Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effects of slant angle of sharp plasma-vacuum boundary on electron injection in laser wakefield acceleration

Zhu Xin-Zhe Liu Wei-Yuan Chen Min

Citation:

Effects of slant angle of sharp plasma-vacuum boundary on electron injection in laser wakefield acceleration

Zhu Xin-Zhe, Liu Wei-Yuan, Chen Min
PDF
HTML
Get Citation
  • Plasma wakefield acceleration driven by ultra short ultra intense laser pulse interacting with gas target has been studied for almost four decades. Monoenergetic electron beams with central energy of multi-giga electron-volt have been achieved in a centimeter-scale acceleration distance. Currently, the highest energy of electrons accelerated by laser wakefield is 8 GeV. In order to further improve the quality of such electrons, many kinds of electron injection schemes have been proposed such as density gradient injection, colliding pulse injection and ionization injection. Electrons under the suitable conditions can be trapped by the strong plasma wakefield. Those trapped electrons are then accelerated in the wakefield. In a nonlinear regime, the wakefield shows a “bubble” structure. Electrons with transverse momentum can oscillate in the wakefield and produce considerably betatron radiation in the ultraviolet and X-ray region. In this paper, we study the electron injection around the sharp plasma-vacuum boundary. The effects of the slant angle of the boundary on the final electron quality are investigated in detail. Our results show that with optimal slant density transition around the vacuum plasma boundary, both the beam quality and the injection charge in the second “bubble” can be improved. Two-dimensional particle-in-cell simulations show that the injection charge in the second wake bucket can be increased three times when an optimal slant angle is used compared with a vertical boundary. The driving pulse’s polarization also affects the injection charge. When the polarization is in the injection plane the injection charge in the first bucket can be triply increased compared with the case when the polarization is out of the plane. The reasons for the enhanced injection charge and transverse oscillation are found by tracing the initial injection positions and trajectories of the electrons. These studies would benefit the electron acceleration and its applications, such as compact betatron radiation source.
      Corresponding author: Chen Min, minchen@sjtu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11774227) and the Science Challenge Project, China (Grant No.TZ2018005)
    [1]

    Tajima T, Dawson J M 1979 Phys. Rev. Lett. 43 267Google Scholar

    [2]

    Esarey E, Schroeder C B, Leemans W P 2009 Rev. Mod. Phys. 81 1229Google Scholar

    [3]

    Gonsalves A J, Nakamura K, Daniels J, Benedetti C, Pieronek C, Raadt de T C H, Steinke S, Bin J H, Bulanov S S, Tilborg J van, Geddes C G R, Schroeder C B, Tóth Cs, Esarey E, Swanson K, Fan Chiang L, Bagdasarov G, Bobrova N, Gasilov V, Korn G, Sasorov P, Leemans W P 2019 Phys. Rev. Lett. 122 084801Google Scholar

    [4]

    Ma Y, Chen L M, Li M H, Li Y F, Wang J G, Tao M Z, Han Y J, Zhao J R, Huang K, Yan W C, Li D Z, Chen Z Y, Ma J L, Li Y T, Sheng Z M, Zhang J 2015 Phys. Plasmas 22 083102Google Scholar

    [5]

    Wang X, Zgadzaj R, Fazel N, Li Z Y, Yi S A, Zhang X, Henderson Watson, Chang Y Y, Korzekwa R, Tsai H E, Pai C H, Quevedo H, Dyer G, Gaul E, Martinez M, Bernstein A C, Borger T, Spinks M, Donovan M, Khudik V, Shvets G, Ditmire T, Downe M C 2013 Nat. Commun. 4 1988Google Scholar

    [6]

    Mo M Z, Ali A, Fourmaux S, Lassonde P, Kieffer J C, Fedosejevs R 2012 Appl. Phys. Lett. 100 074101Google Scholar

    [7]

    Geddes C G R, Nakamura K, Plateau G R, Toth Cs, Cormier-Michel E, Esarey E, Schroeder C B, Cary J R, Leemans W P 2008 Phys. Rev. Lett. 100 215004Google Scholar

    [8]

    Gonsalves A J, Nakamura K, Lin C, Panasenko D, Shiraishi S, Sokollik T, Benedetti C, Schroeder C B, Geddes C G R, Tilborg J van, Osterhoff J, Esarey E, Toth C, Leemans W P 2011 Nat. Phys. 7 862Google Scholar

    [9]

    Faure J, Rechatin C, Norlin A, Lifschitz A, Glinec Y, Malka V 2006 Nature 444 737Google Scholar

    [10]

    Chen M, Sheng Z M, Ma Y Y, Zhang J 2006 J. Appl. Phys. 99 056109Google Scholar

    [11]

    Pak A, Marsh K A, Martins S F, Lu W, Mori W B, Joshi C 2010 Phys. Rev. Lett. 104 025003Google Scholar

    [12]

    Liu J S, Xia C Q, Wang W T, Lu H Y, Wang C, Deng A H, Li W T, Zhang H, Liang X Y, Leng Y X, Lu X M, Wang C, Wang J Z, Nakajima K, Li R X, Xu Z Z 2011 Phys. Rev. Lett. 107 035001Google Scholar

    [13]

    Yu L L, Esarey E, Schroeder C B, Vay J L, Benedetti C, Geddes C G R, Chen M, Leemans W P 2014 Phys. Rev. Lett. 112 125001Google Scholar

    [14]

    Zeng M, Chen M, Yu L L, Mori W B, Sheng Z M, Hidding B, Jaroszynski D A, Zhang J 2015 Phys. Rev. Lett. 114 084801Google Scholar

    [15]

    Mirzaie M, Li S, Zeng M, Hafz N A M, Chen M, Li G Y, Zhu Q J, Liao H, Sokollik T, Liu F, Ma Y Y, Chen L M, Sheng Z M, Zhang J 2015 Sci. Rep. 5 14659Google Scholar

    [16]

    Xu X L, Pai C H, Zhang J C, Li F, Wan Y, Wu Y P, Hua J F, Lu W, An W, Yu P, Joshi C, Mori W B 2016 Phys. Rev. Lett. 117 034801Google Scholar

    [17]

    Schmid K, Veisz L, Tavella F, Benavides S, Tautz R, Herrmann D, Buck A, Hidding B, Marcinkevicius A, Schramm U, Geissler M, Meyer-ter-Vehn J, Habs D, Krausz F 2009 Phys. Rev. Lett. 102 124801Google Scholar

    [18]

    Corde S, Ta Phuoc K, Lambert G, Fitour R, Malka V, Rousse A, Beck A, Lefebvre E 2013 Rev. Mod. Phys. 85 1Google Scholar

    [19]

    Chen M, Luo J, Li F Y, Liu F, Sheng Z M, Zhang J 2016 Light-Sci. Appl. 5 e16015Google Scholar

    [20]

    Fonseca R 2002 Proceedings of the Second International Conference on Computational Science—ICCS Amsterdam, Netherlands, April 21−24, 2002 p342

    [21]

    Chien T Y, Chang C L, Lee C H, Lin J Y, Wang J, Chen S Y 2005 Phys. Rev. Lett. 94 115003Google Scholar

    [22]

    Fourmaux S, Ta Phuoc K, Lassonde P, Corde S, Lebrun G, Malka V, Rousse A, Kieffer 2012 Appl. Phys. Lett. 101 111106

    [23]

    Tomassini P, Galimberti M, Giulietti A, Giulietti D, Gizzi L.A, Labate L 2004 Laser. Particle. Beams. 22 423Google Scholar

    [24]

    Hu R, Lu H, Shou Y, Hu R H, Lu H Y, Shou Y R, Lin C, Zhuo H B, Chen C, Yan X Q 2016 Phys. Rev. Accel. Beams 19 091301Google Scholar

    [25]

    Geindre J P, Marjoribanks R S, Audebert P 2010 Phys. Rev. Lett. 104 135001Google Scholar

    [26]

    Brunel F 1987 Phys. Rev. Lett. 59 52Google Scholar

    [27]

    Steinke S, Tilborg J van, Benedetti1 C, Geddes C G R, Schroeder C B, Daniels J, Swanson K K, Gonsalves A J, Nakamura K, Matlis N H, Shaw B H, Esarey E, Leemans W P 2016 Nature 530 190Google Scholar

    [28]

    Luo J, Chen M, Wu W Y, Weng S M, Sheng Z M, Schroeder C B, Jaroszynski D A, Esarey E, Leemans W P, Mori W B, Zhang J 2018 Phys. Rev. Lett. 120 154801Google Scholar

    [29]

    Lemos N, Lopes N, Dias J M 2009 Rev. Sci. Instrum. 80 103301Google Scholar

    [30]

    Kim G H, Kim C, Hafz N, Kim J U, Lee H J, Suk H 2003 30th International Conference on Plasma Science Jeju, South Korea, June 2−5, 2003 p364

  • 图 1  真空等离子体边界激光尾波电子注入示意图

    Figure 1.  Schematic of vacuum-plasma boundary injection in laser wakefield acceleration

    图 2  倾斜角为0°时激光传播500T0后等离子体密度与注入电子(γ ≥ 15)的位置分布 (a)注入电子的分布; (b)放大后第二个空泡中的电子分布

    Figure 2.  Distributions of plasma density and injected electrons after 500T0 propagation when the boundary slant angle is 0°: (a) Injected electrons; (b) electrons in the second bubble

    图 3  激光传播过程中不同角度下的电子平均能量增长的情况 (a)第一个空泡内电子平均相对论因子γ的变化; (b) 第二个空泡内电子平均相对论因子γ的变化

    Figure 3.  Average energy growth with time: (a) Average gamma factor of electrons in the first bubble; (b) average gamma factor of electrons in the second bubble

    图 4  不同角度下电子注入后经过相同加速距离后的加速情况对比 (a)被加速电子的平均能量; (b)被加速电子的总电量(单位归一化到 pC/μm)

    Figure 4.  Electrons statistics after same acceleration length: (a) Average energy; (b) total acceleration charge (normalized to pC/μm).

    图 5  不同倾斜角度下的第一个空泡(红色)和第二个空泡(蓝色)中注入电子的轨迹(为了显示清晰, 对两种倾角情形, 各自只选取了10个典型的电子) (a) 0°; (b) 45°

    Figure 5.  Trajectories of electrons in the first bubble (red) and second bubble (blue): (a) 0°; (b) 45°. Ten electrons’ trajectories have been selected for clearer view

    图 6  (a) 0°倾斜边界角时注入空泡1 (红)和空泡2上下两侧注入电子(蓝)的平均动量; (b) 45°倾斜边界角时注入空泡1和空泡2电子的平均动量

    Figure 6.  (a) Average transverse momentum of electrons in the first bubble (red) and second bubble (blue) when the boundary slant angle is 0°; (b) average transverse momentum of electrons in the first bubble (red) and second bubble (blue) when the boundary slant angle is 45°

    图 7  倾斜边界角为0°时的电子注入过程(等横向间距选取了3个粒子作为示意, 背景为等离子体密度, 线条代表粒子的真实轨迹, 圆圈代表粒子在该时刻的位置) (a) T/T0 = 20; (b) T/T0 = 40; (c) T/T0 = 60; (d) T/T0 = 90

    Figure 7.  Electrons’ injection trajectories when the boundary slant angle is 0°: (a) T/T0 = 20; (b) T/T0 = 40; (c) T/T0 = 60; (d) T/T0 = 90. Here the background color bar represents the plasma density, we have selected 3 particles with equally separation along the transverse direction. The blue and red lines represent the injection trajectories and the circles represent the particles’ positions at that time

    图 8  45°入射下边界面产生电子注入的过程 (a) T/T0 = 40; (b) T/T0 = 60; (c) T/T0 = 80; (d) T/T0 = 110

    Figure 8.  Electrons injection at 45° incidence: (a) T/T0 = 40; (b) T/T0 = 60; (c) T/T0 = 80; (d) T/T0 = 110

    图 9  (a)倾斜边界为0°情况下第一个空泡和第二个空泡内注入电子的起始位置; (b) 倾斜边界为45°入射下第一个空泡和第二个空泡内注入电子的起始位置

    Figure 9.  (a) Original positions of the trapped electrons when the boundary slant angle is 0°; (b) original positions of the trapped electrons when the boundary slant angle is 45°

    表 1  S偏振和P偏振激光45°入射时注入空泡中的电子电量

    Table 1.  Injection charge of S-polarization and P-polarization incidence at 45°.

    电量/pC·μm–1S偏振P偏振
    第一个空泡1.243.88
    第二个空泡47.2147.00
    DownLoad: CSV
    Baidu
  • [1]

    Tajima T, Dawson J M 1979 Phys. Rev. Lett. 43 267Google Scholar

    [2]

    Esarey E, Schroeder C B, Leemans W P 2009 Rev. Mod. Phys. 81 1229Google Scholar

    [3]

    Gonsalves A J, Nakamura K, Daniels J, Benedetti C, Pieronek C, Raadt de T C H, Steinke S, Bin J H, Bulanov S S, Tilborg J van, Geddes C G R, Schroeder C B, Tóth Cs, Esarey E, Swanson K, Fan Chiang L, Bagdasarov G, Bobrova N, Gasilov V, Korn G, Sasorov P, Leemans W P 2019 Phys. Rev. Lett. 122 084801Google Scholar

    [4]

    Ma Y, Chen L M, Li M H, Li Y F, Wang J G, Tao M Z, Han Y J, Zhao J R, Huang K, Yan W C, Li D Z, Chen Z Y, Ma J L, Li Y T, Sheng Z M, Zhang J 2015 Phys. Plasmas 22 083102Google Scholar

    [5]

    Wang X, Zgadzaj R, Fazel N, Li Z Y, Yi S A, Zhang X, Henderson Watson, Chang Y Y, Korzekwa R, Tsai H E, Pai C H, Quevedo H, Dyer G, Gaul E, Martinez M, Bernstein A C, Borger T, Spinks M, Donovan M, Khudik V, Shvets G, Ditmire T, Downe M C 2013 Nat. Commun. 4 1988Google Scholar

    [6]

    Mo M Z, Ali A, Fourmaux S, Lassonde P, Kieffer J C, Fedosejevs R 2012 Appl. Phys. Lett. 100 074101Google Scholar

    [7]

    Geddes C G R, Nakamura K, Plateau G R, Toth Cs, Cormier-Michel E, Esarey E, Schroeder C B, Cary J R, Leemans W P 2008 Phys. Rev. Lett. 100 215004Google Scholar

    [8]

    Gonsalves A J, Nakamura K, Lin C, Panasenko D, Shiraishi S, Sokollik T, Benedetti C, Schroeder C B, Geddes C G R, Tilborg J van, Osterhoff J, Esarey E, Toth C, Leemans W P 2011 Nat. Phys. 7 862Google Scholar

    [9]

    Faure J, Rechatin C, Norlin A, Lifschitz A, Glinec Y, Malka V 2006 Nature 444 737Google Scholar

    [10]

    Chen M, Sheng Z M, Ma Y Y, Zhang J 2006 J. Appl. Phys. 99 056109Google Scholar

    [11]

    Pak A, Marsh K A, Martins S F, Lu W, Mori W B, Joshi C 2010 Phys. Rev. Lett. 104 025003Google Scholar

    [12]

    Liu J S, Xia C Q, Wang W T, Lu H Y, Wang C, Deng A H, Li W T, Zhang H, Liang X Y, Leng Y X, Lu X M, Wang C, Wang J Z, Nakajima K, Li R X, Xu Z Z 2011 Phys. Rev. Lett. 107 035001Google Scholar

    [13]

    Yu L L, Esarey E, Schroeder C B, Vay J L, Benedetti C, Geddes C G R, Chen M, Leemans W P 2014 Phys. Rev. Lett. 112 125001Google Scholar

    [14]

    Zeng M, Chen M, Yu L L, Mori W B, Sheng Z M, Hidding B, Jaroszynski D A, Zhang J 2015 Phys. Rev. Lett. 114 084801Google Scholar

    [15]

    Mirzaie M, Li S, Zeng M, Hafz N A M, Chen M, Li G Y, Zhu Q J, Liao H, Sokollik T, Liu F, Ma Y Y, Chen L M, Sheng Z M, Zhang J 2015 Sci. Rep. 5 14659Google Scholar

    [16]

    Xu X L, Pai C H, Zhang J C, Li F, Wan Y, Wu Y P, Hua J F, Lu W, An W, Yu P, Joshi C, Mori W B 2016 Phys. Rev. Lett. 117 034801Google Scholar

    [17]

    Schmid K, Veisz L, Tavella F, Benavides S, Tautz R, Herrmann D, Buck A, Hidding B, Marcinkevicius A, Schramm U, Geissler M, Meyer-ter-Vehn J, Habs D, Krausz F 2009 Phys. Rev. Lett. 102 124801Google Scholar

    [18]

    Corde S, Ta Phuoc K, Lambert G, Fitour R, Malka V, Rousse A, Beck A, Lefebvre E 2013 Rev. Mod. Phys. 85 1Google Scholar

    [19]

    Chen M, Luo J, Li F Y, Liu F, Sheng Z M, Zhang J 2016 Light-Sci. Appl. 5 e16015Google Scholar

    [20]

    Fonseca R 2002 Proceedings of the Second International Conference on Computational Science—ICCS Amsterdam, Netherlands, April 21−24, 2002 p342

    [21]

    Chien T Y, Chang C L, Lee C H, Lin J Y, Wang J, Chen S Y 2005 Phys. Rev. Lett. 94 115003Google Scholar

    [22]

    Fourmaux S, Ta Phuoc K, Lassonde P, Corde S, Lebrun G, Malka V, Rousse A, Kieffer 2012 Appl. Phys. Lett. 101 111106

    [23]

    Tomassini P, Galimberti M, Giulietti A, Giulietti D, Gizzi L.A, Labate L 2004 Laser. Particle. Beams. 22 423Google Scholar

    [24]

    Hu R, Lu H, Shou Y, Hu R H, Lu H Y, Shou Y R, Lin C, Zhuo H B, Chen C, Yan X Q 2016 Phys. Rev. Accel. Beams 19 091301Google Scholar

    [25]

    Geindre J P, Marjoribanks R S, Audebert P 2010 Phys. Rev. Lett. 104 135001Google Scholar

    [26]

    Brunel F 1987 Phys. Rev. Lett. 59 52Google Scholar

    [27]

    Steinke S, Tilborg J van, Benedetti1 C, Geddes C G R, Schroeder C B, Daniels J, Swanson K K, Gonsalves A J, Nakamura K, Matlis N H, Shaw B H, Esarey E, Leemans W P 2016 Nature 530 190Google Scholar

    [28]

    Luo J, Chen M, Wu W Y, Weng S M, Sheng Z M, Schroeder C B, Jaroszynski D A, Esarey E, Leemans W P, Mori W B, Zhang J 2018 Phys. Rev. Lett. 120 154801Google Scholar

    [29]

    Lemos N, Lopes N, Dias J M 2009 Rev. Sci. Instrum. 80 103301Google Scholar

    [30]

    Kim G H, Kim C, Hafz N, Kim J U, Lee H J, Suk H 2003 30th International Conference on Plasma Science Jeju, South Korea, June 2−5, 2003 p364

  • [1] Long Xin-Yu, Wang Pei-Pei, An Hong-Hai, Xiong Jun, Xie Zhi-Yong, Fang Zhi-Heng, Sun Jin-Ren, Wang Chen. Near forward scattering light of planar film target driven by broadband laser. Acta Physica Sinica, 2024, 73(12): 125202. doi: 10.7498/aps.73.20231613
    [2] Li Xiang-Fu, Zhu Xiao-Lu, Jiang Gang. Plasma screening effect on electron-electron interactions. Acta Physica Sinica, 2023, 72(7): 073102. doi: 10.7498/aps.72.20222339
    [3] Li Tian-Cheng, Zhang Xiao-Hai, Sheng Zheng-Mao. Surface plasma wave excited by laser pulse obliquely incident on a double-layer plasma target and ts application. Acta Physica Sinica, 2023, 72(4): 045201. doi: 10.7498/aps.72.20221305
    [4] Zhu Xin-Zhe, Li Bo-Yuan, Liu Feng, Li Jian-Long, Bi Ze-Wu, Lu Lin, Yuan Xiao-Hui, Yan Wen-Chao, Chen Min, Chen Li-Ming, Sheng Zheng-Ming, Zhang Jie. Experimental study on capillary discharge for laser plasma wake acceleration. Acta Physica Sinica, 2022, 71(9): 095202. doi: 10.7498/aps.71.20212435
    [5] Wang Chen, An Hong-Hai, Xiong Jun, Fang Zhi-Heng, Ji Yu, Lian Chang-Wang, Xie Zhi-Yong, Guo Er-Fu, He Zhi-Yu, Cao Zhao-Dong, Wang Wei, Yan Rui, Pei Wen-Bing. Spectral structures of backward stimulated Brillouin scattering driven by a picosecond laser. Acta Physica Sinica, 2021, 70(19): 195202. doi: 10.7498/aps.70.20210568
    [6] Wang Wei-Min, Zhang Liang-Liang, Li Yu-Tong, Sheng Zheng-Ming, Zhang Jie. Theoretical and experimental studies on terahertz radiation from laser-driven air plasma. Acta Physica Sinica, 2018, 67(12): 124202. doi: 10.7498/aps.67.20180564
    [7] Wang Tong, Wang Xiao-Fang. An analytic approach for density gradient injection in laser wake field acceleration. Acta Physica Sinica, 2016, 65(4): 044102. doi: 10.7498/aps.65.044102
    [8] He Min-Qing, Dong Quan-Li, Sheng Zheng-Ming, Zhang Jie. Shock wave amplification by shock wave self-generated magnetic field driven by laser and the external magnetic field. Acta Physica Sinica, 2015, 64(10): 105202. doi: 10.7498/aps.64.105202
    [9] Meng Xiang-Fu, Wang Chen, An Hong-Hai, Jia Guo, Fang Zhi-Heng, Zhou Hua-Zhen, Sun Jin-Ren, Wang Wei, Fu Si-Zu. Research of coherence between driven-laser beams and its influence on backscatter. Acta Physica Sinica, 2012, 61(18): 185202. doi: 10.7498/aps.61.185202
    [10] He Min-Qing, Dong Quan-Li, Sheng Zheng-Ming, Weng Su-Ming, Chen Min, Wu Hui-Chun, Zhang Jie. Ion acceleration by shock wave induced by laser plasma interaction. Acta Physica Sinica, 2009, 58(1): 363-372. doi: 10.7498/aps.58.363
    [11] Li Chun, Peng Jun-Biao, Zeng Wen-Jin. Organic red light-emitting diodes with a soluble luminescent compound and a novel TPBI/Ag cathode. Acta Physica Sinica, 2009, 58(3): 1992-1996. doi: 10.7498/aps.58.1992
    [12] Luan Shi-Xia, Zhang Qiu-Ju, Gui Wei-Ling. Plasma Bragg gratings generated by the interaction of two counter-propagating laser pulses with plasmas. Acta Physica Sinica, 2008, 57(11): 7030-7037. doi: 10.7498/aps.57.7030
    [13] Li Bai-Wen, Tian En-Ke. Stimulated trapped electron-acoustic wave scattering and ion-vortices in subcritical plasmas. Acta Physica Sinica, 2007, 56(8): 4749-4761. doi: 10.7498/aps.56.4749
    [14] Tian Ren-Yu, Yang Ren-Qiang, Peng Jun-Biao, Cao Yong. Performance improvement of polymer light-emitting diodes based on fluorene copolymer with cesium fluoride/aluminum cathode. Acta Physica Sinica, 2007, 56(4): 2409-2414. doi: 10.7498/aps.56.2409
    [15] Xu Miao-Hua, Liang Tian-Jiao, Zhang Jie. Bremsstrahlung diagnostics of hot electrons in laser-plasma interactions. Acta Physica Sinica, 2006, 55(5): 2357-2363. doi: 10.7498/aps.55.2357
    [16] Zhang Jia-Tai, Liu Song-Fen, Hu Bei-Lai. Filamentation instability of intense laser in partially ionized plasma. Acta Physica Sinica, 2003, 52(7): 1668-1671. doi: 10.7498/aps.52.1668
    [17] LI YI. THE WAKE FIELD ACCELERATION IN THERMAL PLASMA. Acta Physica Sinica, 1996, 45(4): 601-607. doi: 10.7498/aps.45.601
    [18] SHENG ZHENG-MING, MA JIN-XIU, XU ZHI-ZHAN, YU WEI. EFFECT OF ELECTRON PLASMA WAVE ON THE PROPA-GATION OF AN ULTRASHORT-PULSE LASER. Acta Physica Sinica, 1992, 41(11): 1796-1805. doi: 10.7498/aps.41.1796
    [19] ZHANG SHI-CHANG. EFFECT OF SPACE-CHARGE WAVE IN RAMAN FREE-ELEC-TRON LASERS. Acta Physica Sinica, 1991, 40(2): 219-225. doi: 10.7498/aps.40.219
    [20] CHANG WEN-WEI, ZHANG LI-FU, SHAO FU-QIU. LASER PLASMA WAVE ELECTRON ACCELERATORS. Acta Physica Sinica, 1991, 40(2): 182-189. doi: 10.7498/aps.40.182
Metrics
  • Abstract views:  7921
  • PDF Downloads:  114
  • Cited By: 0
Publishing process
  • Received Date:  02 September 2019
  • Accepted Date:  15 November 2019
  • Published Online:  05 February 2020

/

返回文章
返回
Baidu
map