-
The mission planning problem in command and control organization can be mapped into a combinatorial optimization problem with many variables and is difficult to solve. The traditional heuristic list planning method faces the problems of high time complexity and poor real-time response. For the mission planning problem in command and control organization, a quantum circuit solution scheme is proposed based on quantum approximate optimization algorithm in this work. Firstly, the mission planning problem is transformed into a typical combinatorial optimization problem, the exact coverage problem. Then, by constructing the corresponding mathematical model, the final state Hamiltonian expression of the quantum approximate optimization algorithm for the exact coverage problem is derived. The quantum circuit based on the quantum approximate optimization algorithm is designed. Finally the parameters in the quantum logic gate are optimized by the momentum gradient descent algorithm, and the simulation experiment is carried out by using the quantum software development environment of the Origin Quantum Computing Company. The simulation results show that the quantum circuit scheme can be used to solve the mission planning problem, reduce the time complexity of the algorithm, and improve the resource utilization to a certain extent. This work lays the foundation for further application of quantum algorithm to solving the mission planning problem in command and control organization.
[1] 张杰勇, 姚佩阳, 周翔翔, 孙鹏 2012 火力与指挥控制 37 2293
Zhang J Y, Yao P Y, Zhou X X, Sun P 2012 Fire Control and Command Control 37 2293
[2] 张杰勇, 姚佩阳, 周翔翔, 王欣 2012 系统工程与电子技术 34 947Google Scholar
Zhang J Y, Yao P Y, Zhou X X, Wang X 2012 Syst. Eng. Electron. 34 947Google Scholar
[3] Sih G C, Lee E A 1993 IEEE Trans. Parallel Distrib. Syst. 4 175Google Scholar
[4] Levchuk G M, Levchuk Y N, Luo J 2002 IEEE Trans. Syst. Man Cybern. Part A Syst. Humans 32 346Google Scholar
[5] 阳东升, 张维明, 刘忠, 等 2006 系统工程理论与实践 01 26Google Scholar
Yang D S, Zhang W M, Liu Z, et al. 2006 Syst. Eng. Theor. Pract. 01 26Google Scholar
[6] 鲁音隆, 阳东升, 刘忠, 等 2006 火力与指挥控制 31 12Google Scholar
Lu Y L, Yang D S, Liu Z, et al. 2006 Fire Control and Command Control 31 12Google Scholar
[7] Arute F, Arya K, Babbush R, et al. 2019 Nature 574 505Google Scholar
[8] Farhi E, Harrow A W 2019 arXiv: 1602.07674 v2 [quant-ph]
[9] Lin C Y Y, Zhu Y 2016 arXiv: 1601.01744 v1 [quant-ph]
[10] Wecker D, Hastings M B, Troyer M 2016 Phys. Rev. A 94 022309Google Scholar
[11] Lechner W 2020 IEEE Trans. Quantum Eng. 1 3102206
[12] Yang Z C, Rahmani A, Shabani A, Neven H, Chamon C 2017 Phys. Rev. X 7 021027
[13] Zahedinejad E, Zaribafiyan A 2017 arXiv: 1708.05294 v1 [quant-ph]
[14] Farhi E, Goldstone J, Gutmann S 2014 arXiv: 1411.4028 v1 [quant-ph]
[15] Albash T, Lidar D A 2018 Rev. Mod. Phys. 90 015002Google Scholar
[16] Crooks G E 2018 arXiv: 1811.08419 v1[quant-ph]
[17] Guerreschi G G, Matsuura A Y 2019 Sci. Rep.s 9 6903Google Scholar
[18] Wang Z, Hadfield S, Jiang Z, Rieffel E G 2018 Phys. Rev. A 97 022304Google Scholar
[19] Farhi E, Goldstone J, Gutmann S, Lapan J, Lundgren A, Preda D 2001 Science 292 472Google Scholar
[20] Young A P, Knysh S, Smelyanskiy V N 2010 Phys. Rev. Lett. 104 020502Google Scholar
[21] Altshuler B, Krovi H, Rol J 2010 Proc. Natl.Acad. Sci. U. S. A. 107 12446Google Scholar
[22] Choi V 2010 Comput. Sci. 108 7
[23] Wang H, Wu L A 2016 Sci. Rep. 6 22307Google Scholar
[24] Graß T 2019 Phys. Rev. Lett. 123 120501Google Scholar
[25] Lucas A 2014 Front.Phys. 2 5
[26] Fu Y, Anderson P W 1986 J. Phys. A 19 1605Google Scholar
[27] Mézard M, Montanari A 2009 Information, Physics and Computation P35
[28] Vikstål P, Grönkvist M, Svensson M, et al. 2020 Phys. Rev. Appl. 14 034009Google Scholar
[29] Broyden C G 1970 IMA J. Appl. Math. 6 76Google Scholar
[30] Nelder J A, Mead R 1965 Comput. J. 7 308Google Scholar
[31] Frazier P I 2018 arXiv: 1807.02811 v1 [stat.ML]
[32] Zhou L, Wang S T, Choi S, et al. 2020 Phys. Rev. X 10 021067
[33] 王培良, 张婷, 肖英杰 2020 69 080504Google Scholar
Wang P L, Zhang T, Xiao Y J 2020 Acta Phys. Sin. 69 080504Google Scholar
-
表 1 平台对应可执行任务分配方案
Table 1. Platforms corresponding executable mission allocation.
平 台 1 2 3 4 5 6 平台可执
行的任务1,2,3 1,2,3,4 3,4,5,6 5,6,7,8 7,8,9,10 9,10,11,12 -
[1] 张杰勇, 姚佩阳, 周翔翔, 孙鹏 2012 火力与指挥控制 37 2293
Zhang J Y, Yao P Y, Zhou X X, Sun P 2012 Fire Control and Command Control 37 2293
[2] 张杰勇, 姚佩阳, 周翔翔, 王欣 2012 系统工程与电子技术 34 947Google Scholar
Zhang J Y, Yao P Y, Zhou X X, Wang X 2012 Syst. Eng. Electron. 34 947Google Scholar
[3] Sih G C, Lee E A 1993 IEEE Trans. Parallel Distrib. Syst. 4 175Google Scholar
[4] Levchuk G M, Levchuk Y N, Luo J 2002 IEEE Trans. Syst. Man Cybern. Part A Syst. Humans 32 346Google Scholar
[5] 阳东升, 张维明, 刘忠, 等 2006 系统工程理论与实践 01 26Google Scholar
Yang D S, Zhang W M, Liu Z, et al. 2006 Syst. Eng. Theor. Pract. 01 26Google Scholar
[6] 鲁音隆, 阳东升, 刘忠, 等 2006 火力与指挥控制 31 12Google Scholar
Lu Y L, Yang D S, Liu Z, et al. 2006 Fire Control and Command Control 31 12Google Scholar
[7] Arute F, Arya K, Babbush R, et al. 2019 Nature 574 505Google Scholar
[8] Farhi E, Harrow A W 2019 arXiv: 1602.07674 v2 [quant-ph]
[9] Lin C Y Y, Zhu Y 2016 arXiv: 1601.01744 v1 [quant-ph]
[10] Wecker D, Hastings M B, Troyer M 2016 Phys. Rev. A 94 022309Google Scholar
[11] Lechner W 2020 IEEE Trans. Quantum Eng. 1 3102206
[12] Yang Z C, Rahmani A, Shabani A, Neven H, Chamon C 2017 Phys. Rev. X 7 021027
[13] Zahedinejad E, Zaribafiyan A 2017 arXiv: 1708.05294 v1 [quant-ph]
[14] Farhi E, Goldstone J, Gutmann S 2014 arXiv: 1411.4028 v1 [quant-ph]
[15] Albash T, Lidar D A 2018 Rev. Mod. Phys. 90 015002Google Scholar
[16] Crooks G E 2018 arXiv: 1811.08419 v1[quant-ph]
[17] Guerreschi G G, Matsuura A Y 2019 Sci. Rep.s 9 6903Google Scholar
[18] Wang Z, Hadfield S, Jiang Z, Rieffel E G 2018 Phys. Rev. A 97 022304Google Scholar
[19] Farhi E, Goldstone J, Gutmann S, Lapan J, Lundgren A, Preda D 2001 Science 292 472Google Scholar
[20] Young A P, Knysh S, Smelyanskiy V N 2010 Phys. Rev. Lett. 104 020502Google Scholar
[21] Altshuler B, Krovi H, Rol J 2010 Proc. Natl.Acad. Sci. U. S. A. 107 12446Google Scholar
[22] Choi V 2010 Comput. Sci. 108 7
[23] Wang H, Wu L A 2016 Sci. Rep. 6 22307Google Scholar
[24] Graß T 2019 Phys. Rev. Lett. 123 120501Google Scholar
[25] Lucas A 2014 Front.Phys. 2 5
[26] Fu Y, Anderson P W 1986 J. Phys. A 19 1605Google Scholar
[27] Mézard M, Montanari A 2009 Information, Physics and Computation P35
[28] Vikstål P, Grönkvist M, Svensson M, et al. 2020 Phys. Rev. Appl. 14 034009Google Scholar
[29] Broyden C G 1970 IMA J. Appl. Math. 6 76Google Scholar
[30] Nelder J A, Mead R 1965 Comput. J. 7 308Google Scholar
[31] Frazier P I 2018 arXiv: 1807.02811 v1 [stat.ML]
[32] Zhou L, Wang S T, Choi S, et al. 2020 Phys. Rev. X 10 021067
[33] 王培良, 张婷, 肖英杰 2020 69 080504Google Scholar
Wang P L, Zhang T, Xiao Y J 2020 Acta Phys. Sin. 69 080504Google Scholar
Catalog
Metrics
- Abstract views: 5086
- PDF Downloads: 117
- Cited By: 0