Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Surface plasma wave excited by laser pulse obliquely incident on a double-layer plasma target and ts application

Li Tian-Cheng Zhang Xiao-Hai Sheng Zheng-Mao

Citation:

Surface plasma wave excited by laser pulse obliquely incident on a double-layer plasma target and ts application

Li Tian-Cheng, Zhang Xiao-Hai, Sheng Zheng-Mao
PDF
HTML
Get Citation
  • Surface plasma wave (SPW) will significantly affect the subsequent mutual coupling between laser and plasma, so there are many important applications such as particle acceleration driven by laser pulses and transmission enhancement. In this work, the properties of the SPW produced by an ultra-short and ultra-intensity laser pulse incident on a double-layer plasma target are studied by using the all-electromagnetic large-scale two-dimensional particle in cell (PIC) simulations. It is shown that the high-intensity laser incident with a large angle, θ =75°, can drive the electrons of the low-density layer to form a transportable periodic structure with the propagation speed close to light speed, and excite electrostatic wave whose wavelength is similar to that of the incident laser and is numerically close to the theoretical result according to previous theory. In order to excite the SPW, the laser intensity needs to reach a certain threshold. Besides, the ratio of the surface wave intensity to the incident laser intensity in the double-layer target case obviously deviates from the theoretical result of the single-layer target case, showing a nonlinear relationship. In the second part of the simulation, it is found that the SPW can significantly enhance the transmission of subsequent laser pulse, allowing the subsequent laser to break through the "black barrier" due to the dense plasma. A pre-laser irradiates the double-layer plasma target at θ = 75°, and then the subsequent laser is normally incident after a delay of Δt = 23T. As a result, an obvious electromagnetic wave with the same direction as the sub-laser can be observed behind the target, which indicates that the sub-laser absolutely transmits the dense plasma. In comparison, when a single laser is normally incident on the target without pre-laser while other conditions keep unchanged, no obvious wave can be distinguished behind the target, that is, the field is nearly zero. Another simulation where a single-layer target is injected by pre-laser and sub-laser in order but the wave behind the target is also unobservable, proves that it is SPW that plays the main role in transmission enhancement instead of accelerated hot electrons on the target which can also transport the laser energy.
      Corresponding author: Sheng Zheng-Mao, zmsheng@zju.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61627901, 11875235).
    [1]

    Otto A 1968 Z. Physik 216 398Google Scholar

    [2]

    Raether H 1988 Surface Plasmons on Smooth and Rough Surfaces and on Gratings (SpringerGoogle Scholar

    [3]

    Ebbesen T W, Lezec H J, Ghaemi H F, Thio T, Wolff P A 1998 Nature 391 667Google Scholar

    [4]

    Liu H T, Lalanne P 2008 Nature 452 0672Google Scholar

    [5]

    Garcia-Vidal F J, Martin-Moreno L, Ebbesen T W 2010 Rev. Mod. Phys. 82 729Google Scholar

    [6]

    Florian C, Kirner S V, Kruger J, Bonse J 2020 J. Laser Appl. 32 022063Google Scholar

    [7]

    Ceccotti T, Floquet V, Sgattoni A, et al. 2013 Phys. Rev. Lett. 111 185001Google Scholar

    [8]

    Clark E L, Krushelnick K, Davies J R, et al. 2006 Phys. Plasma 96 670Google Scholar

    [9]

    Wilks S C, Langdon A B, Cowan T E, et al. 2001 Phys. Plasmas 8 542Google Scholar

    [10]

    Xu H, Yu W, Lu P X, Senecha V K, He F, Shen B F, Qian L J, Li R X, Xu Z Z 2005 Phys. Plasmas 12 013105Google Scholar

    [11]

    Chen L M, Kando M, Xu M H, et al. 2008 Phys. Rev. Lett. 100 045004Google Scholar

    [12]

    Dobosz S, Doumy G, Stabile H, D’Oliveira P, Monot P, Réau F, Hüller S, Martin Ph 2005 Phys. Rev. Lett. 95 025001Google Scholar

    [13]

    Zhu X M, Prasad1 R, Swantusch1 M, Aurand B, Andreev A A, Willi1 O, Cerchez M 2020 High Power Laser Sci. Eng. 8 e15Google Scholar

    [14]

    Marini S, Kleij P S, Amiranoff F, Grech M, Raynaud M 2021 Phys. Plasmas 28 073104Google Scholar

    [15]

    胡希伟 2003 等离子体理论基础 (第二版) (北京: 北京大学出版社) 第270页

    Hu X W 2003 Theoretical foundation of plasma (Vol. 2) (Beijing: Peking University Press) p270 (in Chinese)

    [16]

    Rulliere C 2007 Femtosecond Laser Pulse Principles and Experiments (2nd Ed.) (Beijing: Science Press)

    [17]

    Liu C S, Tripath V K, Shao X, Liu T C 2015 Phys. Plasma 22 412Google Scholar

    [18]

    Haider M M, Sheng Z M 2021 AIP Adv. 11 035221Google Scholar

    [19]

    Dawson J M 1962 Phys. Fluids 5 445Google Scholar

    [20]

    张智猛 2011 博士学位论文 (杭州: 浙江大学)

    Zhang Z M 2011 Ph. D. Dissertation (Hangzhou: Zhejiang University) (in Chinese)

    [21]

    Zhang Z M, He X T, Sheng Z M, Yu M Y 2010 Phys. Plasma 17 043110Google Scholar

    [22]

    Zhang Z M, He X T, Sheng Z M, Yu M Y 2011 Phys. Plasma 18 023110Google Scholar

    [23]

    Sheng Z M, Zhu L W, Yu M Y, Zhang Z M 2010 New J. Phys. 12 013001Google Scholar

    [24]

    Birdsall C K, Fuss D 1969 Comput. Phys. 3 494Google Scholar

    [25]

    Yee K S 1966 IEEE Trans. Antennas Propag. 14 302Google Scholar

    [26]

    Fan G X, Liu Q H 1998 Wiley Subscription Services, Inc. A Wiley Company 19 258Google Scholar

  • 图 1  模拟设置示意图 (长度单位: μm, 密度n1 $\ll $ n2)

    Figure 1.  Schematic diagram of simulation settings (Length unit: μm, Density: n1 $\ll $ n2 ).

    图 2  强激光斜入射双层等离子体靶后的电子密度分布, 密度单位: nc, 入射角θ = 75°, 入射光强aL = 2, 入射中心在x = 15μm处, 低密度层厚度为0.5 μm

    Figure 2.  Electron density distribution after intense laser pulse oblique incidence on double-layer plasma target, the unit of density: nc, incident angle θ = 75°, laser intensity aL = 2, incident center is at x = 15μm, thickness of low-density layer is 0.5 μm.

    图 3  (a) 强激光斜入射双层等离子体靶t = 30TEx (归一化) 的分布; (b) y = 39.6 μm的直线上的Ex经傅里叶变换后幅度-波数域的结果, k0是入射光在x方向上的波数, 峰值在k/k0 = 1.005处, 表面波强度as = 0.22

    Figure 3.  (a) The distribution of Ex (normalized) when the intense laser pulse oblique incident on the double-layer plasma target at t = 30T; (b) the result of Fourier transformation of Ex on the line y = 39.6 μm to the amplitude-wavenumber domain, k0 is the incident laser wavenumber in the x direction. The peak value is at k/k0 = 1.005. The amplitude of SPW as = 0.22.

    图 4  表面波强度随入射光强的变化曲线, aL ≤ 0.1时无法激发周期性的电子振荡. 红线是入射角θ = 75°入射双层靶的模拟结果, 蓝线是在相同激光强度及等离子体密度的条件下使用有周期性表面结构的单层靶时的理论结果, 斜率as/aL = 0.139 (a) as-aL曲线; (b) as/aL-aL曲线

    Figure 4.  The curve of the amplitude of SPW with incident laser intensity. When aL ≤ 0.1, periodic electron oscillation cannot be excited. The red line is the simulation result of double-layer target with incident angle θ = 75°, and the blue line is the theoretical result when using single-layer target with ripped surface under the same laser intensity and plasma density, the slope as/aL = 0.139: (a) The curve of as-aL; (b) the curve of as/aL-aL.

    图 5  入射角θ = 85°时表面电子密度分布 (a) t = 25 T; (b) t = 30T, 密度单位: nc

    Figure 5.  The distribution of surface electron density when incidence angle θ = 85°: (a) t = 25T; (b) t = 30T, the unit of density: nc.

    图 6  透射模拟设置示意图 (长度单位: μm, 密度n1 $\ll $ n2) ; 前置激光(pre-laser)以θ = 75°先入射等离子体靶, 在延迟Δt = 23T后正入射后续激光(sub-laser)

    Figure 6.  Schematic diagram of transmission simulation settings (Length unit: μm, Density n1$\ll $n2 ); the pre-laser irradiates the plasma target at θ = 75°, and the subsequent laser (sub-laser) is normally incident after a delay of Δt = 23T).

    图 7  (a) 单束激光正入射单层靶t = 30TEy(归一化)的分布, a =3, n = 100nc; (b) 两束激光先后射入双层等离子体靶t = 50TEy的分布, 前置激光a1 = 4, θ = 75°, 后续激光a2 = 3, θ = 0°, 延迟时间23T, 低密度层n1 = 2nc, 高密度层, n2 = 100nc. 为了使图(b) 中靶后电场更明显, 将强度绝对值超过1的电场都调整为1或 –1

    Figure 7.  (a) The distribution of Ey (normalized) when a single laser beam is normally incident on a single-layer target, t = 30T, a = 3, n = 100nc; (b) the distribution of Ey when two laser beams successively shoot the double-layer plasma target, t = 50T, the pre-laser a1= 4, θ = 75 °, subsequent laser a2=3, θ = 0°, delay time 23T, low density layer n1 = 2nc; high density layer n2 = 100nc. In order to make the electric field behind the target in Figue (b) more obvious, if the absolute intensity of Ey is more than 1, adjust the electric field to 1 or –1.

    图 8  (a) 激光主轴上电场的空间分布, 红线: 单束激光正入射单层靶, 蓝线: 两束激光先后入射双层靶; (b) 靶后即x > 7 μm的电场经傅里叶变换转换到幅度-波数域的结果, k0是入射光波数

    Figure 8.  (a) The spatial distribution of electric field on the main axis of laser. The red line: a single laser normally incident on a single-layer target, and the blue line: two laser beams successively incident on a double-layer target; (b) behind the target, x >7 μm, the result of electric field converted to the amplitude wavenumber domain by Fourier transform, k0 is the incident light wavenumber.

    图 9  两束激光先后入射单层靶t = 50TEy (归一化)的分布

    Figure 9.  The distribution of Ey (normalized) when two laser beams successively incident on single-layer target, t = 50T.

    Baidu
  • [1]

    Otto A 1968 Z. Physik 216 398Google Scholar

    [2]

    Raether H 1988 Surface Plasmons on Smooth and Rough Surfaces and on Gratings (SpringerGoogle Scholar

    [3]

    Ebbesen T W, Lezec H J, Ghaemi H F, Thio T, Wolff P A 1998 Nature 391 667Google Scholar

    [4]

    Liu H T, Lalanne P 2008 Nature 452 0672Google Scholar

    [5]

    Garcia-Vidal F J, Martin-Moreno L, Ebbesen T W 2010 Rev. Mod. Phys. 82 729Google Scholar

    [6]

    Florian C, Kirner S V, Kruger J, Bonse J 2020 J. Laser Appl. 32 022063Google Scholar

    [7]

    Ceccotti T, Floquet V, Sgattoni A, et al. 2013 Phys. Rev. Lett. 111 185001Google Scholar

    [8]

    Clark E L, Krushelnick K, Davies J R, et al. 2006 Phys. Plasma 96 670Google Scholar

    [9]

    Wilks S C, Langdon A B, Cowan T E, et al. 2001 Phys. Plasmas 8 542Google Scholar

    [10]

    Xu H, Yu W, Lu P X, Senecha V K, He F, Shen B F, Qian L J, Li R X, Xu Z Z 2005 Phys. Plasmas 12 013105Google Scholar

    [11]

    Chen L M, Kando M, Xu M H, et al. 2008 Phys. Rev. Lett. 100 045004Google Scholar

    [12]

    Dobosz S, Doumy G, Stabile H, D’Oliveira P, Monot P, Réau F, Hüller S, Martin Ph 2005 Phys. Rev. Lett. 95 025001Google Scholar

    [13]

    Zhu X M, Prasad1 R, Swantusch1 M, Aurand B, Andreev A A, Willi1 O, Cerchez M 2020 High Power Laser Sci. Eng. 8 e15Google Scholar

    [14]

    Marini S, Kleij P S, Amiranoff F, Grech M, Raynaud M 2021 Phys. Plasmas 28 073104Google Scholar

    [15]

    胡希伟 2003 等离子体理论基础 (第二版) (北京: 北京大学出版社) 第270页

    Hu X W 2003 Theoretical foundation of plasma (Vol. 2) (Beijing: Peking University Press) p270 (in Chinese)

    [16]

    Rulliere C 2007 Femtosecond Laser Pulse Principles and Experiments (2nd Ed.) (Beijing: Science Press)

    [17]

    Liu C S, Tripath V K, Shao X, Liu T C 2015 Phys. Plasma 22 412Google Scholar

    [18]

    Haider M M, Sheng Z M 2021 AIP Adv. 11 035221Google Scholar

    [19]

    Dawson J M 1962 Phys. Fluids 5 445Google Scholar

    [20]

    张智猛 2011 博士学位论文 (杭州: 浙江大学)

    Zhang Z M 2011 Ph. D. Dissertation (Hangzhou: Zhejiang University) (in Chinese)

    [21]

    Zhang Z M, He X T, Sheng Z M, Yu M Y 2010 Phys. Plasma 17 043110Google Scholar

    [22]

    Zhang Z M, He X T, Sheng Z M, Yu M Y 2011 Phys. Plasma 18 023110Google Scholar

    [23]

    Sheng Z M, Zhu L W, Yu M Y, Zhang Z M 2010 New J. Phys. 12 013001Google Scholar

    [24]

    Birdsall C K, Fuss D 1969 Comput. Phys. 3 494Google Scholar

    [25]

    Yee K S 1966 IEEE Trans. Antennas Propag. 14 302Google Scholar

    [26]

    Fan G X, Liu Q H 1998 Wiley Subscription Services, Inc. A Wiley Company 19 258Google Scholar

  • [1] Wang Hui-Lin, Liao Yan-Lin, Zhao Yan, Zhang Wen, Chen Zheng-Gen. Simulation study of quasi-monoenergetic high-energy proton beam based on multiple laser beams driving. Acta Physica Sinica, 2023, 72(18): 184102. doi: 10.7498/aps.72.20230313
    [2] Zhu Xin-Zhe, Li Bo-Yuan, Liu Feng, Li Jian-Long, Bi Ze-Wu, Lu Lin, Yuan Xiao-Hui, Yan Wen-Chao, Chen Min, Chen Li-Ming, Sheng Zheng-Ming, Zhang Jie. Experimental study on capillary discharge for laser plasma wake acceleration. Acta Physica Sinica, 2022, 71(9): 095202. doi: 10.7498/aps.71.20212435
    [3] Niu Yue, Bao Wei-Min, Li Xiao-Ping, Liu Yan-Ming, Liu Dong-Lin. Numerical simulation and experimental study of high-power thermal equilibrium inductively coupled plasma. Acta Physica Sinica, 2021, 70(9): 095204. doi: 10.7498/aps.70.20201610
    [4] Chen Guo-Hua, Shi Ke-Jun, Chu Jin-Ke, Wu Hao, Zhou Chi-Lou, Xiao Shu. Numerical simulation and optimization of cooling flow field of cylindrical cathode with annular magnetic field. Acta Physica Sinica, 2021, 70(7): 075203. doi: 10.7498/aps.70.20201368
    [5] Zhu Xin-Zhe, Liu Wei-Yuan, Chen Min. Effects of slant angle of sharp plasma-vacuum boundary on electron injection in laser wakefield acceleration. Acta Physica Sinica, 2020, 69(3): 035201. doi: 10.7498/aps.69.20191332
    [6] Yu Ming-Hao. Numerical investigation on interaction mechanisms between flow field and electromagnetic field for nonequilibrium inductively coupled plasma. Acta Physica Sinica, 2019, 68(18): 185202. doi: 10.7498/aps.68.20190865
    [7] Jiang Chun-Hua, Zhao Zheng-Yu. Numerical simulation of recombination rate effect on development of equatorial plasma bubbles. Acta Physica Sinica, 2019, 68(19): 199401. doi: 10.7498/aps.68.20190173
    [8] He Min-Qing, Dong Quan-Li, Sheng Zheng-Ming, Zhang Jie. Shock wave amplification by shock wave self-generated magnetic field driven by laser and the external magnetic field. Acta Physica Sinica, 2015, 64(10): 105202. doi: 10.7498/aps.64.105202
    [9] Cheng Yu-Guo, Cheng Mou-Sen, Wang Mo-Ge, Li Xiao-Kang. Numerical study on the effects of magnetic field on helicon plasma waves and energy absorption. Acta Physica Sinica, 2014, 63(3): 035203. doi: 10.7498/aps.63.035203
    [10] Gao Qi, Zhang Chuan-Fei, Zhou Lin, Li Zheng-Hong, Wu Ze-Qing, Lei Yu, Zhang Chun-Lai, Zu Xiao-Tao. Simulation of Z-pinch Al plasma radiation and correction with considering superposition effect. Acta Physica Sinica, 2014, 63(12): 125202. doi: 10.7498/aps.63.125202
    [11] He Fu-Shun, Li Liu-He, Li Fen, Dun Dan-Dan, Tao Chan-Cai. Numerical simulation of enhanced glow discharge plasma immersion ion implantation using three-dimensional PIC/MC model. Acta Physica Sinica, 2012, 61(22): 225203. doi: 10.7498/aps.61.225203
    [12] Pang Xue-Xia, Deng Ze-Chao, Jia Peng-Ying, Liang Wei-Hua. Numerical simulation of NOx species behaviour in atmosphere plasma. Acta Physica Sinica, 2011, 60(12): 125201. doi: 10.7498/aps.60.125201
    [13] Bai Wen-Li, Guo Bao-Shan, Cai Li-Kang, Gan Qiao-Qiang, Song Guo-Feng. Simulation of light coupling enhancement and localization of transmission field via subwavelength metallic gratings. Acta Physica Sinica, 2009, 58(11): 8021-8026. doi: 10.7498/aps.58.8021
    [14] Pang Xue-Xia, Deng Ze-Chao, Dong Li-Fang. Numerical simulation of particle species behavior in atmosphere plasmas with different ionization degree. Acta Physica Sinica, 2008, 57(8): 5081-5088. doi: 10.7498/aps.57.5081
    [15] Ouyang Jian-Ming, Shao Fu-Qiu, Lin Ming-Dong. Numerical simulation of ozone generation in oxygenic plasmas. Acta Physica Sinica, 2008, 57(5): 3293-3297. doi: 10.7498/aps.57.3293
    [16] Ouyang Jian-Ming, Shao Fu-Qiu, Wang Long, Fang Tong-Zhen, Liu Jian-Quan. Numerical simulation of chemical processes in one-dimensional atmospheric plasmas. Acta Physica Sinica, 2006, 55(9): 4974-4979. doi: 10.7498/aps.55.4974
    [17] Guo Wen-Qiong, Zhou Xiao-Jun, Zhang Xiong-Jun, Sui Zhan, Wu Deng-Sheng. Simulation electro-optic switch of plasma-electrode Pockels cells driven by one-pulse process. Acta Physica Sinica, 2006, 55(7): 3519-3523. doi: 10.7498/aps.55.3519
    [18] Duan Yao-Yong, Guo Yong-Hui, Wang Wen-Sheng, Qiu Ai-Ci. Numerical simulation of tungsten wire-array pinch plasma. Acta Physica Sinica, 2004, 53(8): 2654-2660. doi: 10.7498/aps.53.2654
    [19] Yuan Xing-Qiu, Li Hui, Zhao Tai-Zhe, Wang Fei, Guo Wen-Kang, Xu Ping. Numerical study of supersonic plasma torch. Acta Physica Sinica, 2004, 53(3): 788-792. doi: 10.7498/aps.53.788
    [20] Zhang Jia-Tai, Liu Song-Fen, Hu Bei-Lai. Filamentation instability of intense laser in partially ionized plasma. Acta Physica Sinica, 2003, 52(7): 1668-1671. doi: 10.7498/aps.52.1668
Metrics
  • Abstract views:  3538
  • PDF Downloads:  78
  • Cited By: 0
Publishing process
  • Received Date:  01 July 2022
  • Accepted Date:  21 November 2022
  • Available Online:  09 December 2022
  • Published Online:  20 February 2023

/

返回文章
返回
Baidu
map