-
Based on the common properties exhibited in both cuprates and iron-based high temperature superconductors, we have recently proposed the “gene” concept for unconventional high temperature superconductors: those d-orbitals of transition metal elements with the strongest in-plane bonding to anion p-orbitals must be isolated near Fermi energy. Here we summarized recent progress in this research direction and discussed several electronic environments that meet the “gene” condition. We also discussed the challenge and the possibility in finding new unconventional high temperature superconductors.
-
Keywords:
- cuprates /
- iron-based superconductors /
- unconventional high temperature superconductors /
- antiferromagnetic superexchange /
- gene of high temperature superconductivity
[1] 赵忠贤 1977 物理 6 211
Zhao Z X 1977 Physics 6 211
[2] Bednorz J G, Muller K A 1986 Z. Phys. B 64189
[3] Kamihara Y, Watanabe T, Hirano M, et al. 2008 J. Am. Chem. Soc. 130 3296Google Scholar
[4] Hu J P 2015 Sci. Bull. 61 561Google Scholar
[5] Hu J P, Le C C, Wu X X 2015 Phys. Rev. X 5 041012Google Scholar
[6] Le C C, Zeng J F, Gu Y H, Cao G H, Hu J P 2018 Sci. Bull. 63 957Google Scholar
[7] Hu J P, Le C C 2017 Sci. Bull. 62 212Google Scholar
[8] Hu J P, Gu Y H, Le C C 2018 Sci. Bull. 63 1338Google Scholar
[9] Anderson P W, Lee P A, Randeria M, et al. 2004 J. Phys. Condens. Matter 16 R755Google Scholar
[10] Scalapino D 1999 Science 284 1282Google Scholar
[11] Scalapino D 1995 Phys. Rep. 250 329Google Scholar
[12] Bickers N E, Scalapino D J, Scalettar R T 1987 Int. J. Mod. Phys. B 1 687Google Scholar
[13] Gros C, Poilblanc D, Rice T M, et al. 1988 Physica C 153 543
[14] Kotliar G, Liu J 1988 Phys. Rev. B 38 5142Google Scholar
[15] Hu J P, Ding H 2012 Sci. Rep. 2 381Google Scholar
[16] Seo K J, Bernevig B A, Hu J P 2008 Phys. Rev. Lett. 101 206404Google Scholar
[17] Dagotto E 2013 Rev. Mod. Phys. 85 849Google Scholar
[18] Dai P, Hu J P, Dagotto E 2012 Nat. Phys. 8 709Google Scholar
[19] Yakel H L, Koehler W C, Bertaut E F, et al. 1963 Acta Cryst. 16 957Google Scholar
[20] Smolenskii G A, Bokov V A 1964 J. Appl. Phys. 35 915Google Scholar
[21] Masuno A, Ishimoto A, Moriyoshi C, et al. 2015 Inorg. Chem. 54 9432Google Scholar
[22] Hu J, Hao N 2012 Phys. Rev. X 2 021009Google Scholar
[23] Gallardo P G, Soto M, Izarra O 2016 Rev. Lat. Metal. Mat. 1 83
[24] Nagamatsu J, et al. 2001 Nature 410 63Google Scholar
[25] An J M, Pickett W E 2001 Phys. Rev. Lett. 19 4366
[26] Gao M, Lu Z Y, Xiang T 2015 Phys. Rev. B 91 045132Google Scholar
[27] Zhang Q, Jiang K, Gu Y H, Hu J P 2020 Science China-Physics, Mechanics & Astronomy 63 277411Google Scholar
-
图 1 铜氧化物超导体中的局域电子环境和被选择的轨道 (a)八面体配合体的草图; (b) CuO2层中被选择的
${{\rm{d}}_{{X^2} - {Y^2}}}$ 轨道; (c)八面体配合体中阳离子d轨道的晶体场劈裂; (d) d9填充下的${{\rm{d}}_{{X^2} - {Y^2}}}$ [4]Figure 1. (a) A single octahedron; (b) the selected
${{\rm{d}}_{{X^2} - {Y^2}}}$ in CuO2 layer in cuprates; (c) the crystal energy splitting of a single octahedron; (d) the real energy configuration at d9 filling[4].图 2 (a) BM4O2八面体晶体场劈裂, B是过渡金属, M是硫族元素; (b) La2B2M2O3晶体结构; (c) B2M2O八面体边角共享二维层层状中的磁交换相互作用J; (d) C-type共线反铁磁态[6]
Figure 2. (a) BM4O2 octahedron and crystal energy splitting; (b) La2B2M2O3 crystal structure; (c) the two dimensional Ni2Se2O layer and their magnetic exchange interactions; (d) the antiferromagnetic ground state[6].
图 3 预言的由三角双锥配合物构成的Co/Ni基六角格子 (a)三角双锥配合物的草图; (b)由三角双锥配合物形成的二维六角层; (c)扩展的s波的权重分布和Fermi面(红色表示大的正值); (d)三角双锥配合物中的阳离子的d轨道的晶体场劈裂; (e)六角层中阳离子Co/ Ni位置处的的局域能量组态; (f)和图(c)类似, d + id波的权重分布和Fermi面[5]
Figure 3. (a)The sketch of the trigonal bipyramidal complex; (b)the formed two dimensional lattice;(c) the weight of the s-wave on Fermi surfaces; (d) the crystal energy splitting of a single complex; (e) the local energy configuration at d7 filling configuration; (e) the weight of the d + id wave form factors on Fermi surfaces[5].
图 4 铁基超导体中的局域电子环境和被选择的轨道: (a)四面体配合物的草图; (b) FeAs/Se层中被选择的
${{\rm{d}}_{xy}}$ 类轨道和阴离子原子之间的耦合组态; (c)四面体配合物中阳离子的d轨道的晶体场劈裂; (d)铁基超导体中Fe原子位置的局域能量组态(蓝色的轨道在d6填充组态中被孤立, 它们支配了Fermi能附近的电子物理性质)Figure 4. The sketch of local electronic environment and selected orbitals of iron-based superconductors: (a) the sketch of tetrahedron; (b) the selected dxy orbitals which are responsible for the electronic physics; (c) the crystal field splitting in a single tetrahedron;(d) the realistic local energy environment for d-orbitals in iron-based superconductors.
图 5 二维晶体层状结构, 相应的d轨道晶体场劈裂以及实现高温超导的电子填充结构[5] (a) 在铁基超导中具有d6电子填充结构的FeAs/Se层; (b)提出的层状结构, 只保留了(a)中一套A子格, 具有d7电子填充结构[7]
Figure 5. The two dimensional lattice structures formed by the edge shared tetrahedrons: (a) The case of d6 filling iron-based superconductors; (b) the corner shared tetrahedrons, the case for d7 filling configuration.
图 6 (a), (b) CuInCo2X4(X = S, Se, Te)的锡石类和PMCA类晶体结构[6]; (c) G型(棋盘型)反铁磁序的示意图; (d) CuInCo2
X4中四面体晶体场下的Co的d7电子组态[8] Figure 6. (a), (b) The stannite and PMCA structures of CuInCo2X4 (X = S, Se, Te) respectively; (c) the sketch of the G-type Antiferromagnetic state; (d) the crystal energy splitting of Co atoms in CuInCo2X4.
-
[1] 赵忠贤 1977 物理 6 211
Zhao Z X 1977 Physics 6 211
[2] Bednorz J G, Muller K A 1986 Z. Phys. B 64189
[3] Kamihara Y, Watanabe T, Hirano M, et al. 2008 J. Am. Chem. Soc. 130 3296Google Scholar
[4] Hu J P 2015 Sci. Bull. 61 561Google Scholar
[5] Hu J P, Le C C, Wu X X 2015 Phys. Rev. X 5 041012Google Scholar
[6] Le C C, Zeng J F, Gu Y H, Cao G H, Hu J P 2018 Sci. Bull. 63 957Google Scholar
[7] Hu J P, Le C C 2017 Sci. Bull. 62 212Google Scholar
[8] Hu J P, Gu Y H, Le C C 2018 Sci. Bull. 63 1338Google Scholar
[9] Anderson P W, Lee P A, Randeria M, et al. 2004 J. Phys. Condens. Matter 16 R755Google Scholar
[10] Scalapino D 1999 Science 284 1282Google Scholar
[11] Scalapino D 1995 Phys. Rep. 250 329Google Scholar
[12] Bickers N E, Scalapino D J, Scalettar R T 1987 Int. J. Mod. Phys. B 1 687Google Scholar
[13] Gros C, Poilblanc D, Rice T M, et al. 1988 Physica C 153 543
[14] Kotliar G, Liu J 1988 Phys. Rev. B 38 5142Google Scholar
[15] Hu J P, Ding H 2012 Sci. Rep. 2 381Google Scholar
[16] Seo K J, Bernevig B A, Hu J P 2008 Phys. Rev. Lett. 101 206404Google Scholar
[17] Dagotto E 2013 Rev. Mod. Phys. 85 849Google Scholar
[18] Dai P, Hu J P, Dagotto E 2012 Nat. Phys. 8 709Google Scholar
[19] Yakel H L, Koehler W C, Bertaut E F, et al. 1963 Acta Cryst. 16 957Google Scholar
[20] Smolenskii G A, Bokov V A 1964 J. Appl. Phys. 35 915Google Scholar
[21] Masuno A, Ishimoto A, Moriyoshi C, et al. 2015 Inorg. Chem. 54 9432Google Scholar
[22] Hu J, Hao N 2012 Phys. Rev. X 2 021009Google Scholar
[23] Gallardo P G, Soto M, Izarra O 2016 Rev. Lat. Metal. Mat. 1 83
[24] Nagamatsu J, et al. 2001 Nature 410 63Google Scholar
[25] An J M, Pickett W E 2001 Phys. Rev. Lett. 19 4366
[26] Gao M, Lu Z Y, Xiang T 2015 Phys. Rev. B 91 045132Google Scholar
[27] Zhang Q, Jiang K, Gu Y H, Hu J P 2020 Science China-Physics, Mechanics & Astronomy 63 277411Google Scholar
Catalog
Metrics
- Abstract views: 12438
- PDF Downloads: 1182
- Cited By: 0