搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

激光在大气中驱动的强太赫兹辐射的理论和实验研究

王伟民 张亮亮 李玉同 盛政明 张杰

引用本文:
Citation:

激光在大气中驱动的强太赫兹辐射的理论和实验研究

王伟民, 张亮亮, 李玉同, 盛政明, 张杰

Theoretical and experimental studies on terahertz radiation from laser-driven air plasma

Wang Wei-Min, Zhang Liang-Liang, Li Yu-Tong, Sheng Zheng-Ming, Zhang Jie
PDF
导出引用
  • 两束双色激光脉冲能在大气中产生MV/cm的强太赫兹波.本文主要介绍了我们最近的三项理论和实验工作,澄清了双色激光方案的物理机制这个长期存在的问题,并对该方案进行了推广.为了在气体中有效地产生太赫兹波,在广泛研究的双色激光方案中两束激光的频率比2/1总是被取为1:2.首先从理论上预测采用其他频率比时,此方案仍能有效地工作,并通过实验进行证实.实验上观察到在新的频率比2/1=1:4,2:3下,也能有效地产生太赫兹波;观察到通过旋转较长波长的激光脉冲的偏振方向,能够有效地调节太赫兹波的偏振,但是旋转波长较短的激光脉冲的偏振方向,太赫兹波的偏振几乎没有变化,这违背了多波混频理论中极化率张量对称性的要求;采用不同的频率比时,太赫兹能量定标率并没有显示出明显的区别,这与多波混频理论预测的能量定标率不符.这些实验结果与等离子体电流模型及粒子模拟结果符合得很好.因此,该研究不仅对双色激光方案进行了推广,而且证实了其物理机制应该归结为等离子体电流模型.
    Strong terahertz (THz) radiation of MV/cm can be generated from air via two-color laser scheme. In this paper, we introduce three recent theoretical and experimental researches conducted by Wang et al., in which they explored the long-standing problem of THz generation mechanism and extended the scheme with uncommon frequency ratio. In the widely-studied two-color laser scheme, the frequency ratio of the two lasers is usually fixed at 2/1=1:2. In 2013 they predicted according to the plasma current model, for the first time, that the two-color scheme can be extended to a new frequency ratio 1:2n, where n is an positive integer. In 2017 they found that the frequency ratio can be further extended to much broader values. In that year, their experiments showed, for the first time, efficient THz generation with new ratios of 2/1=1:4 and 2:3. They observed that the THz polarization can be adjusted by rotating the longer-wavelength laser polarization, but the polarization adjustment becomes inefficient by rotating the other laser polarization, which is inconsistent with the symmetric nature in the susceptibility tensor required by the multi-wave mixing theory; the THz energy shows similar scaling laws with different frequency ratios, which is inconsistent with the scaling predicted according to the multi-wave mixing theory. These experimental results are in agreement with the plasma current model and particle-in-cell simulations. Therefore, their studies not only push the development of the two-color scheme, but also show that the THz generation mechanism should be mainly attributed to the plasma current model.
      通信作者: 王伟民, hbwwm1@iphy.ac.cn
    • 基金项目: 国家自然科学基金(批准号:11775302)、国家重点研发计划(批准号:2018YFA0404801)、科学挑战计划(批准号:TZ2016005)和中国科学院战略性先导科技专项(B类)(批准号:XDB16010200,XDB07030300)资助的课题.
      Corresponding author: Wang Wei-Min, hbwwm1@iphy.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11775302), the National Key Research and Development Program of China (Grant No. 2018YFA0404801), the Science Challenge Project of China (Grant No. TZ2016005), and the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (Grants Nos. XDB16010200, XDB07030300).
    [1]

    Ulbricht R, Hendry E, Shan J, Heinz T F, Bonn M 2011 Rev. Mod. Phys. 83 543

    [2]

    Hamster H, Sullivan A, Gordon S, White W, Falcone R W 1993 Phys. Rev. Lett. 71 2725

    [3]

    Cook D J, Hochstrasser R M 2000 Opt. Lett. 25 1210

    [4]

    Sheng Z M, Mima K, Zhang J, Sanuki H 2005 Phys. Rev. Lett. 94 095003

    [5]

    Li Y T, Li C, Zhou M L, Wang W M, Du F, Ding W J, Lin X X, Liu F, Sheng Z M, Peng X Y, Chen L M, Ma J L, Lu X, Wang Z H, Wei Z Y, Zhang J 2012 Appl. Phys. Lett. 100 254101

    [6]

    Gopal A, Herzer S, Schmidt A, Singh P, Reinhard A, Ziegler W, Brommel D, Karmakar A, Gibbon P, Dillner U, May T, Meyer H G, Paulus G G 2013 Phys. Rev. Lett. 111 074802

    [7]

    Jin Z, Chen Z L, Zhuo H B, Kon A, Nakatsutsumi M, Wang H B, Zhang B H, Gu Y Q, Wu Y C, Zhu B, Wang L, Yu M Y, Sheng Z M, Kodama R 2011 Phys. Rev. Lett. 107 265003

    [8]

    Dey I, Jana K, Fedorov V Y, Koulouklidis A D, Mondal A, Shaikh M, Sarkar D, Lad A D, Tzortzakis S, Couairon A, Kumar G R 2017 Nat. Commun. 8 1184

    [9]

    Jin Q, E Y, Williams K, Dai J, Zhang X C 2017 Appl. Phys. Lett. 111 071103

    [10]

    D'Amico C, Houard A, Franco M, Prade B, Mysyrowicz A, Couairon A, Tikhonchuk V T 2007 Phys. Rev. Lett. 98 235002

    [11]

    Wang W M, Kawata S, Sheng Z M, Li Y T, Zhang J, Chen L M, Qian L J, Zhang J 2011 Opt. Lett. 36 2608

    [12]

    Bai Y, Song L, Xu R, Li C, Liu P, Zeng Z, Zhang Z, Lu H, Li R, Xu Z 2012 Phys. Rev. Lett. 108 255004

    [13]

    Liao G Q, Li Y T, Li C, Su L N, Zheng Y, Liu M, Wang W M, Hu Z D, Yan W C, Dunn J, Nilsen J, Hunter J, Liu Y, Wang X, Chen L M, Ma J L, Lu X, Jin Z, Kodama R, Sheng Z M, Zhang J 2015 Phys. Rev. Lett. 114 255001

    [14]

    Liao G Q, Li Y T, Zhang Y H, Liu H, Ge X L, Yang S, Wei W Q, Yuan X H, Deng Y Q, Zhu B J, Zhang Z, Wang W M, Sheng Z M, Chen L M, Lu X, Ma J L, Wang X, Zhang J 2016 Phys. Rev. Lett. 116 205003

    [15]

    Xie X, Dai J, Zhang X C 2006 Phys. Rev. Lett. 96 075005

    [16]

    Kim K Y, Glownia J H, Taylor A J, Rodriguez G 2007 Opt. Express 15 4577

    [17]

    Wang W M, Sheng Z M, Wu H C, Chen M, Li C, Zhang J, Mima M 2008 Opt. Express 16 16999

    [18]

    Wang W M, Gibbon P, Sheng Z M, Li Y T 2014 Phys. Rev. A 90 023808

    [19]

    Zhang Z, Chen Y, Chen M, Zhang Z, Yu J, Sheng Z, Zhang J 2016 Phys. Rev. Lett. 117 243901

    [20]

    Wu H C, Meyer-ter-Vehn J, Sheng Z M 2008 New J. Phys. 10 043001

    [21]

    Dai J, Karpowicz N, Zhang X C 2009 Phys. Rev. Lett. 103 023001

    [22]

    Wen H, Lindenberg A M 2009 Phys. Rev. Lett. 103 023902

    [23]

    Wang W M, Gibbon P, Sheng Z M, Li Y T 2015 Phys. Rev. Lett. 114 253901

    [24]

    Clerici M, Peccianti M, Schmidt B E, Caspani L, Shalaby M, Giguere M, Lotti A, Couairon A, Legare F, Ozaki T, Faccio D, Morandotti R 2013 Phys. Rev. Lett. 110 253901

    [25]

    Vvedenskii N V, Korytin A I, Kostin V A, Murzanev A A, Silaev A A, Stepanov A N 2014 Phys. Rev. Lett. 112 055004

    [26]

    Wang W M, Li Y T, Sheng Z M, Lu X, Zhang J 2013 Phys. Rev. E 87 033108

    [27]

    Kostin V A, Laryushin I D, Silaev A A, Vvedenskii N V 2016 Phys. Rev. Lett. 117 035003

    [28]

    Wang W M, Sheng Z M, Li Y T, Zhang Y, Zhang J 2017 Phys. Rev. A 96 023844

    [29]

    Zhang L L, Wang W M, Wu T, Zhang R, Zhang S J, Zhang C L, Zhang Y, Sheng Z M, Zhang X C 2017 Phys. Rev. Lett. 119 235001

    [30]

    Liu K, Koulouklidis A D, Papazoglou D G, Tzortzakis S, Zhang X C 2016 Optica 3 605

    [31]

    Wang W M, Gibbon P, Sheng Z M, Li Y T 2015 Phys. Rev. E 91 013101

    [32]

    Wang W M, Kawata S, Sheng Z M, Li Y T, Zhang J 2011 Phys. Plasmas 18 073108

    [33]

    Penetrante B M, Bardsley J N 1991 Phys. Rev. A 43 3100

  • [1]

    Ulbricht R, Hendry E, Shan J, Heinz T F, Bonn M 2011 Rev. Mod. Phys. 83 543

    [2]

    Hamster H, Sullivan A, Gordon S, White W, Falcone R W 1993 Phys. Rev. Lett. 71 2725

    [3]

    Cook D J, Hochstrasser R M 2000 Opt. Lett. 25 1210

    [4]

    Sheng Z M, Mima K, Zhang J, Sanuki H 2005 Phys. Rev. Lett. 94 095003

    [5]

    Li Y T, Li C, Zhou M L, Wang W M, Du F, Ding W J, Lin X X, Liu F, Sheng Z M, Peng X Y, Chen L M, Ma J L, Lu X, Wang Z H, Wei Z Y, Zhang J 2012 Appl. Phys. Lett. 100 254101

    [6]

    Gopal A, Herzer S, Schmidt A, Singh P, Reinhard A, Ziegler W, Brommel D, Karmakar A, Gibbon P, Dillner U, May T, Meyer H G, Paulus G G 2013 Phys. Rev. Lett. 111 074802

    [7]

    Jin Z, Chen Z L, Zhuo H B, Kon A, Nakatsutsumi M, Wang H B, Zhang B H, Gu Y Q, Wu Y C, Zhu B, Wang L, Yu M Y, Sheng Z M, Kodama R 2011 Phys. Rev. Lett. 107 265003

    [8]

    Dey I, Jana K, Fedorov V Y, Koulouklidis A D, Mondal A, Shaikh M, Sarkar D, Lad A D, Tzortzakis S, Couairon A, Kumar G R 2017 Nat. Commun. 8 1184

    [9]

    Jin Q, E Y, Williams K, Dai J, Zhang X C 2017 Appl. Phys. Lett. 111 071103

    [10]

    D'Amico C, Houard A, Franco M, Prade B, Mysyrowicz A, Couairon A, Tikhonchuk V T 2007 Phys. Rev. Lett. 98 235002

    [11]

    Wang W M, Kawata S, Sheng Z M, Li Y T, Zhang J, Chen L M, Qian L J, Zhang J 2011 Opt. Lett. 36 2608

    [12]

    Bai Y, Song L, Xu R, Li C, Liu P, Zeng Z, Zhang Z, Lu H, Li R, Xu Z 2012 Phys. Rev. Lett. 108 255004

    [13]

    Liao G Q, Li Y T, Li C, Su L N, Zheng Y, Liu M, Wang W M, Hu Z D, Yan W C, Dunn J, Nilsen J, Hunter J, Liu Y, Wang X, Chen L M, Ma J L, Lu X, Jin Z, Kodama R, Sheng Z M, Zhang J 2015 Phys. Rev. Lett. 114 255001

    [14]

    Liao G Q, Li Y T, Zhang Y H, Liu H, Ge X L, Yang S, Wei W Q, Yuan X H, Deng Y Q, Zhu B J, Zhang Z, Wang W M, Sheng Z M, Chen L M, Lu X, Ma J L, Wang X, Zhang J 2016 Phys. Rev. Lett. 116 205003

    [15]

    Xie X, Dai J, Zhang X C 2006 Phys. Rev. Lett. 96 075005

    [16]

    Kim K Y, Glownia J H, Taylor A J, Rodriguez G 2007 Opt. Express 15 4577

    [17]

    Wang W M, Sheng Z M, Wu H C, Chen M, Li C, Zhang J, Mima M 2008 Opt. Express 16 16999

    [18]

    Wang W M, Gibbon P, Sheng Z M, Li Y T 2014 Phys. Rev. A 90 023808

    [19]

    Zhang Z, Chen Y, Chen M, Zhang Z, Yu J, Sheng Z, Zhang J 2016 Phys. Rev. Lett. 117 243901

    [20]

    Wu H C, Meyer-ter-Vehn J, Sheng Z M 2008 New J. Phys. 10 043001

    [21]

    Dai J, Karpowicz N, Zhang X C 2009 Phys. Rev. Lett. 103 023001

    [22]

    Wen H, Lindenberg A M 2009 Phys. Rev. Lett. 103 023902

    [23]

    Wang W M, Gibbon P, Sheng Z M, Li Y T 2015 Phys. Rev. Lett. 114 253901

    [24]

    Clerici M, Peccianti M, Schmidt B E, Caspani L, Shalaby M, Giguere M, Lotti A, Couairon A, Legare F, Ozaki T, Faccio D, Morandotti R 2013 Phys. Rev. Lett. 110 253901

    [25]

    Vvedenskii N V, Korytin A I, Kostin V A, Murzanev A A, Silaev A A, Stepanov A N 2014 Phys. Rev. Lett. 112 055004

    [26]

    Wang W M, Li Y T, Sheng Z M, Lu X, Zhang J 2013 Phys. Rev. E 87 033108

    [27]

    Kostin V A, Laryushin I D, Silaev A A, Vvedenskii N V 2016 Phys. Rev. Lett. 117 035003

    [28]

    Wang W M, Sheng Z M, Li Y T, Zhang Y, Zhang J 2017 Phys. Rev. A 96 023844

    [29]

    Zhang L L, Wang W M, Wu T, Zhang R, Zhang S J, Zhang C L, Zhang Y, Sheng Z M, Zhang X C 2017 Phys. Rev. Lett. 119 235001

    [30]

    Liu K, Koulouklidis A D, Papazoglou D G, Tzortzakis S, Zhang X C 2016 Optica 3 605

    [31]

    Wang W M, Gibbon P, Sheng Z M, Li Y T 2015 Phys. Rev. E 91 013101

    [32]

    Wang W M, Kawata S, Sheng Z M, Li Y T, Zhang J 2011 Phys. Plasmas 18 073108

    [33]

    Penetrante B M, Bardsley J N 1991 Phys. Rev. A 43 3100

  • [1] 戈迪, 赵国鹏, 祁月盈, 陈晨, 高俊文, 侯红生. 等离子体环境中相对论效应对类氢离子光电离过程的影响.  , 2024, 73(8): 083201. doi: 10.7498/aps.73.20240016
    [2] 李翰楠, 彭滟. 激光脉冲啁啾影响双色激光场诱导气体产生太赫兹辐射特性的理论研究.  , 2024, 73(6): 060701. doi: 10.7498/aps.73.20231806
    [3] 魏高帅, 张慧, 吴晓君, 张洪瑞, 王春, 王博, 汪力, 孙继荣. 飞秒激光泵浦LaAlO3/SrTiO3异质结产生太赫兹波辐射.  , 2022, 71(9): 090702. doi: 10.7498/aps.71.20201139
    [4] 柳钰, 徐忠锋, 王兴, 曾利霞, 刘婷. 光电离过程中Fe靶和V靶特征辐射的角相关研究.  , 2020, 69(4): 043201. doi: 10.7498/aps.69.20191524
    [5] 李晓璐, 白亚, 刘鹏. 激光等离子体光丝中太赫兹频谱的调控.  , 2020, 69(2): 024205. doi: 10.7498/aps.69.20191200
    [6] 王宬朕, 董全力, 刘苹, 吴奕莹, 盛政明, 张杰. 激光等离子体中高能电子各向异性压强的粒子模拟.  , 2017, 66(11): 115203. doi: 10.7498/aps.66.115203
    [7] 朱卫卫, 张秋菊, 张延惠, 焦扬. 电子在激光驻波场中运动产生的太赫兹及X射线辐射研究.  , 2015, 64(12): 124104. doi: 10.7498/aps.64.124104
    [8] 何民卿, 董全力, 盛政明, 张杰. 激光驱动的冲击波自生磁场以及外加磁场的冲击波放大研究.  , 2015, 64(10): 105202. doi: 10.7498/aps.64.105202
    [9] 陈茂林, 夏广庆, 毛根旺. 多模式离子推力器栅极系统三维粒子模拟仿真.  , 2014, 63(18): 182901. doi: 10.7498/aps.63.182901
    [10] 陈兆权, 殷志祥, 陈明功, 刘明海, 徐公林, 胡业林, 夏广庆, 宋晓, 贾晓芬, 胡希伟. 负偏压离子鞘及气体压强影响表面波放电过程的粒子模拟.  , 2014, 63(9): 095205. doi: 10.7498/aps.63.095205
    [11] 董烨, 董志伟, 周前红, 杨温渊, 周海京. 沿面闪络流体模型电离参数粒子模拟确定方法.  , 2014, 63(6): 067901. doi: 10.7498/aps.63.067901
    [12] 王辉辉, 刘大刚, 蒙林, 刘腊群, 杨超, 彭凯, 夏蒙重. 气体电离的全三维电磁粒子模拟/蒙特卡罗数值研究.  , 2013, 62(1): 015207. doi: 10.7498/aps.62.015207
    [13] 陈兆权, 夏广庆, 刘明海, 郑晓亮, 胡业林, 李平, 徐公林, 洪伶俐, 沈昊宇, 胡希伟. 气体压强及表面等离激元影响表面波等离子体电离发展过程的粒子模拟.  , 2013, 62(19): 195204. doi: 10.7498/aps.62.195204
    [14] 孙长平, 王国利, 周效信. F3+和Ne4+离子的光电离截面的理论计算.  , 2011, 60(5): 053202. doi: 10.7498/aps.60.053202
    [15] 金晓林, 黄桃, 廖平, 杨中海. 电子回旋共振放电中电子与微波互作用特性的粒子模拟和蒙特卡罗碰撞模拟.  , 2009, 58(8): 5526-5531. doi: 10.7498/aps.58.5526
    [16] 黄超群, 卫立夏, 杨 斌, 杨 锐, 王思胜, 单晓斌, 齐 飞, 张允武, 盛六四, 郝立庆, 周士康, 王振亚. HFC-152a的同步辐射真空紫外光电离和光解离研究.  , 2006, 55(3): 1083-1088. doi: 10.7498/aps.55.1083
    [17] 王思胜, 孔蕊弘, 田振玉, 单晓斌, 张允武, 盛六四, 王振亚, 郝立庆, 周士康. Ar?NO团簇的同步辐射光电离研究.  , 2006, 55(7): 3433-3437. doi: 10.7498/aps.55.3433
    [18] 刘凌涛, 王民盛, 韩小英, 李家明. 溴的光电离和辐射复合——平均原子模型速率系数与细致组态速率系数.  , 2006, 55(5): 2322-2327. doi: 10.7498/aps.55.2322
    [19] 卓红斌, 胡庆丰, 刘 杰, 迟利华, 张文勇. 超短脉冲激光与稀薄等离子体相互作用的准静态粒子模拟研究.  , 2005, 54(1): 197-201. doi: 10.7498/aps.54.197
    [20] 简广德, 董家齐. 环形等离子体中电子温度梯度不稳定性的粒子模拟.  , 2003, 52(7): 1656-1662. doi: 10.7498/aps.52.1656
计量
  • 文章访问数:  6311
  • PDF下载量:  296
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-03-29
  • 修回日期:  2018-05-02
  • 刊出日期:  2019-06-20

/

返回文章
返回
Baidu
map