Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Spectral structures of backward stimulated Brillouin scattering driven by a picosecond laser

Wang Chen An Hong-Hai Xiong Jun Fang Zhi-Heng Ji Yu Lian Chang-Wang Xie Zhi-Yong Guo Er-Fu He Zhi-Yu Cao Zhao-Dong Wang Wei Yan Rui Pei Wen-Bing

Citation:

Spectral structures of backward stimulated Brillouin scattering driven by a picosecond laser

Wang Chen, An Hong-Hai, Xiong Jun, Fang Zhi-Heng, Ji Yu, Lian Chang-Wang, Xie Zhi-Yong, Guo Er-Fu, He Zhi-Yu, Cao Zhao-Dong, Wang Wei, Yan Rui, Pei Wen-Bing
PDF
HTML
Get Citation
  • Laser plasma interaction (LPI) is an important content in laser plasma related research, and it is one of the key issues related to the success or failure of inertial confinement fusion ignition, and has received extensive attention. In order to suppress the relevant LPI process as much as possible, the major laboratories around the world have developed a variety of beam smoothing methods through decades of research. However, the current understanding and suppression of LPI are still far from enough, and further in-depth studies are still needed. Generally, the research of LPI is based on nanosecond laser driving, and focuses mainly on the effects of the related LPI process caused by nanosecond lasers. However, the LPI processes, such as stimulated Brillouin scattering (SBS), stimulated Raman scattering (SRS), etc., occur and develop on a time scale of picoseconds.The comprehensive effect can be studied only on a longer scale of nanosecond. For highly nonlinear LPI processes, the comprehensive effect may be difficult to reflect the real physical laws. The emergence of the picosecond laser has made it possible to study the LPI process in more detail and on a more appropriate time scale. The present research tries to gain an understanding of LPI from a more refined perspective. The experimental research of picosecond laser driving LPI is carried out on the Shenguang-Ⅱ upgrade and picosecond laser facilities. First, a nanosecond laser is used to irradiate a target to generate a large-scale plasma, and a few nanoseconds later, the picosecond laser is injected as an interaction beam to drive the LPI scattering such as SBS and SRS. The spectral signal of backscatter light is measured experimentally by using the method of diffuse reflector. From the research results it is found that the backward signals of the band near the laser wavelength contain, in addition to the true backward SBS component, a large number of interference signals introduced by picosecond laser and nanosecond laser. The interference signal introduced by nanosecond laser can be eliminated by using specific measures, but the interference signal introduced by picosecond laser cannot be eliminated experimentally, which will affect the estimation of the true share of the backward SBS. The comprehensive results show that under different experimental conditions, the backward scatter energy of SBS may be less than half that of the total recorded signals. This result is helpful in further understanding and re-recognizing previous relevant experimental data.
      Corresponding author: Fang Zhi-Heng, 48224947@qq.com
    • Funds: Project supported by the Science Challenge Project of China (Grant No. TZ2016005)
    [1]

    Lindl J, Amendt P, Berger R L, Glendinning S G, Glenzer S H, Haan S W, Kauffman R L, Landen O L, Suter L J 2004 Phys. Plasmas 11 339Google Scholar

    [2]

    Lindl J, Landen O, Edwards J, Moses E, Team N I C 2014 Phys. Plasmas 21 020501Google Scholar

    [3]

    Cavailler C 2005 Plasma Phys. Controlled Fusion 47 B389Google Scholar

    [4]

    Craxton R S, Anderson K S, Boehly T R, Goncharov V N, Harding D R, Knauer J P, McCrory R L, McKenty P W, Meyerhofer D D, Myatt J F, Schmitt A J, Sethian J D, Short R W, Skupsky S, Theobald W, Kruer W L, Tanaka K, Betti R, Collins T J B, Delettrez J A, Hu S X, Marozas J A, Maximov A V, Michel D T, Radha P B, Regan S P, Sangster T C, Seka W, Solodov A A, Soures J M, Stoeckl C, Zuegel J D 2015 Phys. Plasmas 22 110501Google Scholar

    [5]

    Hao L, Yan R, Li J, Liu W D, Ren C 2017 Phys. Plasmas 24 062709Google Scholar

    [6]

    Seaton A G, Arber T D 2020 Phys. Plasmas 27 082704Google Scholar

    [7]

    MacGowan B J, Afeyan B B, Back C A, Berger R L, Bonnaud G, Casanova M, Cohen B I, Desenne D E, DuBois D F, Dulieu A G, Estabrook K G, Fernandez J C, Glenzer S H, Hinkel D E, Kaiser T B, Kalantar D H, Kauffman R L, Kirkwood R K, Kruer W L, Langdon A B, Lasinski B F, Montgomery D S, Moody J D, Munro D H, Powers L V, Rose H A, Rousseaux C, Turner R E, Wilde B H, Wilks S C, Williams E A 1996 Phys. Plasmas 3 2029Google Scholar

    [8]

    Maximov V, Myatt J, Seka W, Short R W, Craxton R S 2004 Phys. Plasmas 11 2994Google Scholar

    [9]

    刘占军, 郝亮, 项江, 郑春阳 2012 61 115202Google Scholar

    Liu Z J, Hao L, Xiang J, Zheng C Y 2012 Acta Phys. Sin 61 115202Google Scholar

    [10]

    Kirkwood R K, Moody J D, Kline J, Dewald E, Glenzer S, Divol L, Michel P, Hinkel D, Berger R, Williams E, Milovich J, Yin L, Rose H, MacGowan B, Landen O, Rosen M, Lindl J 2013 Plasma Phys. Controlled Fusion 55 103001Google Scholar

    [11]

    Zhao Y, Yu L L, Zheng J, Weng S M, Ren C, Liu C S, Sheng Z M 2015 Phys. Plasmas 22 052119Google Scholar

    [12]

    Duluc M, Penninckx D, Loiseau P, Riazuelo G, Bourgeade A, Chatagnier A, D’humieres E 2019 Phys. Plasmas 26 042707Google Scholar

    [13]

    Zhao Y, Sheng Z M, Weng S M, Ji S Z, Zhu J Q 2019 High Power Laser Sci. Eng. 7 e20Google Scholar

    [14]

    Ji Y, Lian C W, Yan R, Ren C, Yang D, Wan Z H, Zhao B, Wang C, Fang Z H, Zheng J 2021 Matter Radiat. Extremes 6 015901Google Scholar

    [15]

    Strickland D, Mourou G 1985 Opt. Commun. 56 219Google Scholar

    [16]

    Danson C, Hillier D, Hopps N, Neely D 2015 High Power Laser Sci. Eng. 3 e3Google Scholar

    [17]

    Baldis H A, Villeneuve D M, Fontaine B L, Enright G D, Labaune C, Baton S, Mounaix Ph, Pesme D, Casanova M, Rozmus W 1993 Phys. Fluids B 5 3319Google Scholar

    [18]

    Baton S D, Rousseaux C, Mounaix P H, Labaune C, Fontaine B La, Pesme D, Renard N, Gary S, Louis-Jacquet M, Baldis H A 1994 Phys. Rev. E 49 R3602Google Scholar

    [19]

    Rousseaux C, Malka G, Miquel J L, Amiranoff F, Baton S D, Mounaix Ph 1995 Phys. Rev. Lett. 74 4655Google Scholar

    [20]

    Rousseaux C, Gremillet L, Casanova M, Loiseau P, Rabec Le Gloahec M, Baton S D, Amiranoff F, Adam J C, Héron A 2006 Phys. Rev. Lett. 97 015001Google Scholar

    [21]

    Rousseaux C, Glize K, Baton S D, Lancia L, Bénisti D, Gremillet L 2016 Phys. Rev. Lett. 117 015002Google Scholar

    [22]

    Rousseaux C, Baton S D, Bénisti D, Gremillet L, Loupias B, Philippe F, Tassin V, Amiranoff F, Kline J L, Montgomery D S, Afeyan B B 2016 Phys. Rev. E 93 043209Google Scholar

    [23]

    Moody J D, Datte P, Krauter K, Bond E, Michel P A, Glenzer S H, Divol L, Niemann C, Suter L, Meezan N, MacGowan B J, Hibbard R, London R, Kilkenny J, Wallace R, Kline J L, Knittel K, Frieders G, Golick B, Ross G, Widmann K, Jackson J, Vernon S, Clancy T 2010 Rev. Sci. Instrum. 81 10D921Google Scholar

  • 图 1  皮秒激光驱动的背向SBS测量方案示意图

    Figure 1.  Schematic diagram of backward SBS measurement scheme driven by a picosecond laser.

    图 2  实验用靶 (a)三明治结构; (b)光路示意图; (c)焦斑示意图

    Figure 2.  Schematic diagram of experimental targets: (a) Sandwich structure; (b) target and driving laser; (c) focal spots of lasers.

    图 3  皮秒激光诱发的背向SBS光谱

    Figure 3.  Integrated spectroscopy of backward SBS induced by a picosecond laser.

    图 4  背向SBS光谱的成分分解 (a)分解为三部分; (b)三部分之和与实验数据比较

    Figure 4.  Component decomposition of backward SBS spectrum: (a) Decomposed into three parts; (b) sum of the three parts and the experimental data.

    图 5  靶室内激光光束分布示意图 (a)侧视图; (b)俯视图

    Figure 5.  Schematic diagram of laser beam distribution in the target chamber: (a) Side view; (b) top view.

    图 6  利用第2路作为纳秒激光驱动的背向SBS光谱及成分分解

    Figure 6.  Component decomposition of backward SBS spectrum driven by 2# nanosecond laser.

    图 7  经过能量归一化的光谱, 分别利用2#和5#纳秒激光

    Figure 7.  Energy normalized spectra driven by 2# and 5# nanosecond laser respectively.

    表 1  图4中各部分高斯拟合曲线参数

    Table 1.  Gaussian fitting curve parameters of each part in Fig.4.

    峰值高度中心波长半高全宽
    a/countx0/nmτ/nm
    P119761053.40.39
    P221011053.34.4
    P372431050.21.3
    DownLoad: CSV

    表 2  针对图6第2路纳秒激光实验的各部分高斯拟合曲线参数

    Table 2.  Gaussian fitting curve parameters of each part using 2# nanosecond laser shown in Fig.6.

    峰值高度中心波长半高全宽
    a/countx0/nmτ/nm
    P1//////
    P229941053.24.3
    P359991050.11.4
    DownLoad: CSV
    Baidu
  • [1]

    Lindl J, Amendt P, Berger R L, Glendinning S G, Glenzer S H, Haan S W, Kauffman R L, Landen O L, Suter L J 2004 Phys. Plasmas 11 339Google Scholar

    [2]

    Lindl J, Landen O, Edwards J, Moses E, Team N I C 2014 Phys. Plasmas 21 020501Google Scholar

    [3]

    Cavailler C 2005 Plasma Phys. Controlled Fusion 47 B389Google Scholar

    [4]

    Craxton R S, Anderson K S, Boehly T R, Goncharov V N, Harding D R, Knauer J P, McCrory R L, McKenty P W, Meyerhofer D D, Myatt J F, Schmitt A J, Sethian J D, Short R W, Skupsky S, Theobald W, Kruer W L, Tanaka K, Betti R, Collins T J B, Delettrez J A, Hu S X, Marozas J A, Maximov A V, Michel D T, Radha P B, Regan S P, Sangster T C, Seka W, Solodov A A, Soures J M, Stoeckl C, Zuegel J D 2015 Phys. Plasmas 22 110501Google Scholar

    [5]

    Hao L, Yan R, Li J, Liu W D, Ren C 2017 Phys. Plasmas 24 062709Google Scholar

    [6]

    Seaton A G, Arber T D 2020 Phys. Plasmas 27 082704Google Scholar

    [7]

    MacGowan B J, Afeyan B B, Back C A, Berger R L, Bonnaud G, Casanova M, Cohen B I, Desenne D E, DuBois D F, Dulieu A G, Estabrook K G, Fernandez J C, Glenzer S H, Hinkel D E, Kaiser T B, Kalantar D H, Kauffman R L, Kirkwood R K, Kruer W L, Langdon A B, Lasinski B F, Montgomery D S, Moody J D, Munro D H, Powers L V, Rose H A, Rousseaux C, Turner R E, Wilde B H, Wilks S C, Williams E A 1996 Phys. Plasmas 3 2029Google Scholar

    [8]

    Maximov V, Myatt J, Seka W, Short R W, Craxton R S 2004 Phys. Plasmas 11 2994Google Scholar

    [9]

    刘占军, 郝亮, 项江, 郑春阳 2012 61 115202Google Scholar

    Liu Z J, Hao L, Xiang J, Zheng C Y 2012 Acta Phys. Sin 61 115202Google Scholar

    [10]

    Kirkwood R K, Moody J D, Kline J, Dewald E, Glenzer S, Divol L, Michel P, Hinkel D, Berger R, Williams E, Milovich J, Yin L, Rose H, MacGowan B, Landen O, Rosen M, Lindl J 2013 Plasma Phys. Controlled Fusion 55 103001Google Scholar

    [11]

    Zhao Y, Yu L L, Zheng J, Weng S M, Ren C, Liu C S, Sheng Z M 2015 Phys. Plasmas 22 052119Google Scholar

    [12]

    Duluc M, Penninckx D, Loiseau P, Riazuelo G, Bourgeade A, Chatagnier A, D’humieres E 2019 Phys. Plasmas 26 042707Google Scholar

    [13]

    Zhao Y, Sheng Z M, Weng S M, Ji S Z, Zhu J Q 2019 High Power Laser Sci. Eng. 7 e20Google Scholar

    [14]

    Ji Y, Lian C W, Yan R, Ren C, Yang D, Wan Z H, Zhao B, Wang C, Fang Z H, Zheng J 2021 Matter Radiat. Extremes 6 015901Google Scholar

    [15]

    Strickland D, Mourou G 1985 Opt. Commun. 56 219Google Scholar

    [16]

    Danson C, Hillier D, Hopps N, Neely D 2015 High Power Laser Sci. Eng. 3 e3Google Scholar

    [17]

    Baldis H A, Villeneuve D M, Fontaine B L, Enright G D, Labaune C, Baton S, Mounaix Ph, Pesme D, Casanova M, Rozmus W 1993 Phys. Fluids B 5 3319Google Scholar

    [18]

    Baton S D, Rousseaux C, Mounaix P H, Labaune C, Fontaine B La, Pesme D, Renard N, Gary S, Louis-Jacquet M, Baldis H A 1994 Phys. Rev. E 49 R3602Google Scholar

    [19]

    Rousseaux C, Malka G, Miquel J L, Amiranoff F, Baton S D, Mounaix Ph 1995 Phys. Rev. Lett. 74 4655Google Scholar

    [20]

    Rousseaux C, Gremillet L, Casanova M, Loiseau P, Rabec Le Gloahec M, Baton S D, Amiranoff F, Adam J C, Héron A 2006 Phys. Rev. Lett. 97 015001Google Scholar

    [21]

    Rousseaux C, Glize K, Baton S D, Lancia L, Bénisti D, Gremillet L 2016 Phys. Rev. Lett. 117 015002Google Scholar

    [22]

    Rousseaux C, Baton S D, Bénisti D, Gremillet L, Loupias B, Philippe F, Tassin V, Amiranoff F, Kline J L, Montgomery D S, Afeyan B B 2016 Phys. Rev. E 93 043209Google Scholar

    [23]

    Moody J D, Datte P, Krauter K, Bond E, Michel P A, Glenzer S H, Divol L, Niemann C, Suter L, Meezan N, MacGowan B J, Hibbard R, London R, Kilkenny J, Wallace R, Kline J L, Knittel K, Frieders G, Golick B, Ross G, Widmann K, Jackson J, Vernon S, Clancy T 2010 Rev. Sci. Instrum. 81 10D921Google Scholar

  • [1] Long Xin-Yu, Wang Pei-Pei, An Hong-Hai, Xiong Jun, Xie Zhi-Yong, Fang Zhi-Heng, Sun Jin-Ren, Wang Chen. Near forward scattering light of planar film target driven by broadband laser. Acta Physica Sinica, 2024, 73(12): 125202. doi: 10.7498/aps.73.20231613
    [2] Li Tian-Cheng, Zhang Xiao-Hai, Sheng Zheng-Mao. Surface plasma wave excited by laser pulse obliquely incident on a double-layer plasma target and ts application. Acta Physica Sinica, 2023, 72(4): 045201. doi: 10.7498/aps.72.20221305
    [3] Zhu Xin-Zhe, Li Bo-Yuan, Liu Feng, Li Jian-Long, Bi Ze-Wu, Lu Lin, Yuan Xiao-Hui, Yan Wen-Chao, Chen Min, Chen Li-Ming, Sheng Zheng-Ming, Zhang Jie. Experimental study on capillary discharge for laser plasma wake acceleration. Acta Physica Sinica, 2022, 71(9): 095202. doi: 10.7498/aps.71.20212435
    [4] Zhu Xin-Zhe, Liu Wei-Yuan, Chen Min. Effects of slant angle of sharp plasma-vacuum boundary on electron injection in laser wakefield acceleration. Acta Physica Sinica, 2020, 69(3): 035201. doi: 10.7498/aps.69.20191332
    [5] Wang Wei-Min, Zhang Liang-Liang, Li Yu-Tong, Sheng Zheng-Ming, Zhang Jie. Theoretical and experimental studies on terahertz radiation from laser-driven air plasma. Acta Physica Sinica, 2018, 67(12): 124202. doi: 10.7498/aps.67.20180564
    [6] He Min-Qing, Dong Quan-Li, Sheng Zheng-Ming, Zhang Jie. Shock wave amplification by shock wave self-generated magnetic field driven by laser and the external magnetic field. Acta Physica Sinica, 2015, 64(10): 105202. doi: 10.7498/aps.64.105202
    [7] Liu Zhan-Jun, Hao Liang, Xiang Jiang, Zheng Chun-Yang. Hybrid simulation of stimulated Brillouin scattering in laser fusions. Acta Physica Sinica, 2012, 61(11): 115202. doi: 10.7498/aps.61.115202
    [8] Meng Xiang-Fu, Wang Chen, An Hong-Hai, Jia Guo, Fang Zhi-Heng, Zhou Hua-Zhen, Sun Jin-Ren, Wang Wei, Fu Si-Zu. Research of coherence between driven-laser beams and its influence on backscatter. Acta Physica Sinica, 2012, 61(18): 185202. doi: 10.7498/aps.61.185202
    [9] Zhang Lei, Dong Quan-Li, Zhao Jing, Wang Shou-Jun, Sheng Zheng-Ming, He Min-Qing, Zhang Jie. Saturation of stimulated Raman scattering in laser-plasma interaction. Acta Physica Sinica, 2009, 58(3): 1833-1837. doi: 10.7498/aps.58.1833
    [10] Liu Juan, Bai Jian-Hui, Ni Kai, Jing Hong-Mei, He Xing-Dao, Liu Da-He. Attenuation characteristics of laser beam in water. Acta Physica Sinica, 2008, 57(1): 260-264. doi: 10.7498/aps.57.260
    [11] Hasi Wu-Li-Ji, Lü Zhi-Wei, Gong Sheng, He Wei-Ming, Lin Dian-Yang, Zhang Wei. New SBS media——perfluorinated amines. Acta Physica Sinica, 2008, 57(10): 6360-6364. doi: 10.7498/aps.57.6360
    [12] Li Bai-Wen, Tian En-Ke. Stimulated trapped electron-acoustic wave scattering and ion-vortices in subcritical plasmas. Acta Physica Sinica, 2007, 56(8): 4749-4761. doi: 10.7498/aps.56.4749
    [13] Generation of single plasma channel in air. Acta Physica Sinica, 2007, 56(12): 7114-7119. doi: 10.7498/aps.56.7114
    [14] Chen Li, Mao Bang-Ning, Wang Yu-Bo, Wang Li-Min, Pan Bai-Liang. Spectral structure of CuBr laser under lower pressures. Acta Physica Sinica, 2007, 56(10): 5808-5812. doi: 10.7498/aps.56.5808
    [15] Li Bai-Wen, Zheng Chun-Yang, Song Min, Liu Zhan-Jun. Stimulated Raman cascade-into-photon condensation and ultra-intense EM solitons in laser plasma interaction. Acta Physica Sinica, 2006, 55(10): 5325-5337. doi: 10.7498/aps.55.5325
    [16] Wang Xiao-Hui, Lü Zhi-Wei, Lin Dian-Yang, Wang Chao, Tang Xiu-Zhang, Gong Kun, Shan Yu-Sheng. Stimulated Brillouin scattering reflection pumped by broadband KrF laser. Acta Physica Sinica, 2006, 55(3): 1224-1230. doi: 10.7498/aps.55.1224
    [17] Zhang Jia-Tai, Liu Song-Fen, Hu Bei-Lai. Filamentation instability of intense laser in partially ionized plasma. Acta Physica Sinica, 2003, 52(7): 1668-1671. doi: 10.7498/aps.52.1668
    [18] ZHANG JIA-TAI, XU LIN-BAO, CHANG TIE-QIANG, ZHANG SHO-GUI, NIE XIAO-BO, WANG SHI-HONG, WANG WEI-XING. STIMULATED RAMAN SCATTERING IN LASER PLASMA TARGETS. Acta Physica Sinica, 1991, 40(10): 1642-1651. doi: 10.7498/aps.40.1642
    [19] XU- ZHI-ZHAN, TANG YONG-HONG, QIAN AI-DI. INDIRECT EVIDENCE OF FORWARD SCATTERING——PERIODIC STRUCTURE OF THE STIMULATED BRILLOUIN SCATTERING SPECTRA OBTAINED IN LASER.PLASMA INTERACTION EXPERIMENTS. Acta Physica Sinica, 1988, 37(4): 557-565. doi: 10.7498/aps.37.557
    [20] Xu Zhi-zhan, Yin Guang-yu, Zhang Yan-zhen, Lin Kang-chun. STIMULATED BRILLOUIN SCATTERING DUE TO LASER-PLASMA INTERACTIONS. Acta Physica Sinica, 1983, 32(4): 481-489. doi: 10.7498/aps.32.481
Metrics
  • Abstract views:  3983
  • PDF Downloads:  73
  • Cited By: 0
Publishing process
  • Received Date:  25 March 2021
  • Accepted Date:  08 May 2021
  • Available Online:  07 June 2021
  • Published Online:  05 October 2021

/

返回文章
返回
Baidu
map