搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

利用单轴压强下的电阻变化研究铁基超导体中的向列涨落

李世亮 刘曌玉 谷延红

引用本文:
Citation:

利用单轴压强下的电阻变化研究铁基超导体中的向列涨落

李世亮, 刘曌玉, 谷延红

Nematic fluctuations in iron-based superconductors studied by resistivity change under uniaxial pressure

Li Shi-Liang, Liu Zhao-Yu, Gu Yan-Hong
PDF
导出引用
  • 铁基超导体中普遍存在着反铁磁、超导和向列相,因此研究向列相的性质及其与反铁磁、超导的关系对于理解铁基超导体的低能物理及高温超导电性具有非常重要的作用.所谓向列相是指电子态自发破缺了晶格的面内四重旋转对称性而形成的有序态,从而导致样品的某些物理性质出现了两重的各向异性.我们通过自主研发的单轴压强装置,可以在低温下原位改变压强,测量电阻的变化,从而得到向列极化率.本文介绍了我们利用该装置在最近几年研究铁基超导体的向列相和向列涨落所取得的一些成果,包括详细研究了BaFe2-xNixAs2体系中的向列量子临界点及其量子临界涨落,并提出了基于向列涨落强弱调节的铁基超导体统一相图.这些结果表明,向列相及其涨落与反铁磁和超导均有很强的耦合,对于理解铁基超导体中磁性和超导电性非常关键.
    Antiferromagnetic, nematic and superconducting phases have been widely found in iron-based superconductors. The study on their relationships is thus crucial for understanding the low-energy physics and high-temperature superconductivity. The so-called nematic phase represents a spontaneous in-plane rotational symmetry breaking of the electronic states, which results in strong in-plane anisotropic properties. We have developed a uniaxial pressure device, which enables us to obtain nematic susceptibility by studying the resistivity change under uniaxial pressure at low temperature. In this paper, we brief two of our recent researches on nematic fluctuations in iron-based superconductors. The first research shows the presence of a nematic quantum critical point in BaFe2-xNixAs2, which exhibits several characteristics, including the zero mean-field nematic transition temperature x=0.11, broad hump feature in the nematic susceptibility in overdoped samples, strongest nematic susceptibility along the (100) direction at x=0.11, and the divergence of zero-temperature nematic susceptibility at x=0.11 for uniaxial pressure along both the (110) and (100) directions. We further study the nematic susceptibility in many other iron-based superconductors and find that the ordered moment at zero temperature linearly scales with nematic Curie constant, which is obtained from the Curie-Weiss-like temperature dependence of nematic susceptibility in these materials. Accordingly, we propose a universal phase diagram for iron-based superconductors, where superconductivity is achieved by suppressing the long-range antiferromagnetic order in a hypothetical parent compound though the enhancement of nematic fluctuations by doping, including both carrier doping and isovalent doping. Our results suggest that nematic fluctuations play a very important role in both the antiferromagnetism and superconductivity in iron-based superconductors.
      通信作者: 李世亮, slli@iphy.ac.cn
    • 基金项目: 国家重点研发计划(批准号:2017YFA0302903)和国家自然科学基金(批准号:11674406)资助的课题.
      Corresponding author: Li Shi-Liang, slli@iphy.ac.cn
    • Funds: Project supported by the National Key RD Program of China (Grant No. 2017YFA0302903) and the National Natural Science Foundation of China (Grant No. 11674406).
    [1]

    Keimer B, Kivelson S A, Norman M R, Uchida S, Zaanen J 2015 Nature 518 179

    [2]

    Paglione J, Greene R L 2010 Nat. Phys. 6 645

    [3]

    Stephen M J, Straley J P 1974 Rev. Mod. Phys. 46 617

    [4]

    Kivelson S A, Fradkin E, Emery V J 1998 Nature 393 550

    [5]

    Oganesyan V, Kivelson S A, Fradkin E 2001 Phys. Rev. B 64 195109

    [6]

    Ando Y, Segawa K, Komiya S, Lavrov A N 2002 Phys. Rev. Lett. 88 137005

    [7]

    Daou R, Chang J, LeBoeuf D, Cyr-Choinire O, Lalibert F, Doiron-Leyraud N, Ramshaw B J, Liang R, Bonn D A, Hardy W N, Taillefer L 2010 Nature 463 519

    [8]

    Hinkov V, Haug D, Fauqu B, Bourges P, Sidis Y, Ivanov A, Bernhard C, Lin C T, Keimer B 2008 Science 319 597

    [9]

    Lawler M J, Fujita K, Lee J, Schmidt A R, Kohsaka Y, Kim C K, Eisaki H, Uchida S, Davis J C, Sethna J P, Kim E A 2010 Nature 466 347

    [10]

    Fernandes R M, Chubukov A V, Schmalian J 2014 Nat. Phys. 10 97

    [11]

    Chu J H, Analytis J G, de Greve K, McMahon P L, Islam Z, Yamamoto Y, Fisher I R 2010 Science 329 824

    [12]

    Lu X, Park J T, Zhang R, Luo H, Nevidomskyy A H, Si Q, Dai P 2014 Science 345 657

    [13]

    Yi M, Lu D, Chu J H, Analytis J G, Sorini A P, Kemper A F, Moritz B, Mo S K, Moore R G, Hashimoto M, Lee W S, Hussain Z, Devereaux T P, Fisher I R, Shen Z X 2011 Proc. Natl. Acad. Sci. USA 108 6878

    [14]

    Liu Z, Gu Y, Zhang W, Gong D, Zhang W, Xie T, Lu X, Ma X, Zhang X, Zhang R, Zhu J, Ren C, Shan L, Qiu X, Dai P, Yang Y, Luo H, Li S 2016 Phys. Rev. Lett. 117 157002

    [15]

    Gu Y, Liu Z, Xie T, Zhang W, Gong D, Hu D, Ma X, Li C, Zhao L, Lin L, Xu Z, Tan G, Chen G, Meng Z Y, Yang Y, Luo H, Li S 2017 Phys. Rev. Lett. 119 157001

    [16]

    Chu J H, Kuo H H, Analytis J G, Fisher I R 2012 Science 337 710

    [17]

    Lederer S, Schattner Y, Berg E, Kivelson S A 2015 Phys. Rev. Lett. 114 097001

    [18]

    Metlitski M A, Mross D F, Sachdev S, Senthil T 2015 Phys. Rev. B 91 115111

    [19]

    Lederer S, Schattner Y, Berg E, Kivelson S A 2017 Proc. Natl. Acad. Sci. USA 114 4905

    [20]

    Hosoi S, Matsuura K, Ishida K, Wang H, Mizukami Y, Watashige T, Shibauchi T 2016 Proc. Natl. Acad. Sci. USA 113 8139

    [21]

    Bhmer A E, Burger P, Hardy F, Wolf T, Schweiss P, Fromknecht R, Meingast C 2014 Phys. Rev. Lett. 112 047001

    [22]

    Gallais Y, Fernandes R M, Paul I, Chauviere L, Yang Y X, Masson M A, Forget A 2013 Phys. Rev. Lett. 111 267001

    [23]

    Thorsm lle V K, Khodas M, Yin Z P, Zhang C, Carr S V, Dai P, Blumberg G 2016 Phys. Rev. B 93 054515

    [24]

    Kuo H H, Chu J H, Palmstrom J C, Kivelson S A, Fisher I R 2016 Science 352 958

    [25]

    Lhneysen H, Rosch A, Vojta M, Wlfle P 2007 Rev. Mod. Phys. 79 1015

    [26]

    Schattner Y, Lederer S, Kivelson S A, Berg E 2016 Phys. Rev. X 6 031028

    [27]

    Coldea R, Tennant D A, Wheeler E M, Wawrzynska E, Prabhakaran D, Telling M, Kiefer K 2010 Science 327 177

    [28]

    Dai P 2015 Rev. Mod. Phys. 87 855

    [29]

    Kasahara S, Shibauchi T, Hashimoto K, Ikada K, Tonegawa S, Okazaki R, Terashima T 2010 Phys. Rev. B 81 184519

    [30]

    Fernandes R M, Abrahams E, Schmalian J 2011 Phys. Rev. Lett. 107 217002

    [31]

    Yin Z P, Haule K, Kotliar G 2011 Nat. Mater. 10 932

    [32]

    Tam Y T, Yao D X, Ku W 2015 Phys. Rev. Lett. 115 117001

    [33]

    Luo H, Zhang R, Laver M, Yamani Z, Wang M, Lu X, Lynn J W 2012 Phys. Rev. Lett. 108 247002

    [34]

    Hosono H, Kuroki K 2015 Physica C 514 399

    [35]

    Sun J P, Matsuura K, Ye G Z, Mizukami Y, Shimozawa M, Matsubayashi K, Yan Q 2016 Nat. Commun. 7 12146

    [36]

    Ni N, Thaler A, Yan J Q, Kracher A, Colombier E, Bud'Ko S L, Hannahs S T 2010 Phys. Rev. B 82 024519

  • [1]

    Keimer B, Kivelson S A, Norman M R, Uchida S, Zaanen J 2015 Nature 518 179

    [2]

    Paglione J, Greene R L 2010 Nat. Phys. 6 645

    [3]

    Stephen M J, Straley J P 1974 Rev. Mod. Phys. 46 617

    [4]

    Kivelson S A, Fradkin E, Emery V J 1998 Nature 393 550

    [5]

    Oganesyan V, Kivelson S A, Fradkin E 2001 Phys. Rev. B 64 195109

    [6]

    Ando Y, Segawa K, Komiya S, Lavrov A N 2002 Phys. Rev. Lett. 88 137005

    [7]

    Daou R, Chang J, LeBoeuf D, Cyr-Choinire O, Lalibert F, Doiron-Leyraud N, Ramshaw B J, Liang R, Bonn D A, Hardy W N, Taillefer L 2010 Nature 463 519

    [8]

    Hinkov V, Haug D, Fauqu B, Bourges P, Sidis Y, Ivanov A, Bernhard C, Lin C T, Keimer B 2008 Science 319 597

    [9]

    Lawler M J, Fujita K, Lee J, Schmidt A R, Kohsaka Y, Kim C K, Eisaki H, Uchida S, Davis J C, Sethna J P, Kim E A 2010 Nature 466 347

    [10]

    Fernandes R M, Chubukov A V, Schmalian J 2014 Nat. Phys. 10 97

    [11]

    Chu J H, Analytis J G, de Greve K, McMahon P L, Islam Z, Yamamoto Y, Fisher I R 2010 Science 329 824

    [12]

    Lu X, Park J T, Zhang R, Luo H, Nevidomskyy A H, Si Q, Dai P 2014 Science 345 657

    [13]

    Yi M, Lu D, Chu J H, Analytis J G, Sorini A P, Kemper A F, Moritz B, Mo S K, Moore R G, Hashimoto M, Lee W S, Hussain Z, Devereaux T P, Fisher I R, Shen Z X 2011 Proc. Natl. Acad. Sci. USA 108 6878

    [14]

    Liu Z, Gu Y, Zhang W, Gong D, Zhang W, Xie T, Lu X, Ma X, Zhang X, Zhang R, Zhu J, Ren C, Shan L, Qiu X, Dai P, Yang Y, Luo H, Li S 2016 Phys. Rev. Lett. 117 157002

    [15]

    Gu Y, Liu Z, Xie T, Zhang W, Gong D, Hu D, Ma X, Li C, Zhao L, Lin L, Xu Z, Tan G, Chen G, Meng Z Y, Yang Y, Luo H, Li S 2017 Phys. Rev. Lett. 119 157001

    [16]

    Chu J H, Kuo H H, Analytis J G, Fisher I R 2012 Science 337 710

    [17]

    Lederer S, Schattner Y, Berg E, Kivelson S A 2015 Phys. Rev. Lett. 114 097001

    [18]

    Metlitski M A, Mross D F, Sachdev S, Senthil T 2015 Phys. Rev. B 91 115111

    [19]

    Lederer S, Schattner Y, Berg E, Kivelson S A 2017 Proc. Natl. Acad. Sci. USA 114 4905

    [20]

    Hosoi S, Matsuura K, Ishida K, Wang H, Mizukami Y, Watashige T, Shibauchi T 2016 Proc. Natl. Acad. Sci. USA 113 8139

    [21]

    Bhmer A E, Burger P, Hardy F, Wolf T, Schweiss P, Fromknecht R, Meingast C 2014 Phys. Rev. Lett. 112 047001

    [22]

    Gallais Y, Fernandes R M, Paul I, Chauviere L, Yang Y X, Masson M A, Forget A 2013 Phys. Rev. Lett. 111 267001

    [23]

    Thorsm lle V K, Khodas M, Yin Z P, Zhang C, Carr S V, Dai P, Blumberg G 2016 Phys. Rev. B 93 054515

    [24]

    Kuo H H, Chu J H, Palmstrom J C, Kivelson S A, Fisher I R 2016 Science 352 958

    [25]

    Lhneysen H, Rosch A, Vojta M, Wlfle P 2007 Rev. Mod. Phys. 79 1015

    [26]

    Schattner Y, Lederer S, Kivelson S A, Berg E 2016 Phys. Rev. X 6 031028

    [27]

    Coldea R, Tennant D A, Wheeler E M, Wawrzynska E, Prabhakaran D, Telling M, Kiefer K 2010 Science 327 177

    [28]

    Dai P 2015 Rev. Mod. Phys. 87 855

    [29]

    Kasahara S, Shibauchi T, Hashimoto K, Ikada K, Tonegawa S, Okazaki R, Terashima T 2010 Phys. Rev. B 81 184519

    [30]

    Fernandes R M, Abrahams E, Schmalian J 2011 Phys. Rev. Lett. 107 217002

    [31]

    Yin Z P, Haule K, Kotliar G 2011 Nat. Mater. 10 932

    [32]

    Tam Y T, Yao D X, Ku W 2015 Phys. Rev. Lett. 115 117001

    [33]

    Luo H, Zhang R, Laver M, Yamani Z, Wang M, Lu X, Lynn J W 2012 Phys. Rev. Lett. 108 247002

    [34]

    Hosono H, Kuroki K 2015 Physica C 514 399

    [35]

    Sun J P, Matsuura K, Ye G Z, Mizukami Y, Shimozawa M, Matsubayashi K, Yan Q 2016 Nat. Commun. 7 12146

    [36]

    Ni N, Thaler A, Yan J Q, Kracher A, Colombier E, Bud'Ko S L, Hannahs S T 2010 Phys. Rev. B 82 024519

  • [1] 李更, 丁洪, 汪自强, 高鸿钧. 铁基超导体中的马约拉纳零能模及其阵列构筑.  , 2024, 73(3): 030302. doi: 10.7498/aps.73.20232022
    [2] 闻海虎. 高温超导体磁通钉扎和磁通动力学研究简介.  , 2021, 70(1): 017405. doi: 10.7498/aps.70.20201881
    [3] 胡江平. 探索非常规高温超导体.  , 2021, 70(1): 017101. doi: 10.7498/aps.70.20202122
    [4] 李妙聪, 陶前, 许祝安. 铁基超导体的输运性质.  , 2021, 70(1): 017404. doi: 10.7498/aps.70.20201836
    [5] 孔令元, 丁洪. 铁基超导涡旋演生马约拉纳零能模.  , 2020, 69(11): 110301. doi: 10.7498/aps.69.20200717
    [6] 金士锋, 郭建刚, 王刚, 陈小龙. 新型FeSe基超导材料研究进展.  , 2018, 67(20): 207412. doi: 10.7498/aps.67.20181701
    [7] 牟刚, 马永辉. 铁基超导1111体系CaFeAsF的单晶生长和物性研究.  , 2018, 67(17): 177401. doi: 10.7498/aps.67.20181371
    [8] 林桐, 胡蝶, 时立宇, 张思捷, 刘妍琦, 吕佳林, 董涛, 赵俊, 王楠林. 铁基超导体Li0.8Fe0.2ODFeSe的红外光谱研究.  , 2018, 67(20): 207102. doi: 10.7498/aps.67.20181401
    [9] 顾强强, 万思源, 杨欢, 闻海虎. 铁基超导体的扫描隧道显微镜研究进展.  , 2018, 67(20): 207401. doi: 10.7498/aps.67.20181818
    [10] 王志成, 曹光旱. 新型交生结构自掺杂铁基超导体.  , 2018, 67(20): 207406. doi: 10.7498/aps.67.20181355
    [11] 王乃舟, 石孟竹, 雷彬, 陈仙辉. FeSe基超导体的探索与物性研究.  , 2018, 67(20): 207408. doi: 10.7498/aps.67.20181496
    [12] 龚冬良, 罗会仟. 铁基超导体中的反铁磁序和自旋动力学.  , 2018, 67(20): 207407. doi: 10.7498/aps.67.20181543
    [13] 郭静, 吴奇, 孙力玲. 高压下的铁基超导体:现象与物理.  , 2018, 67(20): 207409. doi: 10.7498/aps.67.20181651
    [14] 赵敬龙, 董正超, 仲崇贵, 李诚迪. 量子线/铁基超导隧道结中隧道谱的研究.  , 2015, 64(5): 057401. doi: 10.7498/aps.64.057401
    [15] 杜增义, 方德龙, 王震宇, 杜冠, 杨雄, 杨欢, 顾根大, 闻海虎. 铁基超导体FeSe0.5Te0.5表面隧道谱的研究.  , 2015, 64(9): 097401. doi: 10.7498/aps.64.097401
    [16] 俞榕. 铁基超导体多轨道模型中的电子关联与轨道选择.  , 2015, 64(21): 217102. doi: 10.7498/aps.64.217102
    [17] 李世超, 甘远, 王靖珲, 冉柯静, 温锦生. 铁基超导体Fe1+yTe1-xSex中磁性的中子散射研究.  , 2015, 64(9): 097503. doi: 10.7498/aps.64.097503
    [18] 李政, 周睿, 郑国庆. 铁基超导体的量子临界行为.  , 2015, 64(21): 217404. doi: 10.7498/aps.64.217404
    [19] 李斌, 邢钟文, 刘楣. LiFeAs超导体中磁性与声子软化.  , 2011, 60(7): 077402. doi: 10.7498/aps.60.077402
    [20] 刘甦, 李斌, 王玮, 汪军, 刘楣. 铁基化合物 SrFeAsF以及 Co掺杂超导体SrFe0.875Co0.125AsF的电子结构和磁性.  , 2010, 59(6): 4245-4252. doi: 10.7498/aps.59.4245
计量
  • 文章访问数:  6839
  • PDF下载量:  215
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-04-09
  • 修回日期:  2018-04-26
  • 刊出日期:  2019-06-20

/

返回文章
返回
Baidu
map