-
铁基超导体中普遍存在着反铁磁、超导和向列相,因此研究向列相的性质及其与反铁磁、超导的关系对于理解铁基超导体的低能物理及高温超导电性具有非常重要的作用.所谓向列相是指电子态自发破缺了晶格的面内四重旋转对称性而形成的有序态,从而导致样品的某些物理性质出现了两重的各向异性.我们通过自主研发的单轴压强装置,可以在低温下原位改变压强,测量电阻的变化,从而得到向列极化率.本文介绍了我们利用该装置在最近几年研究铁基超导体的向列相和向列涨落所取得的一些成果,包括详细研究了BaFe2-xNixAs2体系中的向列量子临界点及其量子临界涨落,并提出了基于向列涨落强弱调节的铁基超导体统一相图.这些结果表明,向列相及其涨落与反铁磁和超导均有很强的耦合,对于理解铁基超导体中磁性和超导电性非常关键.Antiferromagnetic, nematic and superconducting phases have been widely found in iron-based superconductors. The study on their relationships is thus crucial for understanding the low-energy physics and high-temperature superconductivity. The so-called nematic phase represents a spontaneous in-plane rotational symmetry breaking of the electronic states, which results in strong in-plane anisotropic properties. We have developed a uniaxial pressure device, which enables us to obtain nematic susceptibility by studying the resistivity change under uniaxial pressure at low temperature. In this paper, we brief two of our recent researches on nematic fluctuations in iron-based superconductors. The first research shows the presence of a nematic quantum critical point in BaFe2-xNixAs2, which exhibits several characteristics, including the zero mean-field nematic transition temperature x=0.11, broad hump feature in the nematic susceptibility in overdoped samples, strongest nematic susceptibility along the (100) direction at x=0.11, and the divergence of zero-temperature nematic susceptibility at x=0.11 for uniaxial pressure along both the (110) and (100) directions. We further study the nematic susceptibility in many other iron-based superconductors and find that the ordered moment at zero temperature linearly scales with nematic Curie constant, which is obtained from the Curie-Weiss-like temperature dependence of nematic susceptibility in these materials. Accordingly, we propose a universal phase diagram for iron-based superconductors, where superconductivity is achieved by suppressing the long-range antiferromagnetic order in a hypothetical parent compound though the enhancement of nematic fluctuations by doping, including both carrier doping and isovalent doping. Our results suggest that nematic fluctuations play a very important role in both the antiferromagnetism and superconductivity in iron-based superconductors.
-
Keywords:
- iron-based superconductors /
- nematic fluctuations /
- uniaxial pressure
[1] Keimer B, Kivelson S A, Norman M R, Uchida S, Zaanen J 2015 Nature 518 179
[2] Paglione J, Greene R L 2010 Nat. Phys. 6 645
[3] Stephen M J, Straley J P 1974 Rev. Mod. Phys. 46 617
[4] Kivelson S A, Fradkin E, Emery V J 1998 Nature 393 550
[5] Oganesyan V, Kivelson S A, Fradkin E 2001 Phys. Rev. B 64 195109
[6] Ando Y, Segawa K, Komiya S, Lavrov A N 2002 Phys. Rev. Lett. 88 137005
[7] Daou R, Chang J, LeBoeuf D, Cyr-Choinire O, Lalibert F, Doiron-Leyraud N, Ramshaw B J, Liang R, Bonn D A, Hardy W N, Taillefer L 2010 Nature 463 519
[8] Hinkov V, Haug D, Fauqu B, Bourges P, Sidis Y, Ivanov A, Bernhard C, Lin C T, Keimer B 2008 Science 319 597
[9] Lawler M J, Fujita K, Lee J, Schmidt A R, Kohsaka Y, Kim C K, Eisaki H, Uchida S, Davis J C, Sethna J P, Kim E A 2010 Nature 466 347
[10] Fernandes R M, Chubukov A V, Schmalian J 2014 Nat. Phys. 10 97
[11] Chu J H, Analytis J G, de Greve K, McMahon P L, Islam Z, Yamamoto Y, Fisher I R 2010 Science 329 824
[12] Lu X, Park J T, Zhang R, Luo H, Nevidomskyy A H, Si Q, Dai P 2014 Science 345 657
[13] Yi M, Lu D, Chu J H, Analytis J G, Sorini A P, Kemper A F, Moritz B, Mo S K, Moore R G, Hashimoto M, Lee W S, Hussain Z, Devereaux T P, Fisher I R, Shen Z X 2011 Proc. Natl. Acad. Sci. USA 108 6878
[14] Liu Z, Gu Y, Zhang W, Gong D, Zhang W, Xie T, Lu X, Ma X, Zhang X, Zhang R, Zhu J, Ren C, Shan L, Qiu X, Dai P, Yang Y, Luo H, Li S 2016 Phys. Rev. Lett. 117 157002
[15] Gu Y, Liu Z, Xie T, Zhang W, Gong D, Hu D, Ma X, Li C, Zhao L, Lin L, Xu Z, Tan G, Chen G, Meng Z Y, Yang Y, Luo H, Li S 2017 Phys. Rev. Lett. 119 157001
[16] Chu J H, Kuo H H, Analytis J G, Fisher I R 2012 Science 337 710
[17] Lederer S, Schattner Y, Berg E, Kivelson S A 2015 Phys. Rev. Lett. 114 097001
[18] Metlitski M A, Mross D F, Sachdev S, Senthil T 2015 Phys. Rev. B 91 115111
[19] Lederer S, Schattner Y, Berg E, Kivelson S A 2017 Proc. Natl. Acad. Sci. USA 114 4905
[20] Hosoi S, Matsuura K, Ishida K, Wang H, Mizukami Y, Watashige T, Shibauchi T 2016 Proc. Natl. Acad. Sci. USA 113 8139
[21] Bhmer A E, Burger P, Hardy F, Wolf T, Schweiss P, Fromknecht R, Meingast C 2014 Phys. Rev. Lett. 112 047001
[22] Gallais Y, Fernandes R M, Paul I, Chauviere L, Yang Y X, Masson M A, Forget A 2013 Phys. Rev. Lett. 111 267001
[23] Thorsm lle V K, Khodas M, Yin Z P, Zhang C, Carr S V, Dai P, Blumberg G 2016 Phys. Rev. B 93 054515
[24] Kuo H H, Chu J H, Palmstrom J C, Kivelson S A, Fisher I R 2016 Science 352 958
[25] Lhneysen H, Rosch A, Vojta M, Wlfle P 2007 Rev. Mod. Phys. 79 1015
[26] Schattner Y, Lederer S, Kivelson S A, Berg E 2016 Phys. Rev. X 6 031028
[27] Coldea R, Tennant D A, Wheeler E M, Wawrzynska E, Prabhakaran D, Telling M, Kiefer K 2010 Science 327 177
[28] Dai P 2015 Rev. Mod. Phys. 87 855
[29] Kasahara S, Shibauchi T, Hashimoto K, Ikada K, Tonegawa S, Okazaki R, Terashima T 2010 Phys. Rev. B 81 184519
[30] Fernandes R M, Abrahams E, Schmalian J 2011 Phys. Rev. Lett. 107 217002
[31] Yin Z P, Haule K, Kotliar G 2011 Nat. Mater. 10 932
[32] Tam Y T, Yao D X, Ku W 2015 Phys. Rev. Lett. 115 117001
[33] Luo H, Zhang R, Laver M, Yamani Z, Wang M, Lu X, Lynn J W 2012 Phys. Rev. Lett. 108 247002
[34] Hosono H, Kuroki K 2015 Physica C 514 399
[35] Sun J P, Matsuura K, Ye G Z, Mizukami Y, Shimozawa M, Matsubayashi K, Yan Q 2016 Nat. Commun. 7 12146
[36] Ni N, Thaler A, Yan J Q, Kracher A, Colombier E, Bud'Ko S L, Hannahs S T 2010 Phys. Rev. B 82 024519
-
[1] Keimer B, Kivelson S A, Norman M R, Uchida S, Zaanen J 2015 Nature 518 179
[2] Paglione J, Greene R L 2010 Nat. Phys. 6 645
[3] Stephen M J, Straley J P 1974 Rev. Mod. Phys. 46 617
[4] Kivelson S A, Fradkin E, Emery V J 1998 Nature 393 550
[5] Oganesyan V, Kivelson S A, Fradkin E 2001 Phys. Rev. B 64 195109
[6] Ando Y, Segawa K, Komiya S, Lavrov A N 2002 Phys. Rev. Lett. 88 137005
[7] Daou R, Chang J, LeBoeuf D, Cyr-Choinire O, Lalibert F, Doiron-Leyraud N, Ramshaw B J, Liang R, Bonn D A, Hardy W N, Taillefer L 2010 Nature 463 519
[8] Hinkov V, Haug D, Fauqu B, Bourges P, Sidis Y, Ivanov A, Bernhard C, Lin C T, Keimer B 2008 Science 319 597
[9] Lawler M J, Fujita K, Lee J, Schmidt A R, Kohsaka Y, Kim C K, Eisaki H, Uchida S, Davis J C, Sethna J P, Kim E A 2010 Nature 466 347
[10] Fernandes R M, Chubukov A V, Schmalian J 2014 Nat. Phys. 10 97
[11] Chu J H, Analytis J G, de Greve K, McMahon P L, Islam Z, Yamamoto Y, Fisher I R 2010 Science 329 824
[12] Lu X, Park J T, Zhang R, Luo H, Nevidomskyy A H, Si Q, Dai P 2014 Science 345 657
[13] Yi M, Lu D, Chu J H, Analytis J G, Sorini A P, Kemper A F, Moritz B, Mo S K, Moore R G, Hashimoto M, Lee W S, Hussain Z, Devereaux T P, Fisher I R, Shen Z X 2011 Proc. Natl. Acad. Sci. USA 108 6878
[14] Liu Z, Gu Y, Zhang W, Gong D, Zhang W, Xie T, Lu X, Ma X, Zhang X, Zhang R, Zhu J, Ren C, Shan L, Qiu X, Dai P, Yang Y, Luo H, Li S 2016 Phys. Rev. Lett. 117 157002
[15] Gu Y, Liu Z, Xie T, Zhang W, Gong D, Hu D, Ma X, Li C, Zhao L, Lin L, Xu Z, Tan G, Chen G, Meng Z Y, Yang Y, Luo H, Li S 2017 Phys. Rev. Lett. 119 157001
[16] Chu J H, Kuo H H, Analytis J G, Fisher I R 2012 Science 337 710
[17] Lederer S, Schattner Y, Berg E, Kivelson S A 2015 Phys. Rev. Lett. 114 097001
[18] Metlitski M A, Mross D F, Sachdev S, Senthil T 2015 Phys. Rev. B 91 115111
[19] Lederer S, Schattner Y, Berg E, Kivelson S A 2017 Proc. Natl. Acad. Sci. USA 114 4905
[20] Hosoi S, Matsuura K, Ishida K, Wang H, Mizukami Y, Watashige T, Shibauchi T 2016 Proc. Natl. Acad. Sci. USA 113 8139
[21] Bhmer A E, Burger P, Hardy F, Wolf T, Schweiss P, Fromknecht R, Meingast C 2014 Phys. Rev. Lett. 112 047001
[22] Gallais Y, Fernandes R M, Paul I, Chauviere L, Yang Y X, Masson M A, Forget A 2013 Phys. Rev. Lett. 111 267001
[23] Thorsm lle V K, Khodas M, Yin Z P, Zhang C, Carr S V, Dai P, Blumberg G 2016 Phys. Rev. B 93 054515
[24] Kuo H H, Chu J H, Palmstrom J C, Kivelson S A, Fisher I R 2016 Science 352 958
[25] Lhneysen H, Rosch A, Vojta M, Wlfle P 2007 Rev. Mod. Phys. 79 1015
[26] Schattner Y, Lederer S, Kivelson S A, Berg E 2016 Phys. Rev. X 6 031028
[27] Coldea R, Tennant D A, Wheeler E M, Wawrzynska E, Prabhakaran D, Telling M, Kiefer K 2010 Science 327 177
[28] Dai P 2015 Rev. Mod. Phys. 87 855
[29] Kasahara S, Shibauchi T, Hashimoto K, Ikada K, Tonegawa S, Okazaki R, Terashima T 2010 Phys. Rev. B 81 184519
[30] Fernandes R M, Abrahams E, Schmalian J 2011 Phys. Rev. Lett. 107 217002
[31] Yin Z P, Haule K, Kotliar G 2011 Nat. Mater. 10 932
[32] Tam Y T, Yao D X, Ku W 2015 Phys. Rev. Lett. 115 117001
[33] Luo H, Zhang R, Laver M, Yamani Z, Wang M, Lu X, Lynn J W 2012 Phys. Rev. Lett. 108 247002
[34] Hosono H, Kuroki K 2015 Physica C 514 399
[35] Sun J P, Matsuura K, Ye G Z, Mizukami Y, Shimozawa M, Matsubayashi K, Yan Q 2016 Nat. Commun. 7 12146
[36] Ni N, Thaler A, Yan J Q, Kracher A, Colombier E, Bud'Ko S L, Hannahs S T 2010 Phys. Rev. B 82 024519
计量
- 文章访问数: 6839
- PDF下载量: 215
- 被引次数: 0