-
全固态高功率深紫外激光器具有光子能量高、脉冲宽度短和空间分辨率优异等优点,在科学研究和先进制造等领域展现出重要的应用价值。本文基于自主研发的全固态Nd:YVO4皮秒MOPA激光放大器(平均功率140 W、重复频率800 kHz、脉冲宽度8.33 ps),开展了LBO和β-BBO晶体Ⅰ类相位匹配的腔外二倍频与四倍频研究。双光子吸收是限制深紫外光功率进一步提升的关键因素,通过研究高功率双波长激光在β-BBO晶体的透过率和温升,发现高功率深紫外光在β-BBO晶体中存在较强的双光子吸收,引发的热效应导致相位失配,严重影响频率转换效率和输出稳定性。为了进一步提高深紫外功率,本论文采用大尺寸光斑泵浦(光斑尺寸1.5 mm×1 mm) β-BBO晶体方案,在泵浦峰值功率密度<1.11 GW/cm2的条件下,有效抑制了双光子吸收效应引起的热梯度,实现了平均功率11 W的四倍频深紫外光输出,单脉冲能量为13.75 μJ。经过8小时运行,功率抖动的均方根小于0.96 %(@ 8 W)。该光源有望在超快精密加工和高次谐波产生等领域发挥重要作用。Deep ultraviolet (DUV) picosecond lasers, operating in the 200–280 nm wavelength range, offer significant advantages, such as high photon energy and high resolution. These attributes make them highly promising for applications like semiconductor detection, ensuring the production of high-quality, defect-free semiconductor devices, as well as for advanced scientific research and industrial processing. High-power DUV picosecond lasers are typically generated via nonlinear frequency conversion of infrared lasers based on master oscillator power amplifier (MOPA) configurations. Among the various DUV laser technologies, systems based on β-BBO crystals are particularly valued for their simple design and cost efficiency. However, linear and two-photon absorption, as well as dynamic color center formation in BBO, are significant limitations for high-power, high-repetition-rate UV generation, leading to thermal effects. Hence, it is important to carefully study the performance characteristics of BBO for high-power, high-repetition-rate pulse generation in the UV at 266 nm.
This study presents a high-power, all-solid-state DUV picosecond laser developed using a 1064 nm Nd:YVO4 MOPA amplification architecture. The experimental setup employed a 50 mW, 7.8 ps, 20 MHz all-fiber SESAM mode-locked laser as the seed source, achieving an amplified output power of 140 W with a pulse duration of 8.33 ps at 1064 nm via MOPA. In the nonlinear frequency conversion process, the amplified laser pulses were initially focused onto an LBO crystal for second harmonic generation (SHG). Precise temperature control of the LBO crystal enabled the generation of a 532 nm output with 73 W of power and a pulse duration of 6.93 ps, while achieving a conversion efficiency of 52.64%. Two-photon absorption is a key factor limiting the further enhancement of deep ultraviolet (DUV) laser power. By investigating the transmittance and temperature rise of a high-power dual-wavelength laser in a β-BBO crystal, the results indicate that strong two-photon absorption occurs under high-power DUV irradiation. This absorption induces significant thermal effects, resulting in temperature gradients within the crystal and leading to phase mismatch, which severely impacts frequency conversion efficiency and output stability.
To address this issue and further increase the DUV output power, a large-spot pumping scheme (spot size: 1.5 mm × 1 mm) is adopted in this work. Under a pump peak power density of less than 1.11 GW/cm
, the thermal gradient caused by two-photon absorption is effectively suppressed, enabling a maximum fourth-harmonic output power of 11 W. The corresponding single-pulse energy reaches 13.75 μJ. The root mean square (RMS) jitter, measured over an 8-hour period, was < 0.96%.
This all-solid-state DUV laser demonstrates excellent performance characteristics, including high average power, stability, resolution, and peak power, making it a strong candidate for applications requiring efficient and high-precision processing or detection. By further increasing the pump power and optimizing the temperature control system, the output power of the laser can be significantly enhanced, broadening its applicability and competitiveness in high-end fields such as semiconductor manufacturing, advanced research, and industrial processing.-
Keywords:
- Deep Ultraviolet /
- Picosecond Laser /
- β-BBO /
- Fourth-Harmonic Generation
-
[1] Liu K, Li H, Qu S Z, Liang H K, Wang Q J, Zhang Y 2020 Optics Express 28 18360
[2] Wen N, Zhang S J, Zong N, Gao H W, Bo Y, Peng Q J, Cui D F, Xu Zu Y 2022 Optica Advanced Photonics Congress 2022, Maastricht, Limburg Netherlands, July 24-28, 2022 NpTu1G 6
[3] Mutailipu M, Pan S 2020 Angewandte Chemie International Edition 59 20302
[4] Zhu J L, Liu J M, Xu T L, Yuan S, Zhang Z X, Jiang H, Gu H G, Zhou R J, Liu S Y 2022 International Journal of Extreme Manufacturing 4 032001
[5] Meshulach D, Dolev I, Yamazaki Y, Tsuchiya K, Kaneko M, Yoshino K, Fujii T 2010 Metrology, Inspection, and Process Control for Microlithography XXIV. SPIE San Jose, California, United States, February 21-25 7638 195
[6] Allaria E, Castronovo D, Cinquegrana P, Craievich P, Dal Forno Massimo, Danailov MB, D'Auria G, Demidovich A, De Ninno G, Di Mitri S, Diviacco B, Fawley WM, Ferianis M, Ferrari E, Froehlich L, Gaio G, Gauthier D, Giannessi L, Ivanov R, Mahieu B, Mahne N, Nikolov I, Parmigiani F, Penco G, Raimondi L, Scafuri C, Serpico C, Sigalotti P, Spampinati S,Spezzani C, Svandrlik C. Svetina M, Trovo M, Veronese M, Zangrando D, Zangrando M 2013 Nature Photonics 7 913
[7] Cinquegrana P, Demidovich A, Kurdi G, Nikolov I, Sigalotti P, Susnjar P, Danailov MB 2021 High Power Laser Science and Engineering 9 e61
[8] Tanaka S, Arakawa M, Fuchimuka A, Sasaki Y, Onose T, Kamba Y, Igarashi H, Qu C, Tamiya M, Oizumi H, Ito S, Kakizaki K, Xuan H W, Zhao Z G, Kobayashi Y, Mizoguchi H 2016 Solid State Lasers XXV:Technology and Devices. SPIE San Francisco, California, United States February 13-18 9726 424
[9] Fujimoto J, Kobayashi M, Kakizaki K, Oizumi H, Mimura T, Matsunaga T, Mizoguchi H 2017 High-Power Laser Materials Processing:Applications, Diagnostics, and Systems VI. SPIE San Francisco, California, United States January28-February 2 10097 234
[10] Cui Z J, Sun M Y, Liu De'an, Zhu, J Q 2022 Optics Express 30 43354
[11] Liu Q, Yan X P, Fu X, Gong M, Wang D S 2008 Laser Physics Letters 6 203
[12] Wang Z W, Cao X C, Zhang Y L, Cheng D L, Jin P X, Lu H D 2024 Chinese Journal of Lasers 51 1401003(in Chinese)[王子文, 曹雪辰, 张艳林, 程东林, 靳丕铦, 卢华东 2024 中国激光 51 1401003]
[13] He J L, Lu X Q, Jia Y L, Man B Y, Zhu S N, Zhu Y Y 2000 Acta Phys. Sin. 49 2106(in Chinese)[何京良, 卢兴强, 贾玉磊, 满宝元, 祝世宁, 朱永元 2000 49 2106]
[14] Wang N, Zhang J Y, Yu H J, Lin X C, Yang G W 2022 Optics Express 30 5700
[15] Chen G Z, Shen Y, Liu Q, Zou H X 2014 Acta Phys. Sin. 63 054204(in Chinese)[陈国柱, 沈咏, 刘曲, 邹宏新 2014 63 054204]
[16] Zheng J Q, Cong Z H, Liu Z J, Wang S, Zhao Z G 2021 Chinese Journal of Lasers 48 1201008(in Chinese)[郑佳琪, 丛振华, 刘兆军, 王 上, 赵智刚 2021 中国激光 48 1201008]
[17] Orii Y, Kohno K, Tanaka H, Yoshimura M, Mori Y, Nishimae J, Shibuya K 2022 Optics Express 30 11797
[18] Orii Y, Yoshii K, Kohno K, Tanaka H, Shibuya K, Okada G, Mori Y, Nishimae J, Yoshimura M 2023 Optics Express 31 14705
[19] Yu H H, Zhang Z T, Xuan H W 2024 Chinese Journal of Lasers 51 0701020(in Chinese)[俞航航, 张志韬, 玄洪文 2024 中国激光 51 0701020]
[20] Willenberg B, Brunner F, Phillips C R, Keller U 2020 Optica 7 485
[21] Kumar S C, Casals J C, Wei J X, Ebrahim-Zadeh M 2015 Optics Express 23 28091
[22] Takahashi M, Osada A, Dergachev A, Moulton P F, Cadatal-Raduban M, Shimizu T, Sarukura N 2011 Journal of crystal growth 318 606
[23] R Bhandari, T Taira, A Miyamoto, Y Furukawa, T Tago 2012 Optical Materials express 2 907
计量
- 文章访问数: 46
- PDF下载量: 2
- 被引次数: 0