

    Bai Y J, Deng K M, Kan E J 2015 RSC Adv. 5 18352Google Scholar

    [49]

    Xiao W Z, Wang L L 2014 Phys. Status Solidi B 251 1257Google Scholar

    [50]

    Wang X P, Zhao M W, Xia H H, Yan S S, Liu X D 2011 J. Appl. Phys. 110 033711Google Scholar

    [51]

    Henkelman G, Arnaldsson A, Jónsson H 2006 Comput. Mater. Sci. 36 354Google Scholar

    [52]

    Tang W, Sanville E, Henkelman G 2009 J. Phys. Condens. Matter 21 084204Google Scholar

    [53]

    Zhou J, Wang Q, Sun Q, Jena P 2010 Phys. Rev. B 81 085442Google Scholar

    [54]

    Osorioguillén J, Lany S, Barabash S V, Zunger A 2006 Phys. Rev. Lett. 96 107203Google Scholar

    [55]

    Shen L, Wu R Q, Pan H, Peng G W, Yang M, Sha Z D, Feng Y P 2008 Phys. Rev. B 78 073306Google Scholar

  • 图 1  碱金属和碱土金属掺杂GaN单层结构图 (a) 俯视图; (b) 侧视图

    Fig. 1.  Geometry of alkali and alkali-earth metals doped GaN monolayer: (a) Top view; (b) side view.

    图 2  单原子掺杂GaN单层的自旋电荷密度分布图, 等值面为0.004 eV/Å (a) Li掺杂; (b) Na掺杂; (c) K掺杂; (d) Rb掺杂; (e) Be掺杂; (f) Mg掺杂; (g) Sr掺杂

    Fig. 2.  Spin charge density distributions of single atom doped GaN monolayer, isosurface is 0.004 eV/Å: (a) Li doping; (b) Na doping; (c) K doping; (d) Rb doping; (e) Be doping; (f) Mg doping; (g) Sr doping.

    图 3  单原子掺杂GaN单层的自旋DOS和PDOS图 (a) 未掺杂; (b) Li掺杂; (c) Na掺杂; (d) K掺杂; (e) Rb掺杂; (f) Be掺杂; (g) Mg掺杂; (h) Sr掺杂

    Fig. 3.  Spin resolved total DOS and PDOS of GaN monolayer doped single-atom: (a) Pristine; (b) Li doping; (c) Na doping; (d) K doping; (e) Rb doping; (f) Be doping; (g) Mg doping; (h) Sr doping.

    图 4  单原子掺杂GaN单层的能带结构, 图中蓝与红分别代表自旋向上与向下 (a) 未掺杂; (b) Li掺杂; (c) Na掺杂; (d) K掺杂; (e) Rb掺杂; (f) Be掺杂; (g) Mg掺杂; (h) Sr掺杂

    Fig. 4.  Band structures for single atom doped GaN monolayer, the blue and the red respectively represent the spin up and the spin down: (a) Pristine; (b) Li doping; (c) Na doping; (d) K doping; (e) Rb doping; (f) Be doping; (g) Mg doping; (h) Sr doping.

    图 5  (a) 掺杂原子最近邻N原子为中心的局部结构俯视图和侧视图; (b) Li, Be掺杂原子最近邻N原子能级劈裂及电子填充示意图

    Fig. 5.  (a) Top and side views of a local structure centered on the nearest neighboring N atom of the doped atom; (b) schematic diagram of the energy-level splitting and electron filling of the nearest N atom of the Li, Be-doped atom.

    图 6  掺杂原子最近邻N原子的p轨道态密度图 (a) 未掺杂; (b) Li掺杂; (c) Na掺杂; (d) K掺杂; (e) Rb掺杂; (f) Be掺杂; (g) Mg掺杂; (h) Sr掺杂

    Fig. 6.  The p-orbital DOSs of the nearest neighbor N atom of doped atom: (a) Pristine; (b) Li doping; (c) Na doping; (d) K doping; (e) Rb doping; (f) Be doping; (g) Mg doping; (h) Sr doping.

    图 7  (a) Mg掺杂C4构型的自旋电荷密度分布图, 等值面为0.02 eV/Å; (b) Mg掺杂C4构型中Mg-2p, 1N-2p, 2N-2p和3N-2p的PDOS

    Fig. 7.  (a) Spin charge density distribution of the Mg-doped C4 configuration, the isosurface is 0.02 eV/Å; (b) PDOS of Mg-2p, 1N-2p, 2N-2p and 3N-2p in the Mg-doped C4 configuration.

    表 1  两种掺杂模式的能量差$\Delta E$, M原子到GaN单层的距离$\Delta d$, 优化后M—N键长dM—N, 体系形成能${E_{{\rm{form}}}}$, 三个最近邻N原子磁矩${M_{\rm{N}}}$和体系总磁矩${M_{{\rm{tot}}}}$

    Table 1.  Energy difference $\Delta E$, distance from the doped atom to the GaN monolayer $\Delta d$, optimized M—N bond length dM—N, formation energy of doped system ${E_{{\rm{form}}}}$, magnetic moment of the nearest three N atoms around the doped atom ${M_{\rm{N}}}$ and total magnetic moment of doped system ${M_{{\rm{tot}}}}$.

    Metals $\Delta E$/eV $\Delta d$/Å dM—N ${E_{{\rm{form}}}}$/eV ${M_{\rm{N}}}/{\mu _{\rm{B}}}$ ${M_{{\rm{tot}}}}/{\mu _{\rm{B}}}$
    Ga-rich N-rich
    Li 0.295 1.127 1.972 3.522 3.303 0.543 2
    Na 1.202 1.874 2.305 4.224 4.005 0.521 2
    K 2.436 2.482 2.657 3.734 3.515 0.531 2
    Rb 3.076 2.675 2.796 3.370 3.151 0.525 2
    Be 0.000 0.000 1.679 0.582 0.363 0.218 1
    Mg 0.089 0.766 1.957 3.821 3.602 0.198 1
    Sr 1.956 2.031 2.382 1.324 1.105 0.239 1
    下载: 导出CSV

    表 2  结构优化后两掺杂原子的距离${d_{{\rm{M}} - {\rm{M}}}}$, 4种构型相对稳定能${E_{{\rm{RS}}}}$, AFM与FM的能量差$\Delta E$, 掺杂体系总磁矩${M_{{\rm{tot}}}}$, coupling为双M原子掺杂的GaN纳米片各构型的磁耦合态

    Table 2.  Distance between the two doped atoms after structural optimization ${d_{{\rm{M}} - {\rm{M}}}}$, relative stability of the four configurations ${E_{{\rm{RS}}}}$, energy difference between AFM and FM $\Delta E$, total magnetic moment of doped system ${M_{{\rm{tot}}}}$, coupling is the magnetic coupling of various configurations of double M atom doped GaN monolayer.

    Metals Configurations ${d_{{\rm{M}} - {\rm{M}}}}$/Å ${E_{{\rm{RS}}}}$/eV $\Delta E$/eV ${M_{ {\rm{tot} } } }/{\mu _{\rm B}}$ Coupling
    Li C1 (1, 2) 3.315 0.000 0.313 4 FM
    C2 (1, 3) 5.663 0.318 0.049 4 FM
    C3 (1, 4) 6.475 0.222 0.596 4 FM
    C4 (1, 5) 11.215 0.222 0.034 4 FM
    Na C1 (1, 2) 3.662 0.000 0.308 4 FM
    C2 (1, 3) 5.706 0.329 0.033 4 FM
    C3 (1, 4) 6.475 0.216 0.481 4 FM
    C4 (1, 5) 11.215 0.216 0.014 4 FM
    K C1 (1, 2) 4.147 0.000 0.318 4 FM
    C2 (1, 3) 5.789 0.276 0.032 4 FM
    C3 (1, 4) 6.475 0.142 0.239 4 FM
    C4 (1, 5) 11.215 0.142 0.022 4 FM
    Rb C1 (1, 2) 4.326 0.000 0.322 4 FM
    C2 (1, 3) 5.842 0.272 0.096 4 FM
    C3 (1, 4) 6.475 0.137 0.240 4 FM
    C4 (1, 5) 11.215 0.137 0.019 4 FM
    Be C1 (1, 2) 3.168 0.068 0.289 2 FM
    C2 (1, 3) 5.597 0.000 0.000 2 FM
    C3 (1, 4) 6.475 0.100 0.148 2 FM
    C4 (1, 5) 11.215 0.100 0.119 2 FM
    Mg C1 (1, 2) 3.359 0.000 0.241 2 FM
    C2 (1, 3) 5.651 0.035 –0.003 2 FM
    C3 (1, 4) 6.475 0.080 0.068 2 FM
    C4 (1, 5) 11.215 0.079 0.168 2 FM
    Sr C1 (1, 2) 4.092 0.049 0.194 2 FM
    C2 (1, 3) 5.868 0.124 0.076 2 FM
    C3 (1, 4) 6.475 0.000 –0.002 0 AFM
    C4 (1, 5) 11.215 0.002 0.352 2 FM
    下载: 导出CSV
    Baidu
  • [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [2]

    Srivastava P, Hembram K, Mizuseki H, Lee K R, Han S S, Kim S 2015 J. Phys. Chem. C 119 6530Google Scholar

    [3]

    Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N, Strano M S 2012 Nat. Nanotechnol. 7 699Google Scholar

    [4]

    Prinz G A 1998 Science 282 1660Google Scholar

    [5]

    Wolf S A, Awschalom D D, Buhrman R A, Daughton J M, von Molnar S, Roukes M L, Chtchelkanova A Y, Treger D M 2001 Science 294 1488Google Scholar

    [6]

    Feng B J, Ding Z J, Meng S, Yao Y G, He X Y, Cheng P, Chen L, Wu K H 2012 Nano Lett. 12 3507Google Scholar

    [7]

    Liu H, Neal A T, Zhu Z, Luo Z, Xu X F, Tománek D, Ye P D 2014 ACS Nano 8 4033Google Scholar

    [8]

    Li L K, Yu Y J, Ye G J, Ge Q Q, Ou X D, Wu H, Feng D L, Chen X H, Zhang Y B 2014 Nat. Nanotechnol. 9 372Google Scholar

    [9]

    Wei J W, Ma Z W, Zeng H, Wang Z Y, Wei Q, Peng P 2012 Aip Adv. 2 042141Google Scholar

    [10]

    Tongay S, Zhou J, Ataca C, Lo K, Matthews T S, Li J B, Grossman J C, Wu J Q 2012 Nano Lett. 12 5576Google Scholar

    [11]

    Song L, Ci L J, Lu H, Sorokin P B, Jin C H, Ni J, Kvashnin A G, Kvashnin D G, Lou J, Yakobson B I, Ajayan P M 2010 Nano Lett. 10 3209Google Scholar

    [12]

    徐大庆, 赵子涵, 李培咸, 王超, 张岩, 刘树林, 童军 2018 67 087501Google Scholar

    Xu D Q, Zhao Z H, Li P X, Wang C, Zhang Y, Liu S L, Tong J 2018 Acta Phys. Sin. 67 087501Google Scholar

    [13]

    Chen G X, Wang D D, Zhang J M, Xu K W 2013 Phys. Status Solidi B 250 1510Google Scholar

    [14]

    Nakamura S, Mukai T, Senoh M 1994 Appl. Phys. Lett. 64 1687Google Scholar

    [15]

    Nakamura S 1998 Science 281 956Google Scholar

    [16]

    Al Balushi Z Y, Wang K, Ghosh R K, Vilá R A, Eichfeld S M, Caldwell J D, Qin X, Lin Y C, Desario P A, Stone G, Subramanian S, Paul D F, Wallace R M, Datta S, Redwing J M, Robinson J A 2016 Nat. Mater. 15 1166Google Scholar

    [17]

    Dietl T, Ohno H, Matsukura F, Cibert J, Ferrand D 2000 Science 287 1019Google Scholar

    [18]

    Overberg M E, Abernathy C R, Pearton S J, Theodoropoulou N A, McCarthy K T, Hebard A F 2001 Appl. Phys. Lett. 79 1312Google Scholar

    [19]

    Sasaki T, Sonoda S, Yamamoto Y, Suga K I, Shimizu S, Kindo K, Hori H 2002 J. Appl. Phys. 91 7911Google Scholar

    [20]

    Liu H X, Wu S Y, Singh R K, Lin G, Smith D J, Newman N, Dilley N R, Montes L, Simmonds M B 2004 Appl. Phys. Lett. 85 4076Google Scholar

    [21]

    Wu R Q, Peng G W, Liu L, Feng Y P, Huang Z G, Wu Q Y 2006 Appl. Phys. Lett. 89 062505Google Scholar

    [22]

    Fukumura T, Jin Z, Kawasaki M, Shono T, Hasegawa T, Koshihara S, Koinuma H 2001 Appl. Phys. Lett. 78 958Google Scholar

    [23]

    Xiao G, Wang L L, Rong Q Y, Xu H Q, Xiao W Z 2016 Comput. Mater. Sci. 124 98Google Scholar

    [24]

    Venkatesan M, Fitzgerald C B, Coey J M D 2004 Nature 430 630Google Scholar

    [25]

    Coey J M D 2005 Solid State Sci. 7 660Google Scholar

    [26]

    Ren J, Zhang S B, Liu P P 2019 Chin. Phys. Lett. 36 076101Google Scholar

    [27]

    Pan H, Yi J B, Shen L, Wu R Q, Yang J H, Lin J Y, Feng Y P, Ding J, Van L H, Yin J H 2007 Phys. Rev. Lett. 99 127201Google Scholar

    [28]

    Xiao G, Wang L L, Rong Q Y, Xu H Q, Xiao W Z 2016 Phys. Status Solidi B 253 1816Google Scholar

    [29]

    Han R L, Chen X Y, Yan Y 2017 Chin. Phys. B 26 097503Google Scholar

    [30]

    潘凤春, 徐佳楠, 杨花, 林雪玲, 陈焕铭 2017 66 056101Google Scholar

    Pan F C, Xu J N, Yang H, Lin X L, Chen H M 2017 Acta Phys. Sin. 66 056101Google Scholar

    [31]

    张梅玲, 陈玉红, 张材荣, 李公平 2019 68 087101Google Scholar

    Zhang M L, Chen Y H, Zhang C R, Li G P 2019 Acta Phys. Sin. 68 087101Google Scholar

    [32]

    Sundaresan A, Bhargavi R, Rangarajan N 2006 Phys. Rev. B 74 161306Google Scholar

    [33]

    Dev P, Xue Y, Zhang P 2008 Phys. Rev. Lett. 100 117204Google Scholar

    [34]

    Yang K S, Wu R Q, Shen L, Feng Y P, Dai Y, Huang B B 2010 Phys. Rev. B 81 125211Google Scholar

    [35]

    侯清玉, 李勇, 赵春旺 2017 66 067202Google Scholar

    Hou Q Y, Li Y, Zhao C W 2017 Acta Phys. Sin. 66 067202Google Scholar

    [36]

    黄毅华, 江东亮, 张辉, 陈忠明, 黄政仁 2017 66 017501Google Scholar

    Huang Y H, Jiang D L, Zhang H, Chen Z M, Huang Z R 2017 Acta Phys. Sin. 66 017501Google Scholar

    [37]

    Kresse G, Hafner J 1994 Phys. Rev. B 49 14251Google Scholar

    [38]

    Kresse G, Furthmüller J 1996 Comput. Mater. Sci. 6 15Google Scholar

    [39]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar

    [40]

    Blöchl P E 1994 Phys. Rev. B 50 17953Google Scholar

    [41]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758Google Scholar

    [42]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [43]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188Google Scholar

    [44]

    Şahin H, Cahangirov S, Topsakal M, Bekaroglu E, Akturk E, Senger R T, Ciraci S 2009 Phys. Rev. B 80 155453Google Scholar

    [45]

    Lee S M, Lee Y H, Hwang Y G, Elsner J, Porezag D, Frauenheim T 1999 Phys. Rev. B 60 7788Google Scholar

    [46]

    Maruska H P, Tietjen J J 1969 Appl. Phys. Lett. 15 327Google Scholar

    [47]

    Shi C M, Qin H W, Zhang Y J, Hu J F, Ju L 2014 J. Appl. Phys. 115 053907Google Scholar

    [48]

    Bai Y J, Deng K M, Kan E J 2015 RSC Adv. 5 18352Google Scholar

    [49]

    Xiao W Z, Wang L L 2014 Phys. Status Solidi B 251 1257Google Scholar

    [50]

    Wang X P, Zhao M W, Xia H H, Yan S S, Liu X D 2011 J. Appl. Phys. 110 033711Google Scholar

    [51]

    Henkelman G, Arnaldsson A, Jónsson H 2006 Comput. Mater. Sci. 36 354Google Scholar

    [52]

    Tang W, Sanville E, Henkelman G 2009 J. Phys. Condens. Matter 21 084204Google Scholar

    [53]

    Zhou J, Wang Q, Sun Q, Jena P 2010 Phys. Rev. B 81 085442Google Scholar

    [54]

    Osorioguillén J, Lany S, Barabash S V, Zunger A 2006 Phys. Rev. Lett. 96 107203Google Scholar

    [55]

    Shen L, Wu R Q, Pan H, Peng G W, Yang M, Sha Z D, Feng Y P 2008 Phys. Rev. B 78 073306Google Scholar

  • [1] 李发云, 杨志雄, 程雪, 甄丽营, 欧阳方平. 单层缺陷碲烯电子结构与光学性质的第一性原理研究.  , 2021, 70(16): 166301. doi: 10.7498/aps.70.20210271
    [2] 熊子谦, 张鹏程, 康文斌, 方文玉. 一种新型二维TiO2的电子结构与光催化性质.  , 2020, 69(16): 166301. doi: 10.7498/aps.69.20200631
    [3] 侯璐, 童鑫, 欧阳钢. 一维carbyne链原子键性质应变调控的第一性原理研究.  , 2020, 69(24): 246802. doi: 10.7498/aps.69.20201231
    [4] 姚仲瑜, 孙丽, 潘孟美, 孙书娟, 刘汉军. 第一性原理研究half-Heusler合金VLiBi和CrLiBi的半金属铁磁性.  , 2018, 67(21): 217501. doi: 10.7498/aps.67.20181129
    [5] 姚仲瑜, 孙丽, 潘孟美, 孙书娟. 第一性原理研究semi-Heusler合金CoCrTe和CoCrSb的半金属性和磁性.  , 2016, 65(12): 127501. doi: 10.7498/aps.65.127501
    [6] 颜送灵, 唐黎明, 赵宇清. 不同组分厚度比的LaMnO3/SrTiO3异质界面电子结构和磁性的第一性原理研究.  , 2016, 65(7): 077301. doi: 10.7498/aps.65.077301
    [7] 徐大庆, 张义门, 娄永乐, 童军. 热退火对Mn离子注入非故意掺杂GaN微结构、光学及磁学特性的影响.  , 2014, 63(4): 047501. doi: 10.7498/aps.63.047501
    [8] 谭兴毅, 王佳恒, 朱祎祎, 左安友, 金克新. 碳、氧、硫掺杂二维黑磷的第一性原理计算.  , 2014, 63(20): 207301. doi: 10.7498/aps.63.207301
    [9] 黄有林, 侯育花, 赵宇军, 刘仲武, 曾德长, 马胜灿. 应变对钴铁氧体电子结构和磁性能影响的第一性原理研究.  , 2013, 62(16): 167502. doi: 10.7498/aps.62.167502
    [10] 吴木生, 徐波, 刘刚, 欧阳楚英. Cr和W掺杂的单层MoS2电子结构的第一性原理研究.  , 2013, 62(3): 037103. doi: 10.7498/aps.62.037103
    [11] 宋庆功, 刘立伟, 赵辉, 严慧羽, 杜全国. YFeO3的电子结构和光学性质的第一性原理研究.  , 2012, 61(10): 107102. doi: 10.7498/aps.61.107102
    [12] 杨天勇, 孔春阳, 阮海波, 秦国平, 李万俊, 梁薇薇, 孟祥丹, 赵永红, 方亮, 崔玉亭. 退火温度对N+注入ZnO:Mn薄膜结构及室温铁磁性的影响.  , 2012, 61(16): 168101. doi: 10.7498/aps.61.168101
    [13] 刘建军. (Zn,Al)O电子结构第一性原理计算及电导率的分析.  , 2011, 60(3): 037102. doi: 10.7498/aps.60.037102
    [14] 程志梅, 王新强, 王风, 鲁丽娅, 刘高斌, 段壮芬, 聂招秀. 三元化合物ZnCrS2电子结构和半金属铁磁性的第一性原理研究.  , 2011, 60(9): 096301. doi: 10.7498/aps.60.096301
    [15] 文黎巍, 王玉梅, 裴慧霞, 丁俊. Sb系half-Heusler合金磁性及电子结构的第一性原理研究.  , 2011, 60(4): 047110. doi: 10.7498/aps.60.047110
    [16] 罗礼进, 仲崇贵, 江学范, 方靖淮, 蒋青. Heusler合金Ni2MnSi的电子结构、磁性、压力响应及四方变形的第一性原理研究.  , 2010, 59(1): 521-526. doi: 10.7498/aps.59.521
    [17] 宋久旭, 杨银堂, 刘红霞, 张志勇. 掺氮碳化硅纳米管电子结构的第一性原理研究.  , 2009, 58(7): 4883-4887. doi: 10.7498/aps.58.4883
    [18] 倪建刚, 刘 诺, 杨果来, 张 曦. 第一性原理研究BaTiO3(001)表面的电子结构.  , 2008, 57(7): 4434-4440. doi: 10.7498/aps.57.4434
    [19] 孔令刚, 康晋锋, 王 漪, 刘力锋, 刘晓彦, 张 兴, 韩汝琦. CoxTi1-xO2-δ体材中氢退火引起的铁磁性及结构相变.  , 2006, 55(3): 1453-1457. doi: 10.7498/aps.55.1453
    [20] 潘志军, 张澜庭, 吴建生. CoSi电子结构第一性原理研究.  , 2005, 54(1): 328-332. doi: 10.7498/aps.54.328
计量
  • 文章访问数:  12141
  • PDF下载量:  268
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-08-17
  • 修回日期:  2019-09-27
  • 上网日期:  2019-11-27
  • 刊出日期:  2019-12-05

/

返回文章
返回
Baidu
map