Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Improvement in performance of carbon-based perovskite solar cells by adding 1, 8-diiodooctane into hole transport layer 3-hexylthiophene

Li Jia-Sen Liang Chun-Jun Ji Chao Gong Hong-Kang Song Qi Zhang Hui-Min Liu Ning

Citation:

Improvement in performance of carbon-based perovskite solar cells by adding 1, 8-diiodooctane into hole transport layer 3-hexylthiophene

Li Jia-Sen, Liang Chun-Jun, Ji Chao, Gong Hong-Kang, Song Qi, Zhang Hui-Min, Liu Ning
PDF
HTML
Get Citation
  • HTL-free carbon-based perovskite solar (PSCs) batteries have the advantages of low cost, simple preparation steps, and high stability, and have broad application prospects. However, the direct contact between the carbon electrode and the active layer causes the photoelectric conversion efficiency of the device to be generally lower than that of other metal electrode perovskite solar cells. Therefore, it is necessary to add a hole-transport layer between the perovskite layer and the electrode to improve the charge transport efficiency and optimize the performance. Poly(3-hexylthiophene) has excellent photoelectric properties and is regarded as one of the suitable hole transport materials for perovskite solar cells. In this paper, P3HT is used as the hole transport layer of the device. Compared with the traditional organic hole-transport layer Spiro-OMeTAD, the P3HT has the advantages of low cost and easy manufacture. However, in the current devices with using P3HT as the hole transport layer, due to the characteristics of the surface morphology and molecular ordering of the P3HT film, the carrier mobility in the film itself is low, resulting in unsatisfactory device performance. Studies have shown that the surface morphology and molecular arrangement of the P3HT film can be changed by doping, and the migration rate of charge-carriers inside the film can be accelerated, thereby improving the photovoltaic performance of the solar cell. In this paper, a printing process is used to print carbon paste on the hole transport layer as the electrode of the device, and spin coating is used to prepare the transport layer. And through the method of doping 1,8-diiodooctane (DIO) in P3HT to optimize the device performance, the photoelectric conversion efficiency of the carbon-based perovskite solar cell is improved, the mobility of holes is improved, and the transportation of electrons is blocked. The reduced interface recombination, the improved interface contact between the carbon electrode and the device, the increased short-circuit current Jsc and the fill factor FF lead the photoelectric conversion efficiency of the device to increase from 14.06% to 15.11%. We test the light stability of the device under the 1000-h continuous illumination in a nitrogen atmosphere, and the conversion efficiency of the device remains above 98%, indicating that the addition of DIO into P3HT improves not only the photoelectric conversion efficiency of the device, but also the stability.
      Corresponding author: Liang Chun-Jun, chjliang@bjtu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61874008) and the Beijing Committee of Science and Technology, China (Grant No. Z181100004718004)
    [1]

    Chapin D M, Fuller C S, Pearson G L 1954 J. Appl. Phys. 25 676Google Scholar

    [2]

    Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050Google Scholar

    [3]

    Kim H S, Lee C R, Im J H, Lee K B, Moehl T, Marchioro A, Moon S J, Humphry-Baker R, Yum J H, Moser J E, Graetzel M, Park N G 2012 Sci. Rep. 2 591Google Scholar

    [4]

    Im J H, Lee C R, Lee J W, Park S W, Park N G 2011 Nanoscale 3 4088Google Scholar

    [5]

    Liu M, Johnston M B, Snaith H J 2013 Nature 501 395Google Scholar

    [6]

    Abate A, Leijtens T, Pathak S, Teuscher J, Avolio R, Errico M E, Kirkpatrik J, Ball J M, Docampo P, McPherson I, Snaith H J 2013 PCCP 15 2572Google Scholar

    [7]

    Furube A, Katoh R, Hara K, Sato T, Murata S, Arakawa H, Tachiya M 2005 J. Phys. Chem. B 109 16406Google Scholar

    [8]

    Abbas H A, Kottokkaran R, Ganapathy B, Samiee M, Zhang L, Kitahara A, Noack M, Dalal V L 2015 APL Mater. 3 506

    [9]

    Wang M J, Li S B, Zhang P, Wang Y F, Li H Q, Chen Z 2015 Chem. Phys. Lett. 639 283Google Scholar

    [10]

    Yan W, Li Y, Ye S, Li Y, Rao H, Liu Z, Wang S, Bian Z, Huang C 2016 Nano Res. 9 1600Google Scholar

    [11]

    Hauch A, Georg A 2002 Electrochim. Acta 46 3457

    [12]

    Ikegami M, Miyoshi K, Miyasaka T, Teshima K, Wei T C, Wan C C, Wang Y Y 2007 Appl. Phys. Lett. 90 153122Google Scholar

    [13]

    Che M, Zhu L, Zhao Y L, Yao D S, Gu X Q, Song J, Qiang Y H 2016 Mater. Sci. Semicond. Process. 56 29Google Scholar

    [14]

    Mei A, Li X, Liu L, Ku Z, Liu T, Rong Y, Xu M, Hu M, Chen J, Yang Y, Graetzel M, Han H 2014 Science 345 295Google Scholar

    [15]

    Liu J, Li N, Dong Q, Li J, Qin C, Wang L 2019 Sci. China Mater. 62 173Google Scholar

    [16]

    Zhang H, Song K, Zhu L, Meng Q 2020 Carbon 168 372Google Scholar

    [17]

    Meng F, Zhou Y, Gao L, Li Y, Liu A, Li Y, Zhang C, Fan M, Wei G, Ma T 2021 Mater. Today Energy 19 100590Google Scholar

    [18]

    Chen R, Feng Y, Zhang C, Wang M, Jing L, Ma C, Bian J, Shi Y 2020 J. Mater. Chem. C 8 9262Google Scholar

    [19]

    Etgar L, Gao P, Xue Z, Peng Q, Chandiran A K, Liu B, Nazeeruddin M K, Grätzel M 2012 J. Am. Chem. Soc. 134 17396Google Scholar

    [20]

    Ku Z, Rong Y, Xu M, Liu T, Han H 2013 Sci. Rep. 3 3132Google Scholar

    [21]

    Liu Z Y, Sun B, Shi T L, Tang Z R, Liao G L 2016 J. Mater. Chem. A 4 10700Google Scholar

    [22]

    Ghoreishi F S, Ahmadi V, Poursalehi R, SamadPour M, Johansson M B, Boschloo G, Johansson E M J 2020 J. Power Sources 473 228492Google Scholar

    [23]

    Odabasi C, Yildirim R 2020 Sol. Energy Mater. Sol. Cells 205 110284Google Scholar

    [24]

    Long C Y, Wang N, Huang K Q, Li H Y, Liu B, Yang J L 2020 Chin. Phys. B 29 048801 8

    [25]

    Zhang F, Yang X, Cheng M, Wang W, Sun L 2016 Nano Energy 20 108Google Scholar

    [26]

    Wu Z, Liu Z, Hu Z, Hawash Z, Qiu L, Jiang Y, Ono L K, Qi Y 2019 Adv. Mater. 31 1804284Google Scholar

    [27]

    Jung E H, Jeon N J, Park E Y, Moon C S, Shin T J, Yang T Y, Noh J H, Seo J 2019 Nature 567 511Google Scholar

    [28]

    Almohammedi A, Khan M T, Benghanem M, Aboud S W, Shkir M, AlFaify S 2020 Mater. Sci. Semicond. Process. 120 105272Google Scholar

    [29]

    Park M S, Meresa A A, Kwon C M, Kim F S 2019 Polymers 11 1682 11

    [30]

    Kiymaz D, Kiymaz A, Zafer C 2021 Nanotechnology 32 105401Google Scholar

    [31]

    Su H, Xiao J Y, Li Q H, Peng C, Zhang X X, Mao C, Yao Q, Lu Y J, Ku Z L, Zhong J, Li W, Peng Y, Huang F Z, Cheng Y B 2020 Mater. Sci. Semicond. Process. 107 104809Google Scholar

    [32]

    Wang G M, Swensen J, Moses D, Heeger A J 2003 J. Appl. Phys. 93 6137Google Scholar

  • 图 1  钙钛矿太阳能电池器件结构与能级结构 (a) 为有空穴传输层并且基于碳电极的n-i-p结构的钙钛矿太阳能电池结构; (b) 此器件结构中的各个薄膜材料的能级结构

    Figure 1.  PSCs device structure and energy level diagram: (a) Carbon-based n-i-p PSCs; (b) Energy level diagram.

    图 2  钙钛矿薄膜表面形貌 (a), (b), (c) 原子力显微镜(AFM)表征钙钛矿薄膜(HTL-free) (a), 旋涂了空穴传输层P3HT的钙钛矿薄膜(P3HT) (b), 旋涂了添加DIO的空穴传输层P3HT的钙钛矿薄膜(P3HT: DIO) (c)的表面形貌图; (e), (d), (f) 扫面电子显微镜表征钙钛矿薄膜(e), 旋涂了空穴传输层P3HT的钙钛矿薄膜(d), 旋涂了添加DIO的空穴传输层P3HT的钙钛矿薄膜(f)的表面形貌图

    Figure 2.  Surface morphology of the perovskite films: (a), (b), (c) Atomic force microscopy (AFM) characterization of perovskite film (HTL-free) (a), perovskite film with P3HT (b), perovskite film with P3HT: DIO (c); (d), (e), (f) scanning electron microscopy characterization of perovskite film (HTL-free) (d), perovskite film with P3HT (e), perovskite film with P3HT: DIO (f).

    图 3  钙钛矿薄膜、旋涂空穴传输层P3HT的钙钛矿薄膜与旋涂空穴传输层中添加了DIO的P3HT薄膜的光电性能测试 (a) X射线衍射图谱; (b) 通过ITO/PEDT/P3HT结构器件测得的P3HT材料的载流子迁移率曲线; (c) 稳态光致发光曲线; (d) 时间分辨光致发光衰减曲线

    Figure 3.  Photoelectric performance test of perovskite film, perovskite film with P3HT and perovskite with P3HT: DIO: (a) X-ray diffraction pattern; (b) carrier mobility fitting of the hole-transport layer; (c) steady-state photoluminescence; (d) time-resolved photoluminescence.

    图 4  钙钛矿太阳能电池器件性能测试曲线 (a) 钙钛矿太阳能电池的J-V曲线; (b) 外量子效率曲线图

    Figure 4.  Performance of perovskite solar cell devices: (a) J-V curves of perovskite solar cells; (b) EQE spectra of the perovskite solar cells.

    图 5  (a), (b) 旋涂P3HT和P3HT: DIO器件的暗电流测试曲线; (c) 无空穴传输层器件、旋涂P3HT和P3HT: DIO器件的暗电流测试曲线; (d) 无空穴传输层器件、旋涂P3HT和P3HT: DIO器件结构的电化学阻抗谱

    Figure 5.  (a), (b) The dark current test curves of spin-coated P3HT and P3HT: DIO devices; (c) dark current test curves for holeless transport layer devices, spin-coated P3HT and P3HT: DIO devices.; (d) electrochemical impedance spectra of hole-free transport layer devices, spin-coated P3HT and P3HT:DIO device structures.

    图 6  钙钛矿太阳能电池连续光照条件下测试稳定性

    Figure 6.  The stability of perovskite solar cells under continuous light illumination.

    表 1  基于不同空穴传输材料的钙钛矿太阳能电池性能参数

    Table 1.  Photovoltaic parameters of perovskite solar cell based on different HTLs.

    HTMJSC/(mA·cm–2)VOC/VFF/%PCE/%
    P3HT:DIO22.390.9074.8615.11
    P3HT22.150.8971.3214.06
    21.070.8971.9413.48
    DownLoad: CSV
    Baidu
  • [1]

    Chapin D M, Fuller C S, Pearson G L 1954 J. Appl. Phys. 25 676Google Scholar

    [2]

    Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050Google Scholar

    [3]

    Kim H S, Lee C R, Im J H, Lee K B, Moehl T, Marchioro A, Moon S J, Humphry-Baker R, Yum J H, Moser J E, Graetzel M, Park N G 2012 Sci. Rep. 2 591Google Scholar

    [4]

    Im J H, Lee C R, Lee J W, Park S W, Park N G 2011 Nanoscale 3 4088Google Scholar

    [5]

    Liu M, Johnston M B, Snaith H J 2013 Nature 501 395Google Scholar

    [6]

    Abate A, Leijtens T, Pathak S, Teuscher J, Avolio R, Errico M E, Kirkpatrik J, Ball J M, Docampo P, McPherson I, Snaith H J 2013 PCCP 15 2572Google Scholar

    [7]

    Furube A, Katoh R, Hara K, Sato T, Murata S, Arakawa H, Tachiya M 2005 J. Phys. Chem. B 109 16406Google Scholar

    [8]

    Abbas H A, Kottokkaran R, Ganapathy B, Samiee M, Zhang L, Kitahara A, Noack M, Dalal V L 2015 APL Mater. 3 506

    [9]

    Wang M J, Li S B, Zhang P, Wang Y F, Li H Q, Chen Z 2015 Chem. Phys. Lett. 639 283Google Scholar

    [10]

    Yan W, Li Y, Ye S, Li Y, Rao H, Liu Z, Wang S, Bian Z, Huang C 2016 Nano Res. 9 1600Google Scholar

    [11]

    Hauch A, Georg A 2002 Electrochim. Acta 46 3457

    [12]

    Ikegami M, Miyoshi K, Miyasaka T, Teshima K, Wei T C, Wan C C, Wang Y Y 2007 Appl. Phys. Lett. 90 153122Google Scholar

    [13]

    Che M, Zhu L, Zhao Y L, Yao D S, Gu X Q, Song J, Qiang Y H 2016 Mater. Sci. Semicond. Process. 56 29Google Scholar

    [14]

    Mei A, Li X, Liu L, Ku Z, Liu T, Rong Y, Xu M, Hu M, Chen J, Yang Y, Graetzel M, Han H 2014 Science 345 295Google Scholar

    [15]

    Liu J, Li N, Dong Q, Li J, Qin C, Wang L 2019 Sci. China Mater. 62 173Google Scholar

    [16]

    Zhang H, Song K, Zhu L, Meng Q 2020 Carbon 168 372Google Scholar

    [17]

    Meng F, Zhou Y, Gao L, Li Y, Liu A, Li Y, Zhang C, Fan M, Wei G, Ma T 2021 Mater. Today Energy 19 100590Google Scholar

    [18]

    Chen R, Feng Y, Zhang C, Wang M, Jing L, Ma C, Bian J, Shi Y 2020 J. Mater. Chem. C 8 9262Google Scholar

    [19]

    Etgar L, Gao P, Xue Z, Peng Q, Chandiran A K, Liu B, Nazeeruddin M K, Grätzel M 2012 J. Am. Chem. Soc. 134 17396Google Scholar

    [20]

    Ku Z, Rong Y, Xu M, Liu T, Han H 2013 Sci. Rep. 3 3132Google Scholar

    [21]

    Liu Z Y, Sun B, Shi T L, Tang Z R, Liao G L 2016 J. Mater. Chem. A 4 10700Google Scholar

    [22]

    Ghoreishi F S, Ahmadi V, Poursalehi R, SamadPour M, Johansson M B, Boschloo G, Johansson E M J 2020 J. Power Sources 473 228492Google Scholar

    [23]

    Odabasi C, Yildirim R 2020 Sol. Energy Mater. Sol. Cells 205 110284Google Scholar

    [24]

    Long C Y, Wang N, Huang K Q, Li H Y, Liu B, Yang J L 2020 Chin. Phys. B 29 048801 8

    [25]

    Zhang F, Yang X, Cheng M, Wang W, Sun L 2016 Nano Energy 20 108Google Scholar

    [26]

    Wu Z, Liu Z, Hu Z, Hawash Z, Qiu L, Jiang Y, Ono L K, Qi Y 2019 Adv. Mater. 31 1804284Google Scholar

    [27]

    Jung E H, Jeon N J, Park E Y, Moon C S, Shin T J, Yang T Y, Noh J H, Seo J 2019 Nature 567 511Google Scholar

    [28]

    Almohammedi A, Khan M T, Benghanem M, Aboud S W, Shkir M, AlFaify S 2020 Mater. Sci. Semicond. Process. 120 105272Google Scholar

    [29]

    Park M S, Meresa A A, Kwon C M, Kim F S 2019 Polymers 11 1682 11

    [30]

    Kiymaz D, Kiymaz A, Zafer C 2021 Nanotechnology 32 105401Google Scholar

    [31]

    Su H, Xiao J Y, Li Q H, Peng C, Zhang X X, Mao C, Yao Q, Lu Y J, Ku Z L, Zhong J, Li W, Peng Y, Huang F Z, Cheng Y B 2020 Mater. Sci. Semicond. Process. 107 104809Google Scholar

    [32]

    Wang G M, Swensen J, Moses D, Heeger A J 2003 J. Appl. Phys. 93 6137Google Scholar

  • [1] Zhong Ting-ting, Hao Hui-ying. Component control and additive engineering of all-inorganic perovskite films and carbon-based solar cells based on ambient air environment. Acta Physica Sinica, 2024, 73(23): . doi: 10.7498/aps.73.20241439
    [2] Juan Ting, Xing Jia-He, Zeng Fan-Cong, Zheng Xin, Xu Lin. Performance of perovskite solar cells based on SnO2:DPEPO hybrid electron transport layer. Acta Physica Sinica, 2024, 73(19): 198401. doi: 10.7498/aps.73.20240827
    [3] Li Bin, Miao Xiang-Yang. Photoluminescence blinking properties of single CsPbBr3 perovskite quantum dots. Acta Physica Sinica, 2021, 70(20): 207802. doi: 10.7498/aps.70.20210908
    [4] Zhang Ao, Zhang Chun-Xiu, Zhang Chun-Mei, Tian Yi-Min, Yan Jun, Meng Tao. Effects of CH3NH3 polymer formation on performance of organic-inorganic hybrid perovskite solar cell. Acta Physica Sinica, 2021, 70(16): 168801. doi: 10.7498/aps.70.20210353
    [5] Song Rui, Feng Kai, Lin Shang-Jin, He Man-Li, Tong Liang. First principles study of structural, electric, and magnetic properties of fluoride perovskite NaFeF3. Acta Physica Sinica, 2019, 68(14): 147101. doi: 10.7498/aps.68.20190573
    [6] Qu Zi-Han, Chu Ze-Ma, Zhang Xing-Wang, You Jing-Bi. Research progress of efficient green perovskite light emitting diodes. Acta Physica Sinica, 2019, 68(15): 158504. doi: 10.7498/aps.68.20190647
    [7] Yang Zi-Xin, Gao Zhang-Ran, Sun Xiao-Fan, Cai Hong-Ling, Zhang Feng-Ming, Wu Xiao-Shan. High critical transition temperature of lead-based perovskite ferroelectric crystals: A machine learning study. Acta Physica Sinica, 2019, 68(21): 210502. doi: 10.7498/aps.68.20190942
    [8] Wang Ji-Ming, Chen Ke, Xie Wei-Guang, Shi Ting-Ting, Liu Peng-Yi, Zheng Yi-Fan, Zhu Rui. Research progress of solution processed all-inorganic perovskite solar cell. Acta Physica Sinica, 2019, 68(15): 158806. doi: 10.7498/aps.68.20190355
    [9] Wang Ji-Fei, Lin Dong-Xu, Yuan Yong-Bo. Recent progress of ion migration in organometal halide perovskite. Acta Physica Sinica, 2019, 68(15): 158801. doi: 10.7498/aps.68.20190853
    [10] Xia Jun-Min, Liang Chao, Xing Gui-Chuan. Inkjet printed perovskite solar cells: progress and prospects. Acta Physica Sinica, 2019, 68(15): 158807. doi: 10.7498/aps.68.20190302
    [11] Fu Peng-Fei, Yu Dan-Ni, Peng Zi-Jian, Gong Jin-Kang, Ning Zhi-Jun. Perovskite solar cells passivated by distorted two-dimensional structure. Acta Physica Sinica, 2019, 68(15): 158802. doi: 10.7498/aps.68.20190306
    [12] Ye Hong-Jun, Wang Da-Wei, Jiang Zhi-Jun, Cheng Sheng, Wei Xiao-Yong. Ferroelectric phase transition of perovskite SnTiO3 based on the first principles. Acta Physica Sinica, 2016, 65(23): 237101. doi: 10.7498/aps.65.237101
    [13] Yang Xu-Dong, Chen Han, Bi En-Bing, Han Li-Yuan. Key issues in highly efficient perovskite solar cells. Acta Physica Sinica, 2015, 64(3): 038404. doi: 10.7498/aps.64.038404
    [14] Zhang Dan-Fei, Zheng Ling-Ling, Ma Ying-Zhuang, Wang Shu-Feng, Bian Zu-Qiang, Huang Chun-Hui, Gong Qi-Huang, Xiao Li-Xin. Factors influencing the stability of perovskite solar cells. Acta Physica Sinica, 2015, 64(3): 038803. doi: 10.7498/aps.64.038803
    [15] Yuan Huai-Liang, Li Jun-Peng, Wang Ming-Kui. Recent progress in research on solid organic-inorganic hybrid solar cells. Acta Physica Sinica, 2015, 64(3): 038405. doi: 10.7498/aps.64.038405
    [16] Xia Xiang, Liu Xi-Zhe. Effects of CH3NH3I on fabricating CH3NH3PbI(3-x)Clx perovskite solar cells. Acta Physica Sinica, 2015, 64(3): 038104. doi: 10.7498/aps.64.038104
    [17] Wu Di, Zhao Ji-Jun, Tian Hua. Effect of substitution Fe2+ on physical properties of MgSiO3 perovskite at high temperature and high pressure. Acta Physica Sinica, 2013, 62(4): 049101. doi: 10.7498/aps.62.049101
    [18] Wang Hai-Xiao, Zheng Xin-He, Wu Yuan-Yuan, Gan Xing-Yuan, Wang Nai-Ming, Yang Hui. Well layer design for 1eV absorption band edge of GaInAs/GaNAs super-lattice solar cell. Acta Physica Sinica, 2013, 62(21): 218801. doi: 10.7498/aps.62.218801
    [19] Li Xiao-Juan, Wei Shang-Jiang, Lü Wen-Hui, Wu Dan, Li Ya-Jun, Zhou Wen-Zheng. A new approach to fabricating silicon nanowire/poly(3, 4-ethylenedioxythiophene) hybrid heterojunction solar cells. Acta Physica Sinica, 2013, 62(10): 108801. doi: 10.7498/aps.62.108801
    [20] Xiang Jun, Li Li-Ping, Su Wen-Hui. Preparation and characterization of a new perovskite-type oxide ion conductor KN b1-xMgxO3-δ. Acta Physica Sinica, 2003, 52(6): 1474-1478. doi: 10.7498/aps.52.1474
Metrics
  • Abstract views:  5950
  • PDF Downloads:  110
  • Cited By: 0
Publishing process
  • Received Date:  29 March 2021
  • Accepted Date:  28 April 2021
  • Available Online:  07 June 2021
  • Published Online:  05 October 2021

/

返回文章
返回
Baidu
map