Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Numerical analysis of Cu2ZnSnS4 solar cells on Si substrate

Liu Hui-Cheng Xu Jia-Xiong Lin Jun-Hui

Citation:

Numerical analysis of Cu2ZnSnS4 solar cells on Si substrate

Liu Hui-Cheng, Xu Jia-Xiong, Lin Jun-Hui
PDF
HTML
Get Citation
  • The Cu2ZnSnS4 (CZTS) solar cell prepared on Si substrate has an advantage of low lattice mismatch between CZTS and Si substrate, but the conversion efficiency of reported p-CZTS/n-Si solar cells is still low at present. In this work, the CZTS solar cells on Si substrate are calculated numerically by heterojunction solar cell simulation software Afors-het. The calculated results show that the p-CZTS and n-Si act as window layer and absorber respectively in the p-CZTS/n-Si solar cell because the band gap of p-CZTS is larger than that of n-Si. The conversion efficiency of p-CZTS/n-Si solar cell increases as the thickness of p-CZTS window layer decreases. The highest calculated conversion efficiency of p-CZTS/n-Si solar cell is 18.57%. In the best p-CZTS/n-Si solar cell, most of the incident light cannot pass through the p-CZTS window layer due to the high absorption coefficient of p-CZTS, which limits the conversion efficiency of solar cell. In order to solve the problems existing in the p-CZTS/n-Si structure, a novel n-ZnO:Al/i-ZnO/n-CdS/p-CZTS/p-Si solar cell structure is proposed, where n-ZnO:Al and i-ZnO are window layers, n-CdS is buffer layer, p-CZTS is absorber, and p-Si is substrate and back electrode. The dark current density-voltage (J-V) characteristic curves of p-CZTS/p-Si structure varying with the thickness and doping concentration of p-Si and the doping concentration of p-CZTS are calculated to investigate the feasibility of p-Si as a back electrode of p-CZTS. All the calculated J-V characteristic curves of p-CZTS/p-Si structure are linear, indicating the formation of ohmic contact between p-CZTS and p-Si. The photovoltaic properties of n-ZnO:Al/i-ZnO/n-CdS/p-CZTS/p-Si solar cell are further calculated. The built-in electric field distributed in n-ZnO:Al, i-ZnO, n-CdS, and p-CZTS contribute to the collection of photo-generated carriers. The conversion efficiency of n-ZnO:Al/i-ZnO/n-CdS/p-CZTS/p-Si solar cell is enhanced with the decrease of the thickness of p-Si and the increase of doping concentrations of p-Si and p-CZTS and the thickness of p-CZTS. Without considering the effect of parasitic series resistance and parallel resistance and defect states, the highest conversion efficiency of ideal n-ZnO:Al/i-ZnO/n-CdS/p-CZTS/p-Si solar cell is 28.41%. The calculated results in this work show that the n-ZnO:Al/i-ZnO/n-CdS/p-CZTS/p-Si solar cell has an appropriate structure for CZTS solar cell on Si substrate.
      Corresponding author: Xu Jia-Xiong, xujiaxiong@gdut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61504029) and the Science and Technology Project of Guangdong Province, China (Grant No. 2017A010104017)
    [1]

    Matsushita H, Ichikawa T, Katsui A 2005 J. Mater. Sci. 40 2003Google Scholar

    [2]

    Steinhagen C, Panthani M G, Akhavan V, Goodfellow B, Koo B, Korgel B A 2009 J. Am. Chem. Soc. 131 12554Google Scholar

    [3]

    Todorov T, Gunawan O, Chey S J, De Monsabert T G, Prabhakar A, Mitzi D B 2011 Thin Solid Films 519 7378Google Scholar

    [4]

    Scragg J J, Dale P J, Peter L M, Zoppi G, Forbes I 2008 Phys. Status Solidi B 245 1772Google Scholar

    [5]

    Maklavani S E, Mohammadnejad S 2020 Sol. Energy 204 489Google Scholar

    [6]

    Nadaraja M, Singh O P, Gour K S, Singh V N 2020 J. Nanosci. Nanotechnol. 20 3925Google Scholar

    [7]

    Akcay N, Ataser T, Ozen Y, Ozcelik S 2020 Thin Solid Films 704 138028Google Scholar

    [8]

    Karade V, Lokhande A, Babar P, Gang M G, Suryawanshi M, Patil P, Kim J H 2019 Sol. Energy Mater. Sol. Cells 200 109911Google Scholar

    [9]

    Ataca C, Topsakal M, Akturk E, Ciraci S 2011 J. Phys. Chem. C 115 16354Google Scholar

    [10]

    Song N, Young M, Liu F Y, Erslev P, Wilson S, Harvey S P, Teeter G, Huang Y D, Hao X J, Green M A 2015 Appl. Phys. Lett. 106 252102Google Scholar

    [11]

    Xu J X, Yang Y Z, Cao Z M, Xie Z W 2016 Optik 127 1567Google Scholar

    [12]

    Shin B H, Zhu Y, Gershon T, Bojarczuk N A, Guha S 2014 Thin Solid Films 556 9Google Scholar

    [13]

    Sheng X, Wang L, Tian Y, Luo Y P, Chang L T, Yang D R 2013 J. Mater. Sci.-Mater. Electron. 24 548Google Scholar

    [14]

    李琳, 文亚南, 董燕, 汪壮兵, 梁齐 2012 真空 49 45Google Scholar

    Li L, Wen Y N, Dong Y, Wang Z B, Liang Q 2012 Vacuum 49 45Google Scholar

    [15]

    Yeh M Y, Lei P H, Lin S H, Yang C D 2016 Materials 9 526Google Scholar

    [16]

    Singh S, Katiyar A K, Midya A, Ghorai A, Ray S K 2017 Nanotechnology 28 435704Google Scholar

    [17]

    Wang W, Winkler M T, Gunawan O, Gokmen T, Todorov T K, Zhu Y, Mitzi D B 2014 Adv. Energy Mater. 4 1301465Google Scholar

    [18]

    Varache R, Leendertz C, Gueunier-farret M E, Haschke J, Munoz D, Korte L 2015 Sol. Energy Mater. Sol. Cells 141 14Google Scholar

    [19]

    Amin N, Hossain M I, Chelvanathan P, Uzzaman A M, Sopian K 2010 International Conference on Electrical & Computer Engineering Dhaka, Bangladesh, December 18–20, 2010 p730

    [20]

    Jiang F, Shen H L, Wang W, Zhang L 2011 Appl. Phys. Express 4 074101Google Scholar

    [21]

    许佳雄, 姚若河 2012 61 187304Google Scholar

    Xu J X, Yao R H 2012 Acta Phys. Sin. 61 187304Google Scholar

    [22]

    Prabeesh P, Selvam I P, Potty S N 2016 Thin Solid Films 606 94Google Scholar

    [23]

    Ali K, Khan S A, Jafri M Z M 2014 Sol. Energy 101 1Google Scholar

    [24]

    Yoshikawa K, Kawasaki H, Yoshida W, Irie T, Konishi K, Nakano K, Uto T, Adachi D, Kanematsu M, Uzu H, Yamamoto K 2017 Nat. Energy 2 17032Google Scholar

  • 图 1  仿真结构示意图 (a) p-CZTS/n-Si; (b) p-CZTS/p-Si; (c) n-ZnO:Al/i-ZnO/n-CdS/p-CZTS/p-Si

    Figure 1.  Diagrams of different structures: (a) p-CZTS/n-Si; (b) p-CZTS/p-Si; (c) n-ZnO:Al/i-ZnO/CdS/CZTS/p-Si.

    图 2  p-CZTS/n-Si太阳能电池性能随 (a) n-Si的厚度dn-Si, (b) n-Si的掺杂浓度Nn-Si, (c) p-CZTS的厚度dp-CZTS, (d) p-CZTS的掺杂浓度Np-CZTS的变化关系

    Figure 2.  The performances of p-CZTS/n-Si solar cell with the changes of (a) the thickness of n-Si (dn-Si), (b) the doping concentration of n-Si (Nn-Si), (c) the thickness of p-CZTS (dp-CZTS), (d) the doping concentration of p-CZTS (Np-CZTS).

    图 3  最优p-CZTS/n-Si太阳能电池的 (a) J–V特性曲线, (b)光谱响应, (c)载流子产生率分布图

    Figure 3.  The (a) J–V characteristic curve, (b) spectral response, (c) generation rate distribution of the optimal p-CZTS/n-Si solar cell

    图 4  p-CZTS/p-Si的J-V特性曲线随p-Si厚度dp-Si的变化

    Figure 4.  J-V characteristic curves of p-CZTS/p-Si with the change of the thickness of p-Si (dp-Si).

    图 5  p-CZTS/p-Si的J-V特性曲线随p-Si掺杂浓度Np-Si的变化

    Figure 5.  J-V characteristic curves of p-CZTS/p-Si with the change of the doping concentration of p-Si (Np-Si).

    图 6  p-Si掺杂浓度为 (a) 1 × 1015 cm–3, (b) 1 × 1017 cm–3, (c) 1 × 1019 cm–3时, p-CZTS/p-Si的能带图

    Figure 6.  Band diagrams of p-CZTS/p-Si when the doping concentrations of p-Si are (a) 1 × 1015 cm–3, (b) 1 × 1017 cm–3, (c) 1 × 1019 cm–3

    图 7  p-CZTS/p-Si的J-V特性曲线随p-CZTS掺杂浓度Np-CZTS的变化

    Figure 7.  J-V characteristic curves of p-CZTS/p-Si with the change of the doping concentration of p-CZTS (Np-CZTS).

    图 8  p-CZTS掺杂浓度为 (a) 1 × 1015 cm–3, (b) 1 × 1017 cm–3, (c) 1 × 1019 cm–3时, p-CZTS/p-Si的能带图

    Figure 8.  Band diagrams of p-CZTS/p-Si when the doping concentrations of p-CZTS are (a) 1 × 1015 cm–3, (b) 1 × 1017 cm–3, (c) 1 × 1019 cm–3.

    图 9  n-ZnO:Al/i-ZnO/n-CdS/p-CZTS/p-Si太阳能电池的性能随 (a) p-Si厚度dp-Si, (b) p-Si掺杂浓度Np-Si, (c) p-CZTS厚度dp-CZTS, (d) p-CZTS掺杂浓度Np-CZTS的变化关系

    Figure 9.  The performances of n-ZnO:Al/i-ZnO/n-CdS/p-CZTS/p-Si solar cell with the changes of (a) the thickness of p-Si (dp-Si), (b) the doping concentration of p-Si (Np-Si), (c) the thickness of p-CZTS (dp-CZTS), (d) the doping concentration of p-CZTS (Np-CZTS).

    图 10  优化的n-ZnO:Al/i-ZnO/n-CdS/p-CZTS/p-Si太阳能电池的 (a) J–V特性曲线, (b)光谱响应, (c)内建电场, (d)能带图

    Figure 10.  The (a) J–V characteristic curve, (b) spectral response, (c) built-in electric field, (d) band diagram of the optimal n-ZnO:Al/i-ZnO/n-CdS/p-CZTS/p-Si solar cell.

    表 1  仿真参数取值

    Table 1.  Simulated parameters.

    参数p-CZTSn-CdSi-ZnOn-ZnOp-Sin-Si
    介电常数10109911.911.9
    电子亲和能/eV3.84.24.64.64.054.05
    禁带宽度/eV1.532.43.33.31.121.12
    导带有效密度/cm–32.2 × 10181.8 × 10192.2 × 10182.2 × 10183.32 × 10183.32 × 1018
    价带有效密度/cm–31.8 × 10192.4 × 10181.8 × 10191.8 × 10191.44 × 10191.44 × 1019
    电子迁移率/(cm2·V–1·s–1)10010010010014501450
    空穴迁移率/(cm2·V–1·s–1)57.6252525500500
    受主掺杂浓度/cm–3变量000变量0
    施主掺杂浓度/cm–301 × 10171 × 1051 × 10180变量
    缺陷浓度/cm–31 × 10126 × 10161 × 10171 × 1017
    电子俘获截面/cm24.13 × 10–141 × 10–171 × 10–121 × 10–12
    空穴俘获截面/cm24.13 × 10–111 × 10–131 × 10–151 × 10–15
    厚度/μm变量0.050.20.2变量变量
    DownLoad: CSV
    Baidu
  • [1]

    Matsushita H, Ichikawa T, Katsui A 2005 J. Mater. Sci. 40 2003Google Scholar

    [2]

    Steinhagen C, Panthani M G, Akhavan V, Goodfellow B, Koo B, Korgel B A 2009 J. Am. Chem. Soc. 131 12554Google Scholar

    [3]

    Todorov T, Gunawan O, Chey S J, De Monsabert T G, Prabhakar A, Mitzi D B 2011 Thin Solid Films 519 7378Google Scholar

    [4]

    Scragg J J, Dale P J, Peter L M, Zoppi G, Forbes I 2008 Phys. Status Solidi B 245 1772Google Scholar

    [5]

    Maklavani S E, Mohammadnejad S 2020 Sol. Energy 204 489Google Scholar

    [6]

    Nadaraja M, Singh O P, Gour K S, Singh V N 2020 J. Nanosci. Nanotechnol. 20 3925Google Scholar

    [7]

    Akcay N, Ataser T, Ozen Y, Ozcelik S 2020 Thin Solid Films 704 138028Google Scholar

    [8]

    Karade V, Lokhande A, Babar P, Gang M G, Suryawanshi M, Patil P, Kim J H 2019 Sol. Energy Mater. Sol. Cells 200 109911Google Scholar

    [9]

    Ataca C, Topsakal M, Akturk E, Ciraci S 2011 J. Phys. Chem. C 115 16354Google Scholar

    [10]

    Song N, Young M, Liu F Y, Erslev P, Wilson S, Harvey S P, Teeter G, Huang Y D, Hao X J, Green M A 2015 Appl. Phys. Lett. 106 252102Google Scholar

    [11]

    Xu J X, Yang Y Z, Cao Z M, Xie Z W 2016 Optik 127 1567Google Scholar

    [12]

    Shin B H, Zhu Y, Gershon T, Bojarczuk N A, Guha S 2014 Thin Solid Films 556 9Google Scholar

    [13]

    Sheng X, Wang L, Tian Y, Luo Y P, Chang L T, Yang D R 2013 J. Mater. Sci.-Mater. Electron. 24 548Google Scholar

    [14]

    李琳, 文亚南, 董燕, 汪壮兵, 梁齐 2012 真空 49 45Google Scholar

    Li L, Wen Y N, Dong Y, Wang Z B, Liang Q 2012 Vacuum 49 45Google Scholar

    [15]

    Yeh M Y, Lei P H, Lin S H, Yang C D 2016 Materials 9 526Google Scholar

    [16]

    Singh S, Katiyar A K, Midya A, Ghorai A, Ray S K 2017 Nanotechnology 28 435704Google Scholar

    [17]

    Wang W, Winkler M T, Gunawan O, Gokmen T, Todorov T K, Zhu Y, Mitzi D B 2014 Adv. Energy Mater. 4 1301465Google Scholar

    [18]

    Varache R, Leendertz C, Gueunier-farret M E, Haschke J, Munoz D, Korte L 2015 Sol. Energy Mater. Sol. Cells 141 14Google Scholar

    [19]

    Amin N, Hossain M I, Chelvanathan P, Uzzaman A M, Sopian K 2010 International Conference on Electrical & Computer Engineering Dhaka, Bangladesh, December 18–20, 2010 p730

    [20]

    Jiang F, Shen H L, Wang W, Zhang L 2011 Appl. Phys. Express 4 074101Google Scholar

    [21]

    许佳雄, 姚若河 2012 61 187304Google Scholar

    Xu J X, Yao R H 2012 Acta Phys. Sin. 61 187304Google Scholar

    [22]

    Prabeesh P, Selvam I P, Potty S N 2016 Thin Solid Films 606 94Google Scholar

    [23]

    Ali K, Khan S A, Jafri M Z M 2014 Sol. Energy 101 1Google Scholar

    [24]

    Yoshikawa K, Kawasaki H, Yoshida W, Irie T, Konishi K, Nakano K, Uto T, Adachi D, Kanematsu M, Uzu H, Yamamoto K 2017 Nat. Energy 2 17032Google Scholar

  • [1] Lan Wei-Xia, Gu Jia-Lu, Gao Xiao-Hui, Liao Ying-Jie, Zhong Song-Yi, Zhang Wei-Dong, Peng Yan, Sun Yu, Wei Bin. Research progress of organic solar cells based on photonic crystals. Acta Physica Sinica, 2021, 70(12): 128804. doi: 10.7498/aps.70.20201805
    [2] Wang Jian-Tao, Xiao Wen-Bo, Xia Qing-Gan, Wu Hua-Ming, Li Fan, Huang Le. Influence of back electrode material, structure and thickness on performance of perovskite solar cells. Acta Physica Sinica, 2021, 70(19): 198404. doi: 10.7498/aps.70.20211037
    [3] Jing Jing, Li Zhi-Peng, Lu Wei-Sheng, Wang Hong-Yu, Yang Zu-An, Yang Yi, Yin Qi-Sheng, Yang Fu-Ling, Shen Xiao-Ming, Zeng Jian-Min, Zhan Feng. Transparent conductive oxide film with antireflective properties for Cu2ZnSnS4 solar cells. Acta Physica Sinica, 2020, 69(23): 237801. doi: 10.7498/aps.69.20200897
    [4] Zhu Li-Feng, Pan Wen-Yuan, Xie Yan, Zhang Bo-Ping, Yin Yang, Zhao Gao-Lei. Effect of regulation of defect ion on ferroelectric photovoltaic characteristics of BiFeO3-BaTiO3 based perovskite materials. Acta Physica Sinica, 2019, 68(21): 217701. doi: 10.7498/aps.68.20190996
    [5] Jiang Feng-Yi, Liu Jun-Lin, Zhang Jian-Li, Xu Long-Quan, Ding Jie, Wang Guang-Xu, Quan Zhi-Jue, Wu Xiao-Ming, Zhao Peng,  Liu Bi-Yu,  Li Dan, Wang Xiao-Lan, Zheng Chang-Da, Pan Shuan, Fang Fang, Mo Chun-Lan. Semiconductor yellow light-emitting diodes. Acta Physica Sinica, 2019, 68(16): 168503. doi: 10.7498/aps.68.20191044
    [6] Wang Xiao-Ka, Tang Fu-Ling, Xue Hong-Tao, Si Feng-Juan, Qi Rong-Fei, Liu Jing-Bo. First-principles study of H, Cl and F passivation for Cu2ZnSnS4(112) surface states. Acta Physica Sinica, 2018, 67(16): 166401. doi: 10.7498/aps.67.20180626
    [7] Zhang Qiang, Wang Jian-Yuan, Luo Bing-Cheng, Xing Hui, Jin Ke-Xin, Chen Chang-Le. Rectifying behavior and photovoltage effect in La1.3Sr1.7Mn2O7/SrTiO3-Nb heterostructure. Acta Physica Sinica, 2016, 65(10): 107301. doi: 10.7498/aps.65.107301
    [8] Fan Wei, Zeng Zhi. First-principles studies on the properties of Cu2ZnSnS4 grain-boundaries due to photovoltaic effect. Acta Physica Sinica, 2015, 64(23): 238801. doi: 10.7498/aps.64.238801
    [9] Cao Yu, Zhang Jian-Jun, Yan Gan-Gui, Ni Jian, Li Tian-Wei, Huang Zhen-Hua, Zhao Ying. Influences of electrode separation on structural properties of μc-Si1-xGex:H thin films. Acta Physica Sinica, 2014, 63(7): 076801. doi: 10.7498/aps.63.076801
    [10] Xu Jia-Xiong, Yao Ruo-He. Investigation of the photovoltaic performance of n-ZnO:Al/i-ZnO/n-CdS/p-Cu2ZnSnS4 solar cell. Acta Physica Sinica, 2012, 61(18): 187304. doi: 10.7498/aps.61.187304
    [11] Lu Shuo, Zhang Yue, Shang Jia-Xiang. First principles study on structure and property of Si2 CN4(010) surface. Acta Physica Sinica, 2011, 60(2): 027302. doi: 10.7498/aps.60.027302
    [12] Chen Peng, Jin Ke-Xin, Chen Chang-Le, Tan Xing-Yi. Rectifying behavior and photovoltaic effect in La0.88 Te0.12 MnO3/Si heterostructure. Acta Physica Sinica, 2011, 60(6): 067303. doi: 10.7498/aps.60.067303
    [13] Zhang Kun, Liu Fang-Yang, Lai Yan-Qing, Li Yi, Yan Chang, Zhang Zhi-An, Li Jie, Liu Ye-Xiang. In situ growth and characterization of Cu2ZnSnS4 thin films by reactive magnetron co-sputtering for solar cells. Acta Physica Sinica, 2011, 60(2): 028802. doi: 10.7498/aps.60.028802
    [14] Wan Ji-Yu, Jin Ke-Xin, Tan Xing-Yi, Chen Chang-Le. Transport and rectification properties of Pr0.5Ca0.5MnO3/Si heterojunction. Acta Physica Sinica, 2010, 59(11): 8137-8141. doi: 10.7498/aps.59.8137
    [15] Yu Zhi-Qiang, Xie Quan, Xiao Qing-Quan, Zhao Ke-Jie. Structure and extinction properties of Mg2Si crystal. Acta Physica Sinica, 2009, 58(10): 6889-6893. doi: 10.7498/aps.58.6889
    [16] Cui Xiu-Zhi, Zhang Tian-Chong, Mei Zeng-Xia, Liu Zhang-Long, Liu Yao-Ping, Guo Yang, Su Xi-Yu, Xue Qi-Kun, Du Xiao-Long. Influence of wet etching on the morphologies of Si patterned substrates and ZnO epilayers. Acta Physica Sinica, 2009, 58(1): 309-314. doi: 10.7498/aps.58.309
    [17] Xing Hai-Ying, Fan Guang-Han, Zhou Tian-Ming. Electronic and magnetic properties of p,n type dopant and Mn co-doped GaN. Acta Physica Sinica, 2009, 58(5): 3324-3330. doi: 10.7498/aps.58.3324
    [18] Tang Xin-Xin, Luo Wen-Yun, Wang Chao-Zhuang, He Xin-Fu, Zha Yuan-Zi, Fan Sheng, Huang Xiao-Long, Wang Chuan-Shan. Non-ionizing energy loss of low energy proton in semiconductor materials Si and GaAs. Acta Physica Sinica, 2008, 57(2): 1266-1270. doi: 10.7498/aps.57.1266
    [19] Song Hui-Jin, Zheng Jia-Gui, Feng Liang-Huan, Cai Wei, Cai Ya-Ping, Zhang Jing-Quan, Li Wei, Li Bing, Wu Li-Li, Lei Zhi, Yan Qiang. Performance of CdTe solar cells with different back electrodes and back contact layers. Acta Physica Sinica, 2007, 56(3): 1655-1661. doi: 10.7498/aps.56.1655
    [20] LATERAL PHOTOVOLTAIC EFFECT IN a-Si:H JUNCTIONS. Acta Physica Sinica, 1989, 38(8): 1235-1244. doi: 10.7498/aps.38.1235
Metrics
  • Abstract views:  5439
  • PDF Downloads:  69
  • Cited By: 0
Publishing process
  • Received Date:  17 November 2020
  • Accepted Date:  07 January 2021
  • Available Online:  11 May 2021
  • Published Online:  20 May 2021

/

返回文章
返回
Baidu
map