Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Selection of entanglement state in quantum repeater process

Shi Tao Lü Li-Hua Li You-Quan

Citation:

Selection of entanglement state in quantum repeater process

Shi Tao, Lü Li-Hua, Li You-Quan
PDF
HTML
Get Citation
  • The decoherence of entanglement states stored in quantum memory is a major obstacle when implementing a quantum repeater. So far, the electron spins in quantum dots are usually utilized to construct entangled states in quantum repeater. In the quantum repeater process, the distance between quantum dots is large, so the interaction between them can be neglected. Thus the hyperfine interaction between the electron spin and its neighbor nuclear spins in the quantum dot is considered to be the main reason for the decoherence of the system. In early researches, the hyperfine interaction between the electron spin and its neighbor nuclear spins was considered as an effective magnetic field whose magnitude and direction are random and the magnitude follows the Gaussian distribution. In this paper, we simultaneously consider an applied magnetic field and the interaction between the electron spin and its neighbor nuclear spins, and investigate the decoherence of the quantum repeater of two quantum dots. We first solve the time evolution of the system by the numerical method, and the result shows that when the applied magnetic field is increased to a certain value, the four Bell states can be divided into two kinds, each with two Bell states. The system cannot transit from the Bell state in one kind to that in the other kind, but can transit between two Bell states with in the same kind. This effectively improves the fidelity of the initial state and suppresses the decoherence of the system. For a given applied magnetic field with large magnitude, we theoretically study the effect of the fluctuation of nuclear spin on the entangled state, and give an analytical expression for each of the fidelity and the decoherence time of the initial state. We show that the decoherence times of the four Bell states are the same, but the time evolutions of the Bell states belonging to different kinds are different obviously. The fidelity of two Bell states not only decays exponentially but also oscillates rapidly, so such two Bell states are difficult to be manipulated and not suggested in quantum repeater process. The results in this paper are expected to provide theoretical suggestions for selecting the entangled states in quantum repeater.
      Corresponding author: Shi Tao, 21536032@zju.edu.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2017YFA0304304)
    [1]

    Bennett C H, Brassard G, Crépeau C, Jozsa R, Peres A, Wotter W K 1993 Phys. Rev. Lett. 70 1895Google Scholar

    [2]

    Bouwmeester D, Pan J W, Mattle K, Eibl M, Weinfurter H, Zeilinger A 1997 Nature 390 575Google Scholar

    [3]

    Ma X S, Herbst T, Scheidl, Wang D, Kropatschek S, Naylor W, Wittmann A, Mech J, Korfler E, Anisimova, Makarov V, Jennewein T, Ursin R, Zeilinger A 2012 Nature 489 269Google Scholar

    [4]

    Vallone G, Bacco D, Dequal D, Gaiarin S, Luceri V, Bianco G, Villoresi P 2015 Phys. Rev. Lett. 115 040502Google Scholar

    [5]

    Yin J, Cao Y, Li Y H, Ren J G, Liao S K, Zhang L, Cai W Q, Liu W Y, Li B, Dai H, Li M, Huang Y M, Deng L, Li L, Zhang Q, Liu L N, Chen Y A, Lu C Y, Shu R, Peng C Z, Wang J Y, Pan J W 2017 Phys. Rev. Lett. 119 200501Google Scholar

    [6]

    Yin J, Cao Y, Li Y H, Liao S K, Zhang L, Ren J G, Cai W Q, Liu W Y, Li B, Dai H, Li G B, Lu Q M, Gong Y H, Xu Y, Li S L, Li F Z, Yin Y Y, Jiang Z Q, Li M, Jia J J, Ren G, He D, Zhou Y L, Zhang X X, Wang N, Chang X, Zhu Z C, Liu N L, Chen Y A, Lu C Y, Shu R, Peng C Z, Wang J Y, Pan J W 2017 Science 356 1140Google Scholar

    [7]

    Dür W, Briegel H J, Cirac J I, Zoller P 1999 Phys. Rev. A 59 169Google Scholar

    [8]

    Pfister A D, Salz M, Hettrich M, Poschinger U G, Schmidt-Kaler F 2016 Appl. Phys. B 122 1Google Scholar

    [9]

    Greve K D 2013 Towards Solid-State Quantum Repeaters: Ultrafast, Coherent Optical Control and Spin-photon Entanglement in Charged InAs Quantum Dots (Heidelberg: Springer) pp21–39

    [10]

    Briegel H J, Dür W, Cirac J I, Zoller P 1998 Phys. Rev. Lett. 81 5932

    [11]

    Freer S, Simmons S, Laucht A, Muhonen J T, Dehollain J P, Kalra R, Mohiyaddin F A, Hudson F E, Itoh K M, McCallum J C, Jamieson D N, Dzurak A S, Morello A 2017 Quantum Sci. Technol. 2 015009Google Scholar

    [12]

    Kawakami E, Scarlino P, Ward D R, Braakman F R, Savage D E, Lagally M G, Friesen M, Coppersmith S N, Eriksson M A, Vandersypen L M K 2014 Nat. Nanotechnol. 9 666Google Scholar

    [13]

    Specht H P, Nölleke C, Reiserer A, Uphoff M, Figueroa E, Ritter S, Rempe G 2011 Nature. 473 190

    [14]

    Loock van P, Ladd T D, Sanaka K, Yamaguchi F, Nemoto K, Munro W J, Yamamoto Y 2006 Phys. Rev. Lett. 96 240501Google Scholar

    [15]

    Duan L M, Lukin M, Cirac J I 2001 Nature 414 413Google Scholar

    [16]

    Pan J W, Bouwmeester D, Weinfurter H, Zeilinger A 1998 Phys. Rev. Lett. 80 3891Google Scholar

    [17]

    Lloyd S, Shahriar M S, Shapiro J H, Hemmer P R 2001 Phys. Rev. Lett. 87 167903Google Scholar

    [18]

    Ekert A K 1991 Phys. Rev. Lett. 67 661Google Scholar

    [19]

    Malinowski F K, Martins F, Cywiński L, Rudner M S, Nissen P D, Fallahi S, Gardner G C, Manfra M J, Marcus C M, Kuemmeth F 2017 Phys. Rev. Lett. 118 177702Google Scholar

    [20]

    Liu R B, Yao W, Sham L 2007 New J. Phys. 9 226Google Scholar

    [21]

    Saito S, Zhu X B, Amsüss R, Matsuzaki Y, Kakuyanagi K, Shimo-Oka T, Mizuochi N, Nemoto K, Munro W J, Semba K 2013 Phys. Rev. Lett. 111 107008Google Scholar

    [22]

    Xiang Z L, Ashhab S, You J Q, Nori F 2013 Rev. Mod. Phys. 85 623Google Scholar

    [23]

    Maune B M, Borselli M G, Huang B, Ladd T D, Deelman P W, Holabird K S, Kiselev A A, Alvarado-Rodriguez I, Ross R S, Schmitz A E 2012 Nature 481 344Google Scholar

    [24]

    Yao W, Liu R B, Sham L J 2007 Phys. Rev. Lett. 98 077602Google Scholar

    [25]

    Merkulov I A 2002 Phys. Rev. B 65 205309Google Scholar

    [26]

    Assali L V C, Petrilli H M, Capaz R B, Koiller B, Hu X D, Sarma S D 2011 Phys. Rev. B 83 165301Google Scholar

    [27]

    Eisenberg B, Sullivan R 2008 Math. Mag. 81 362Google Scholar

    [28]

    Reilly D J, Taylor J M, Laird E A, Petta J R, Marcus C M, Hanson M P, Gossard A C 2007 Phys. Rev. Lett. 101 236803

  • 图 1  量子中继步骤 (a)在每一段量子传输线路上分发纠缠态; (b)在量子中继器中进行纠缠态的转移操作; (c) Alice做Bell基测量, 量子比特1的信息通过量子比特2和3组成的纠缠态量子信息传输通道远程传到Bob处

    Figure 1.  The process of quantum repeater: (a) Distributing entanglement states in every segment of quantum channel; (b) quantum swapping in quantum repeaters; (c) quantum teleportation. After Alice taking Bell state measurement, the information of qubit 1 is transferred to Bob via entanglement state of qubit 2 and 3.

    图 2  两个相互纠缠的量子中继器, 纠缠态为两个电子自旋组成的4个Bell基.

    Figure 2.  Entanglement of the two separated quantum repeaters. Entangled states are the four Bell states constructed by two electron spins.

    图 3  3种不同大小的外加磁场下, 体系处于4个不同Bell基上的几率随时间的演化规律 (a), (b), (c), (d)分别对应系统处于$ |\phi_{12}^+\rangle $, $ |\phi_{12}^-\rangle $, $ |\psi_{12}^+\rangle $, $ |\psi_{12}^-\rangle $的平均几率. 体系初态为$ |\phi_{12}^+\rangle $, 外加磁场参数为$ B_0 = 0 $ (红色虚线), $ B_0 = 3\varDelta_B $(黑色点划线), $ B_0 = 10\varDelta_B $ (蓝色实线). 时间以$ t_0 = 1/(\mu_0\varDelta_B) $为单位

    Figure 3.  Time evolution of mean probability in four Bell states: (a) $ |\phi_{12}^+\rangle $, (b) $ |\phi_{12}^-\rangle $, (c) $ |\psi_{12}^+\rangle $, (d) $ |\psi_{12}^-\rangle $ for different applied magnetic fields. The initial state is $ |\phi_{12}^+\rangle $, and the parameters are $ B_0 = 0 $(red dash line), $ B_0 = 3\varDelta_B $ (black dash dot line), $ B_0 = 10\varDelta_B $ (blue solid line). Time is in the unit of $ t_0 = 1/(\mu_0\varDelta_B) $.

    图 4  3种不同大小的外加磁场下, 体系处于4个不同Bell基上的几率随时间的演化规律 (a), (b), (c), (d)分别对应系统处于$ |\phi_{12}^+\rangle $, $ |\phi_{12}^-\rangle $, $ |\psi_{12}^+\rangle $, $ |\psi_{12}^-\rangle $的平均几率. 体系的初态为$ |\psi_{12}^+\rangle $, 外加磁场参数为$ B_0 = 0 $ (红色虚线), $ B_0 = 3\varDelta_B $(黑色点划线)、$ B_0 = 10\varDelta_B $ (蓝色实线). 时间以$ t_0 = 1/(\mu_0\varDelta_B) $为单位

    Figure 4.  Time evolution of mean probability in four Bell states: (a) $ |\phi_{12}^+\rangle $, (b) $ |\phi_{12}^-\rangle $, (c) $ |\psi_{12}^+\rangle $, (d) $ |\psi_{12}^-\rangle $ for different applied magnetic fields. The initial state is $ |\psi_{12}^+\rangle $, and the parameters are $ B_0 = 0 $(red dash line), $ B_0 = 3\varDelta_B $ (black dash dot line), $ B_0 = 10\varDelta_B $ (blue solid line). Time is in the unit of $ t_0 = 1/(\mu_0\varDelta_B) $.

    图 5  (a)系统仍然处在$ |\phi_{12}^+\rangle $上的平均几率随时间的演化; (b)系统跃迁到$ |\phi_{12}^-\rangle $的平均几率随时间的演化. 系统初态为$ |\phi_{12}^+\rangle $, 时间以$t_0 = 1/(\mu_0\varDelta_B)$为单位

    Figure 5.  (a) Time evolution of the mean probability in $ |\phi_{12}^+\rangle $, (b) that in $ |\phi_{12}^{-}\rangle $. The initial state is $ |\phi_{12}^+\rangle $, and the time is in the unit of $t_0 = 1/(\mu_0\varDelta_B)$.

    图 6  (a)系统仍然处在$ |\psi_{12}^+\rangle $上的平均几率随时间的演化; (b)系统跃迁到$ |\psi_{12}^-\rangle $的平均几率随时间的演化. 系统初态为$ |\psi_{12}^+\rangle $, 时间以$t_0 = 1/(\mu_0\varDelta_B)$为单位

    Figure 6.  (a) Time evolution of the mean probability in$ |\psi_{12}^+\rangle $, (b) that in$ |\psi_{12}^-\rangle $. The initial state is$ |\psi_{12}^+\rangle $, and the time is in the unit of $t_0 = 1/(\mu_0\varDelta_B)$.

    Baidu
  • [1]

    Bennett C H, Brassard G, Crépeau C, Jozsa R, Peres A, Wotter W K 1993 Phys. Rev. Lett. 70 1895Google Scholar

    [2]

    Bouwmeester D, Pan J W, Mattle K, Eibl M, Weinfurter H, Zeilinger A 1997 Nature 390 575Google Scholar

    [3]

    Ma X S, Herbst T, Scheidl, Wang D, Kropatschek S, Naylor W, Wittmann A, Mech J, Korfler E, Anisimova, Makarov V, Jennewein T, Ursin R, Zeilinger A 2012 Nature 489 269Google Scholar

    [4]

    Vallone G, Bacco D, Dequal D, Gaiarin S, Luceri V, Bianco G, Villoresi P 2015 Phys. Rev. Lett. 115 040502Google Scholar

    [5]

    Yin J, Cao Y, Li Y H, Ren J G, Liao S K, Zhang L, Cai W Q, Liu W Y, Li B, Dai H, Li M, Huang Y M, Deng L, Li L, Zhang Q, Liu L N, Chen Y A, Lu C Y, Shu R, Peng C Z, Wang J Y, Pan J W 2017 Phys. Rev. Lett. 119 200501Google Scholar

    [6]

    Yin J, Cao Y, Li Y H, Liao S K, Zhang L, Ren J G, Cai W Q, Liu W Y, Li B, Dai H, Li G B, Lu Q M, Gong Y H, Xu Y, Li S L, Li F Z, Yin Y Y, Jiang Z Q, Li M, Jia J J, Ren G, He D, Zhou Y L, Zhang X X, Wang N, Chang X, Zhu Z C, Liu N L, Chen Y A, Lu C Y, Shu R, Peng C Z, Wang J Y, Pan J W 2017 Science 356 1140Google Scholar

    [7]

    Dür W, Briegel H J, Cirac J I, Zoller P 1999 Phys. Rev. A 59 169Google Scholar

    [8]

    Pfister A D, Salz M, Hettrich M, Poschinger U G, Schmidt-Kaler F 2016 Appl. Phys. B 122 1Google Scholar

    [9]

    Greve K D 2013 Towards Solid-State Quantum Repeaters: Ultrafast, Coherent Optical Control and Spin-photon Entanglement in Charged InAs Quantum Dots (Heidelberg: Springer) pp21–39

    [10]

    Briegel H J, Dür W, Cirac J I, Zoller P 1998 Phys. Rev. Lett. 81 5932

    [11]

    Freer S, Simmons S, Laucht A, Muhonen J T, Dehollain J P, Kalra R, Mohiyaddin F A, Hudson F E, Itoh K M, McCallum J C, Jamieson D N, Dzurak A S, Morello A 2017 Quantum Sci. Technol. 2 015009Google Scholar

    [12]

    Kawakami E, Scarlino P, Ward D R, Braakman F R, Savage D E, Lagally M G, Friesen M, Coppersmith S N, Eriksson M A, Vandersypen L M K 2014 Nat. Nanotechnol. 9 666Google Scholar

    [13]

    Specht H P, Nölleke C, Reiserer A, Uphoff M, Figueroa E, Ritter S, Rempe G 2011 Nature. 473 190

    [14]

    Loock van P, Ladd T D, Sanaka K, Yamaguchi F, Nemoto K, Munro W J, Yamamoto Y 2006 Phys. Rev. Lett. 96 240501Google Scholar

    [15]

    Duan L M, Lukin M, Cirac J I 2001 Nature 414 413Google Scholar

    [16]

    Pan J W, Bouwmeester D, Weinfurter H, Zeilinger A 1998 Phys. Rev. Lett. 80 3891Google Scholar

    [17]

    Lloyd S, Shahriar M S, Shapiro J H, Hemmer P R 2001 Phys. Rev. Lett. 87 167903Google Scholar

    [18]

    Ekert A K 1991 Phys. Rev. Lett. 67 661Google Scholar

    [19]

    Malinowski F K, Martins F, Cywiński L, Rudner M S, Nissen P D, Fallahi S, Gardner G C, Manfra M J, Marcus C M, Kuemmeth F 2017 Phys. Rev. Lett. 118 177702Google Scholar

    [20]

    Liu R B, Yao W, Sham L 2007 New J. Phys. 9 226Google Scholar

    [21]

    Saito S, Zhu X B, Amsüss R, Matsuzaki Y, Kakuyanagi K, Shimo-Oka T, Mizuochi N, Nemoto K, Munro W J, Semba K 2013 Phys. Rev. Lett. 111 107008Google Scholar

    [22]

    Xiang Z L, Ashhab S, You J Q, Nori F 2013 Rev. Mod. Phys. 85 623Google Scholar

    [23]

    Maune B M, Borselli M G, Huang B, Ladd T D, Deelman P W, Holabird K S, Kiselev A A, Alvarado-Rodriguez I, Ross R S, Schmitz A E 2012 Nature 481 344Google Scholar

    [24]

    Yao W, Liu R B, Sham L J 2007 Phys. Rev. Lett. 98 077602Google Scholar

    [25]

    Merkulov I A 2002 Phys. Rev. B 65 205309Google Scholar

    [26]

    Assali L V C, Petrilli H M, Capaz R B, Koiller B, Hu X D, Sarma S D 2011 Phys. Rev. B 83 165301Google Scholar

    [27]

    Eisenberg B, Sullivan R 2008 Math. Mag. 81 362Google Scholar

    [28]

    Reilly D J, Taylor J M, Laird E A, Petta J R, Marcus C M, Hanson M P, Gossard A C 2007 Phys. Rev. Lett. 101 236803

  • [1] Xiong Fan, Chen Yong-Cong, Ao Ping. Qubit dynamics driven by dipole field in thermal noise environment. Acta Physica Sinica, 2023, 72(17): 170302. doi: 10.7498/aps.72.20230625
    [2] Wang Yun-Fei, Zhou Ying, Wang Ying, Yan Hui, Zhu Shi-Liang. Performance and application analysis of quantum memory. Acta Physica Sinica, 2023, 72(20): 206701. doi: 10.7498/aps.72.20231203
    [3] Wang Ning, Wang Bao-Chuan, Guo Guo-Ping. New progress of silicon-based semiconductor quantum computation. Acta Physica Sinica, 2022, 71(23): 230301. doi: 10.7498/aps.71.20221900
    [4] Zhou Yao-Yao, Liu Yan-Hong, Yan Zhi-Hui, Jia Xiao-Jun. A multifunctional quantum teleportation network. Acta Physica Sinica, 2021, 70(10): 104203. doi: 10.7498/aps.70.20201749
    [5] Wei Rong-Yu, Nie Min, Yang Guang, Zhang Mei-Ling, Sun Ai-Jing, Pei Chang-Xing. Parameters adaptive adjustment strategy of quantum communication channel in free-space based on software-defined quantum communication. Acta Physica Sinica, 2019, 68(14): 140302. doi: 10.7498/aps.68.20190462
    [6] Huang Jiang. The protection of qudit states by weak measurement. Acta Physica Sinica, 2017, 66(1): 010301. doi: 10.7498/aps.66.010301
    [7] Jia Fang, Liu Cun-Jin, Hu Yin-Quan, Fan Hong-Yi. New formula for calculating the fidelity of teleportation and its applications. Acta Physica Sinica, 2016, 65(22): 220302. doi: 10.7498/aps.65.220302
    [8] Yang Guang, Lian Bao-Wang, Nie Min. Fidelity recovery scheme for quantum teleportation in amplitude damping channel. Acta Physica Sinica, 2015, 64(1): 010303. doi: 10.7498/aps.64.010303
    [9] Qin Meng, Li Yan-Biao, Bai Zhong, Wang Xiao. Effects of different Dzyaloshinskii-Moriya interaction and magnetic field on entanglement and fidelity intrinsic decoherence in a spin system. Acta Physica Sinica, 2014, 63(11): 110302. doi: 10.7498/aps.63.110302
    [10] Zhang Lin, Nie Min, Liu Xiao-Hui. Study on survival function of noise quantum channel and its simulation. Acta Physica Sinica, 2013, 62(15): 150301. doi: 10.7498/aps.62.150301
    [11] Nie Min, Zhang Lin, Liu Xiao-Hui. Poisson survival model of quantum entanglement signaling network and fidelity analysis. Acta Physica Sinica, 2013, 62(23): 230303. doi: 10.7498/aps.62.230303
    [12] Zhao Jian-Hui. Ground state phase diagram of the quantum spin 1 Blume-Capel model: reduced density fidelity study. Acta Physica Sinica, 2012, 61(22): 220501. doi: 10.7498/aps.61.220501
    [13] Guo Zhen, Yan Lian-Shan, Pan Wei, Luo Bin, Xu Ming-Feng. Influence of decoherence of entanglement on deterministic remote state preparation. Acta Physica Sinica, 2011, 60(6): 060301. doi: 10.7498/aps.60.060301
    [14] Lü Jing-Fen, Ma Shan-Jun. Fidelity of the photon subtracted (or added) squeezed vacuum state and squeezed cat state. Acta Physica Sinica, 2011, 60(8): 080301. doi: 10.7498/aps.60.080301
    [15] Fang Mao-Fa, Peng Xiao-Fang, Liao Xiang-Ping, Pan Chang-Ning, Fang Jian-Shu. Fidelity of quantum teleportation of atomic-state in dissipative environment. Acta Physica Sinica, 2011, 60(9): 090303. doi: 10.7498/aps.60.090303
    [16] Ye Bin, Gu Rui-Jun, Xu Wen-Bo. Robust quantum computation of the kicked Harper model and quantum chaos. Acta Physica Sinica, 2007, 56(7): 3709-3718. doi: 10.7498/aps.56.3709
    [17] Li Yan-Ling, Feng Jian, Meng Xiang-Guo, Liang Bao-Long. Universal quantum teleflipping and telecloning of qubit. Acta Physica Sinica, 2007, 56(10): 5591-5596. doi: 10.7498/aps.56.5591
    [18] Universal telecloning of quantum entangled states. Acta Physica Sinica, 2007, 56(12): 6797-6802. doi: 10.7498/aps.56.6797
    [19] Xia Yun-Jie, Wang Guang-Hui, Du Shao-Jiang. Fidelity of the scheme of continunous variables quantum teleportation via minimum-correlation mixed quantum states. Acta Physica Sinica, 2007, 56(8): 4331-4336. doi: 10.7498/aps.56.4331
    [20] Zhang Deng-Yu, Guo Ping, Gao Feng. Fidelity of two-level atoms’ quantum states in a strong thermal radiation field. Acta Physica Sinica, 2007, 56(4): 1906-1910. doi: 10.7498/aps.56.1906
Metrics
  • Abstract views:  4920
  • PDF Downloads:  87
  • Cited By: 0
Publishing process
  • Received Date:  29 June 2021
  • Accepted Date:  30 July 2021
  • Available Online:  20 August 2021
  • Published Online:  05 December 2021

/

返回文章
返回
Baidu
map