Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Fundamental principles, key enabling technologies, and research progress of atom chips

Li Mo Chen Fei-Liang Luo Xiao-Jia Yang Li-Jun Zhang Jian

Citation:

Fundamental principles, key enabling technologies, and research progress of atom chips

Li Mo, Chen Fei-Liang, Luo Xiao-Jia, Yang Li-Jun, Zhang Jian
PDF
HTML
Get Citation
  • The laser cooling, trapping and manipulating of neutral atoms has become a valuable tool for scientists, providing innovative ways to probe the nature of reality and giving rise to transformative devices in the fields of precise measurement and quantum information processing. Unlike traditional complex and bulky atomic experimental facilities, atom chips, through the design, fabrication of surface-patterned microstructures, and the integration of devices on the substrates, can precisely control the magnetic, electric or optical fields on a micro-nano scale with low power consumption. It can realize strong trapping as well as coherent atomic manipulation. Since atom chip was first proposed twenty years ago, it has built a robust quantum platform for miniaturizing and integrating quantum optics and atomic physics tools on a chip. In this paper, first, we briefly review the development history of atom chips, then introduce the basic knowledge of micro potential traps and micro guides based on on-chip current-carrying wires. Afterwards, the key technologies about the chip material, design, fabrication, characterization and integration of atom chips are discussed in detail. We not only focus on the currently most active and successful areas - current carrying wires, but also look at more visionary approaches such as to the manipulation of atoms with real nano structures, say, carbon nano tubes. The design and fabrication principles of ideal atom chips are discussed as well. In the forth part, the worldwide plans and research projects involving with atom chip technologies are summarized, showing that many countries see this as an important foundational technology. Following that, the major developments in the application fields including atom clocks, atom interferometer gyroscope, cold atom gravimeter, etc are described. Finally, the challenges faced by atom chips towards practical application are pointed out and the prospects for their subsequent development are depicted.
      Corresponding author: Li Mo, limo@uestc.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61875178), the National Natural Science Foundation of China and China Academy of Engineering Physics Joint Fund (NSAF) (Grant No. U1730126), and the Science Challenge Project (Grant No. TZ2018003-3)
    [1]

    Schmiedmayer J 1995 Phys. Rev. A 52 R13Google Scholar

    [2]

    Schmiedmayer J 1995 Appl. Phys. B 60 169

    [3]

    Reichel J, Hänsel W, Hänsch T 1999 Phys. Rev. Lett. 83 3398Google Scholar

    [4]

    Hänsel W, Reichel J, Hommelhoff P, Hänsch T 2001 Phys. Rev. A 64 063607Google Scholar

    [5]

    Fortagh J, Zimmermann C 2007 Rev. Mod. Phys. 79 235Google Scholar

    [6]

    Eriksson S, Trupke M, Powell H F 2005 Eur. Phys. J. D 35 135

    [7]

    Trupke M, Goldwin J, Darquié B 2007 Phys. Rev. Lett. 99 063601

    [8]

    Helsby S, Corbari C, Ibsen M, Horak P, Kazansky P 2007 Phys. Rev. A 75 013618

    [9]

    Mukai T, Hufnagel C, Kasper A, Meno T, Tsukada A, Semba K, Shimizu F 2007 Phys. Rev. Lett. 98 260407Google Scholar

    [10]

    Pollock S, Cotter J, Laliotis A, Hinds E 2009 Opt. Express 17 14109

    [11]

    印建平 2012 原子光学: 基本概念、原理、技术及其应用 (上海: 上海交通大学出版社)

    Yin J P 2012 Atomic Optics: Basic Concepts, Principles, Techniques and Their Applications (Shanghai: Shanghai Jiao Tong University Press) (in Chinese)

    [12]

    Ketterle W, Durfee D, Stamper-Kurn D 1999 Proceedings of the International School of Physics, Varenna, Italy, April, 1999

    [13]

    Pritchard D E 1983 Phys. Rev. Lett. 51 1336Google Scholar

    [14]

    Cornell E A, Monroe C, Wieman C E 1991 Phys. Rev. Lett. 67 2439Google Scholar

    [15]

    Ketterle W, Pritchard D E 1992 Phys. Rev. A 46 4051Google Scholar

    [16]

    Petrich W, Anderson M H, Ensher J R 1995 Phys. Rev. Lett. 74 3352Google Scholar

    [17]

    柯敏, 李晓林, 王育竹 2005 物理学进展 25 48Google Scholar

    Ke M, Li X L, Wang Y Z 2005 Progress Phys. 25 48Google Scholar

    [18]

    Cassettari D, Chenet A, Folman R 2000 Appl. Phys. B 70 721

    [19]

    Reichel J, Hänsel W, Hommelhoff P 2001 Appl. Phys. B 72 81

    [20]

    Hänsel W 2000 Ph. D. Dissertation (Germany: Ludwig-Maximilians-Universität München)

    [21]

    Weinstein J D, Libbrecht K G 1995 Phys. Rev. A 52 4004Google Scholar

    [22]

    Folman R, Krüger P, Schmiedmayer J, Denschlag J, Henkel C 2002 Adv. Atom. Mol. Opt. Phy. 48 26

    [23]

    Hänsel W, Reichel J, Hommelhoff P, Hänsch T W 2001 Phys. Rev. Lett. 86 608Google Scholar

    [24]

    Long R, Rom T, Hänsel W, Hänsch T W, Reichel J 2005 Eur. Phys. J. D 35 125Google Scholar

    [25]

    Roy R, Condylis P C, Prakash V 2017 Sci. Rep. 7 1

    [26]

    Hu J, Yin J 2002 J. Opt. Soc. Am. B 19 2844Google Scholar

    [27]

    胡建军, 印建平 2005 光学学报 25 412Google Scholar

    Hu J J, Yin J P 2005 Acta Optic. Sin. 25 412Google Scholar

    [28]

    周锋 2018 博士学位论文 (武汉: 华中科技大学)

    Zhou F 2018 Ph. D. Dissertation (Wuhan: Huazhong University of Science and Technology)(in Chinese)

    [29]

    Pollock S, Cotter J P, Laliotis A 2011 New. J. Phys. 13 215

    [30]

    Nshii C C, Vangeleyn M, Cotter J P, Griffin P F, Hinds E A, Ironside C. N, See P, Sinclair A G, Riis E, Arnold A. S 2013 Nat. Nanaotechnol. 8 321

    [31]

    Mcgilligan J P, Griffin P F, Riis E, Arnold A S 2016 J. Opt. Soc. Am. B 33 6

    [32]

    周晟, 李沫, 赵杰, 姜伟 2017 量子信息技术与应用研讨会中国 北京 2017年6月15—16日

    Zhou S, Li M, Zhao J, Jiang W 2017 Workshop on Quantum Information Technology and Applications, Beijing, China, June 15–16, 2017 (in Chinese)

    [33]

    McGilligan J P, Griffin P F, Elvin R, Ingleby S J, Riis E, Arnold A S 2017 Sci. Rep. 7 384Google Scholar

    [34]

    Lingxiao Z, Xuan L, Basudeb S 2020 Sci. Adv. 6 1

    [35]

    Muller D, Anderson D Z, Grow R J, Schwindt P D, Cornell E A 1999 Phys. Rev. Lett. 83 5104

    [36]

    Thywissena J H, Olshanii M, Zabow G, DrndiC M, Johnsonb K S, Westervelt R M, Prentiss M 1999 Eur. Phys. J. D 7 361

    [37]

    Dekker N H, Lee C S, Lorent V, Thywissen J H, Smith S P, Drndic M, Westervelt R M, Prentiss M 2000 Phys. Rev. Lett. 84 1124Google Scholar

    [38]

    Baker P M, Stickney J A, Squires M B, Scoville J A, Carlson E J, Buchwald W R, Miller S M 2009 Phys. Rev. A 80 063615Google Scholar

    [39]

    Lesanovsky I, Schumm T, Hofferberth S, Andersson L M, Krüger P, Schmiedmayer J 2006 Phys. Rev. A 73 033619Google Scholar

    [40]

    凌云龙, 汪川, 张海潮 2020 69 100301Google Scholar

    Ling Y L, Wang C, Zhang H C 2020 Acta Phys. Sin. 69 100301Google Scholar

    [41]

    Horne S A, Sackett C A, 2017 Rev. Sci. Instrum. 88 013102Google Scholar

    [42]

    Esteve J, Schumm T, Trebbia J B, Bouchoule I, Aspect A, Westbrook C I 2005 Eur. Phys. J. D 35 141

    [43]

    Hommelhoff P, Hänsel W, Steinmetz T, Hänsch T W, Reichel J 2005 New J. Phys. 7 1Google Scholar

    [44]

    Shin Y, Sanner C, Jo G B, Pasquini T A, Saba M, Ketterle W, Pritchard D E 2005 Phys. Rev. A 72 021604Google Scholar

    [45]

    Treutlein P, Hänsch T W, Reichel J, Negretti A, Cirone M A, Calarco T 2006 Phys. Rev. A 74 022312Google Scholar

    [46]

    Böhi P, Riedel M F, Hoffrogge J, Reichel J, Hansch T W, Treutlein P 2009 Nat. Phys. 5 592Google Scholar

    [47]

    Cassettari D, Hessmo B, Folman R, Maier T, Schmiedmayer J 2000 Phys. Rev. Lett. 85 5483Google Scholar

    [48]

    Müller D, Cornell E A, Prevedelli M, Schwindt P D D, Zozulya A, Anderson D Z 2000 Opt. Lett. 25 1382Google Scholar

    [49]

    Colombe Y, Knyazchyan E, Morizot O, Mercier B, Lorent V, Perrin H 2004 Euro. Phys. Lett. 67 593Google Scholar

    [50]

    Levy S, Lahoud E, Shomroni I, Steinhauer J 2007 Nature 449 579Google Scholar

    [51]

    Zobay O, Garraway B M 2001 Phys. Rev. Lett. 86 1195Google Scholar

    [52]

    Kim S J, Yu H, Gang S T, Kim J B 2017 Appl. Phys. B 123 154

    [53]

    Johnson K S, Chu A P, Berggren K K, Prentiss M 1996 Opt. Commun. 126 326Google Scholar

    [54]

    Wang Y J, Anderson D Z, Bright V M, Cornell E A, Diot Q, Kishimoto T, Prentiss M, Saravanan R. A, Segal S R, Wu S 2005 Phys. Rev. Lett. 94 090405

    [55]

    Leung V Y F, Pijn D R M, Schlatter H, Torralbo-Campo L, La Rooij A L, Mulder G B, Naber J, Soudijn M L, Tauschinsky A, Abarbanel C, Hadad B, Golan E, Folman R, Spreeuw R J C 2014 Rev. Sci. Instrum. 85 053102Google Scholar

    [56]

    West A D, Weatherill K J, Hayward T J, Fry P W, Schrefl T G, Mike R J, Adams C S, Allwood D A, Hughes I G 2012 Nano. Lett. 12 4065

    [57]

    Folman R, Treutlein P, Schmiedmayer J 2011 Atom Chip Fabrication. In Atom Chips (Weinheim: Reichel J, Vuletić V) p61

    [58]

    Lloyd J R, Clement J J, 1996 Thin Solid Films 262 135

    [59]

    Wei B Q, Vajtai R, Ajayan P M 2001 Appl. Phys. Lett. 79 1172Google Scholar

    [60]

    Peano V, Thorwart M, Kasper A, Egger R 2005 Appl. Phys. B 81 1075

    [61]

    Petrov P G, Machluf S, Younis S, Macaluso R, David T, Hadad B, Japha Y, Keil M, Joselevich E, Folman R 2009 Phys. Rev. A. 79 043403Google Scholar

    [62]

    Subramaniam C, Yamada T, Kobashi K, Sekiguchi A, Futaba D N, Yumura, M, Hata K 2013 Nat. Commun. 4 2202Google Scholar

    [63]

    罗小嘉, 李儒, 李沫, 姜伟, 周晟, 王旺平, 陈飞良 2020 中国专利 CN109637975 A [2020-09-18]

    Luo X J, Li R, Li M, Jiang W, Zhou S, Wang W P, Chen F L 2020 Chinese Patent CN109637975 A [2020-09-18] (in Chinese)

    [64]

    Hohenester U, Eiguren A, Scheel S, Hinds E 2007 Phys. Rev. A. 76 33618Google Scholar

    [65]

    Bernon S, Hattermann H, Bothner D, Martin K, Patrizia W, Florian J, Daniel C, Matthias K, Reinhold K, Dieter K, József F 2013 Nat. Commun. 4 1

    [66]

    Günther A, Kemmler M, Kraft S, Vale S J, Zimmermann C, Fortagh J 2005 Phys. Rev. A. 71 063619Google Scholar

    [67]

    Chuang H, Lin Y, Lin Y, Huang C 2014 J. Micromech. Microeng. 24 045013Google Scholar

    [68]

    王旺平, 李沫, 陈飞良, 周晟, 姜伟, 赵杰, 张健 2019 中国专利 CN106847715 [2019-08-20]

    Wang W P, Li M, Chen F L, Zhou S, Jiang W, Zhao J, Zhang J 2019 Chinese Patent CN 106847715 [2019-08-20] (in Chinese)

    [69]

    Jenks W G, Sadeghi S S H, Wikswo J P 1997 J. Phys. D: Appl. Phys. 30 293Google Scholar

    [70]

    Berggren S, Palacios A 2014 Eur. Phys. J. B 87 1Google Scholar

    [71]

    Volk M, Whitlock S, Wolff C H, Hall B V, Sidorov A I 2008 Rev. of Sci. Instr. 79 023702Google Scholar

    [72]

    Wildermuth S, Hofferberth S, Lesanovsky I, Haller E, Andersson L M, Groth S, Bar-Joseph I, Krüger P, Schmiedmayer J 2005 Nature 435 440Google Scholar

    [73]

    柯敏, 2009 博士学位论文(上海: 中国科学院上海光机所)

    Ke M 2009 Ph. D. Dissertation (Shanghai: Institute of Optics and Fine Mechanics, the Chinese Academy of Sciences) (in Chinese)

    [74]

    Folman R, Krüger P, Cassettari D, Hessmo B, Maier T, Schmiedmaye J 2000 Phys. Rev. Lett. 84 4749Google Scholar

    [75]

    Kohnen M, Succo M, Petrov P G, Nyman R A, Trupke M, Hinds E A 2010 Nature Photon. 5 35

    [76]

    Kitching J, 2018 Appl. Phys. Rev. 5 031302Google Scholar

    [77]

    Keil M, Amit O, Zhou S, Groswasser D, Japha Y, Folman R 2016 J. Mod. Optic. 63 1840Google Scholar

    [78]

    Shkel A 2013 Gps World 24 8

    [79]

    程俊, 张敬芳, 许忻平, 蒋小军, 李晓林, 张海潮, 王育竹 2016 65 060302Google Scholar

    Cheng J, Zhang J F, Xu X P, Jiang X J, Li X L, Zhang H C, Wang Y Z 2016 Acta Phys. Sin. 65 060302Google Scholar

    [80]

    颜辉, 2009 博士学位论文 (武汉: 中国科学院武汉物理与数学研究所)

    Yan H 2009 Ph. D. Dissertation (Wuhan: Institute of Physics and Mathematics, Chinese Academy of Sciences) (in Chinese)

    [81]

    Schumm T, Hofferberth S, Andersson L M, Wildermuth S, Groth S, Bar-Joseph I, Schmiedmayer J, Krüger P 2005 Nat. Phys. 1 57Google Scholar

    [82]

    Jo G B, Shin Y, Will S, Pasquini T A, Saba M, Ketterle W, Pritchard D E, Vengalattore M, Prentiss M 2006 Phys. Rev. Lett. 98 030407

    [83]

    Wu S, Su E, Prentiss M 2007 Phys. Rev. Lett. 99 173201Google Scholar

    [84]

    Burke J H T, Sackett C A 2009 Phys. Rev. A 80 061603Google Scholar

    [85]

    Yan H 2012 Appl. Phys. Lett. 101 194102

    [86]

    Muntinga H, Ahlers H, Krutzik M, Wenzlawski A, Arnold S, Becker D, Bongs K, Dittus H, Duncker H, Gaaloul N, Gherasim C, Giese E, Grzeschik C, Hänsch T W, Hellmig O, Herr W, Herrmann S, Kajari E, Kleinert S, Lämmerzahl C, Lewoczko-Adamczyk W, Malcolm J, Meyer N, Nolte R, Peters A, Popp M, Reichel J, Roura A, Rudolph J, Schiemangk M, Schneider M, Seidel S T, Sengstock K, Tamma V 2013 Phys. Rev. Lett. 110 093602Google Scholar

    [87]

    Rudolph J, Herr W, Grzeschik C, Sternke T, Grote A, Popp M, Becker D, Müntinga H, Ahlers H, Peters A, Lammerzahl C, Sengstock K, Gaaloul N, Ertmer W, Rasel E M 2015 New. J. Phys. 17 065001Google Scholar

    [88]

    Wu X, Zi F, Dudley J, Bilotta R J, Canoza P, Müller H 2017 Optica 4 1545Google Scholar

    [89]

    Moan E R, Horne R A, Arpornthip T, Luo Z, Fallon A J, Berl S J, Sackett C A 2020 Phys. Rev. Lett. 124 120403Google Scholar

    [90]

    Bongs K, Holynski M, Vovrosh J, Bouyer P, Condon G, Rasel E, Schubert C, Schleich W P, Roura A 2019 Nat. Rev. Phys. 1 731Google Scholar

    [91]

    Abend S, Gebbe M, Gersemann M, Ahlers H, Müntinga H, Giese E, Gaaloul N, Schubert C, Lammerzahl C, Ertmer W, Schleich W P, Rasel E M 2016 Phys. Rev. Lett. 117 203003

    [92]

    Wu X, Pagel Z, Malek B S, Nguyen T H, Zi F, Scheirer D S, Müller H 2019 Sci. Adv. 5 aax0800Google Scholar

    [93]

    Schmiedmayer J, Folman R, Calarco T 2002 J. Mod. Optic. 49 1375Google Scholar

    [94]

    Trupke M, Metz J, Beige A, Hinds E A 2007 J. Mod. Optic. 54 1639Google Scholar

    [95]

    Houck A A, Türeci, Hakan E, Koch J 2012 Nat. Phys. 8 292Google Scholar

    [96]

    La Rooij A L, Den Heuvell H B, Spreeuw R J, Spreeuw R J C 2019 Phys. Rev. A 99 2

    [97]

    Bautista-Salvador A, Zarantonello G, Hahn H, Preciado-Grijalva A, Morgner J, Wahnschaffe M, Ospelkaus C 2019 New. J. Phys. 21 043011Google Scholar

    [98]

    Ockeloen C F, Schmied R, Riedel M F, Treutlein P 2013 Phys. Rev. Lett. 111 143001Google Scholar

    [99]

    Carter J D, Cherry O, Martin J D 2013 Phys. Rev. A 86 053401

    [100]

    Riedel M, Böhi P, Li Y, Hänsch T W, Sinatra A, Treutlein P 2010 Nature 464 1170Google Scholar

    [101]

    Aveline D C, Williams J R, Elliott E R, Dutenhoffer C, Thompson R J 2020 Nature 582 193Google Scholar

    [102]

    Tajik M, Rauer B, Schweigler T, Cataldini F, Schmiedmayer J 2019 OPT Express 27 33474Google Scholar

    [103]

    ()https://scienceandtechnology.jpl.nasa.gov/good-bad-and-quantum-nasa-jpl%E2%80%99 s-cold-atom-laboratory [EB/OL]. 2019-02-06

    [104]

    Thompson R, Sengupta A, Aveline D, Kohel J [EB/OL] http://paragon.myvnc.com/TheParagon-Space/TheParagon-Space/New_Space/ScienceTheories/Cold%20 Particles-Theories.pdf

  • 图 1  (a)由U形阱形成的四极磁阱; (b)由Z形阱形成的IP阱[3]

    Figure 1.  (a) Quadrupole trap by U configuration; (b) Ioffe-Pritchard trap by Z configuration[3].

    图 2  (a) Dimple阱; (b) H形阱[20]

    Figure 2.  (a) Dimple trap; (b) H-type trap[20].

    图 3  四种平面Ioffe阱的方案[22]

    Figure 3.  Four planar Ioffe trap configurations[22].

    图 4  多种原子传送带结构[23-25]

    Figure 4.  Multiple configurations of atom conveyor belts[23-25].

    图 5  基于(a)金字塔结构[29], (b)光栅结构[33]的芯片微MOT

    Figure 5.  Micro-MOTs chip based on (a) micro-paramide arrays[29] and (b) gratings[33].

    图 6  (a) 侧边导引; (b) 共面成对同向载流的侧边导引; (c) 共面成对异向载流的侧边导引; (d)三线导引. 图中S为导线间距

    Figure 6.  (a) Side guide; (b) two-wire side with co-propagating currents; (c) two-wire side guide with opposing current directions; (d) three-wire guide. S is the distance between wires.

    图 7  弗吉尼亚大学设计的MOT[41]

    Figure 7.  Magnetic trap assembly proposed by University of Virginia[41].

    图 8  原子芯片上的Y形分束和X形分束[22]

    Figure 8.  Beam splitter for guided atoms using Y-shaped and X-shaped current carrying wires[22].

    图 9  原子芯片上基于射频场的双势阱物质波分束[52]

    Figure 9.  Matter-wave beam splitter by dressing RF-fields on chip[52].

    图 10  (a) 双层CNT原子芯片示意图; (b) 原子力显微镜(AFM)下CNT及其与Z形导线的接触[61]

    Figure 10.  (a) Schematic representation of the two layer CNT atom chip; (b) atomic force microscope image of a CNT fabricated and contacted for use as a Z-shaped wire trap[61].

    图 11  原子芯片上载流导线的制备方法 (a) 剥离法; (b) 刻蚀法

    Figure 11.  Fabrication methods of the on-chip current-carrying wires: (a) Stripping method; (b) etching method.

    图 12  基于不同封装工艺的原子芯片 (a) 针对传统真空法兰电极接口的芯片封装形式; (b) 超高真空胶; (c) 阳极键合[67]; (d) 软钎焊

    Figure 12.  Atom chips based on different packaging processes: (a)Traditional vacuum package; (b) ultra-high vacuum adhesive; (c) anode adhesive[67]; (d) soft soldering.

    图 13  基于冷原子干涉的原子芯片陀螺仪基本流程

    Figure 13.  Basic process of gyroscope based on cold atom interference on chip.

    图 14  Honeywell提出的水平方向集成的芯片级原子钟方案 (a) 原子物理集成部分; (b) 蒸汽室与光路的集成[76]

    Figure 14.  Horizontally integrated design for a chip-scale atomic clock physics package: (a) Schematic of physics package and (b) photograph of vapor cell integrated into optical path[76].

    图 15  高度集成化的原子芯片量子陀螺仪构想[77]

    Figure 15.  Futuristic visions of highly integrated atom chips for quantum gyroscope[77].

    图 16  C-SCAN的概念图[78]

    Figure 16.  Schematic scheme of C-SCAN[78].

    图 17  美国DARPA的A-PHI计划框架

    Figure 17.  Framework of A-PHI of DARPA.

    图 18  哈佛大学提出的直线形宏观磁导引等效“8”字形的闭合回路冷原子干涉陀螺仪[83]

    Figure 18.  Schematic of a moving-guide with a ‘folded figure 8’ configuration for creating an atom gyroscope with multiple-turn interfering paths by Harvard University[83].

    图 19  美国弗吉尼亚大学基于芯片上闭合环形原子波导实现BEC干涉与转动测量[89]

    Figure 19.  The rotational information experimental results of BEC atomic interferometry based on Sagnac effects by University of Virginia[89].

    图 20  基于原子芯片的喷泉式重力仪[91]

    Figure 20.  Atom-chip fountain gravimeter[91].

    图 21  用于量子模拟的FePt永磁体纳米磁晶格原子芯片[96]

    Figure 21.  The magnetic potential in arbitrary units above an magnetized patterned layer of FePt[96].

    图 22  联邦物理技术研究院和汉诺威大学合作报道的离子阱芯片[97]

    Figure 22.  Multilayer ion trap chip by Germany[97].

    图 23  JPL和NASA发射到空间站的原子芯片[103,104]

    Figure 23.  Atom chip launch to the space station by JPL and NASA[103,104].

    表 1  基于原子芯片的部分应用

    Table 1.  Applications based on atom chips.

    应用类型应用领域
    基础物理研究国家安全国民经济
    原子陀螺仪航空、航天、航海、
    潜艇、导弹导航
    自动驾驶, 手机定位导航
    原子加速度计广义相对论等效原理验证、行星科学航空、航天、航海、
    潜艇、导弹导航
    自动驾驶, 手机导航
    原子干涉重力仪万有引力常数测试导航煤、石油、天然气等资源勘探、
    地下遗迹探测、手机手势识别
    量子计算和量子模拟基础量子物理问题研究密码破译, 信息安全高性能计算
    芯片级原子钟广义相对论等效原理验证、引力波探测、
    暗物质探测、精细结构常数变化测试
    授时, 航空航天地貌测绘等
    芯片级原子磁力计潜艇探测矿石探测、人体健康检测
    DownLoad: CSV
    Baidu
  • [1]

    Schmiedmayer J 1995 Phys. Rev. A 52 R13Google Scholar

    [2]

    Schmiedmayer J 1995 Appl. Phys. B 60 169

    [3]

    Reichel J, Hänsel W, Hänsch T 1999 Phys. Rev. Lett. 83 3398Google Scholar

    [4]

    Hänsel W, Reichel J, Hommelhoff P, Hänsch T 2001 Phys. Rev. A 64 063607Google Scholar

    [5]

    Fortagh J, Zimmermann C 2007 Rev. Mod. Phys. 79 235Google Scholar

    [6]

    Eriksson S, Trupke M, Powell H F 2005 Eur. Phys. J. D 35 135

    [7]

    Trupke M, Goldwin J, Darquié B 2007 Phys. Rev. Lett. 99 063601

    [8]

    Helsby S, Corbari C, Ibsen M, Horak P, Kazansky P 2007 Phys. Rev. A 75 013618

    [9]

    Mukai T, Hufnagel C, Kasper A, Meno T, Tsukada A, Semba K, Shimizu F 2007 Phys. Rev. Lett. 98 260407Google Scholar

    [10]

    Pollock S, Cotter J, Laliotis A, Hinds E 2009 Opt. Express 17 14109

    [11]

    印建平 2012 原子光学: 基本概念、原理、技术及其应用 (上海: 上海交通大学出版社)

    Yin J P 2012 Atomic Optics: Basic Concepts, Principles, Techniques and Their Applications (Shanghai: Shanghai Jiao Tong University Press) (in Chinese)

    [12]

    Ketterle W, Durfee D, Stamper-Kurn D 1999 Proceedings of the International School of Physics, Varenna, Italy, April, 1999

    [13]

    Pritchard D E 1983 Phys. Rev. Lett. 51 1336Google Scholar

    [14]

    Cornell E A, Monroe C, Wieman C E 1991 Phys. Rev. Lett. 67 2439Google Scholar

    [15]

    Ketterle W, Pritchard D E 1992 Phys. Rev. A 46 4051Google Scholar

    [16]

    Petrich W, Anderson M H, Ensher J R 1995 Phys. Rev. Lett. 74 3352Google Scholar

    [17]

    柯敏, 李晓林, 王育竹 2005 物理学进展 25 48Google Scholar

    Ke M, Li X L, Wang Y Z 2005 Progress Phys. 25 48Google Scholar

    [18]

    Cassettari D, Chenet A, Folman R 2000 Appl. Phys. B 70 721

    [19]

    Reichel J, Hänsel W, Hommelhoff P 2001 Appl. Phys. B 72 81

    [20]

    Hänsel W 2000 Ph. D. Dissertation (Germany: Ludwig-Maximilians-Universität München)

    [21]

    Weinstein J D, Libbrecht K G 1995 Phys. Rev. A 52 4004Google Scholar

    [22]

    Folman R, Krüger P, Schmiedmayer J, Denschlag J, Henkel C 2002 Adv. Atom. Mol. Opt. Phy. 48 26

    [23]

    Hänsel W, Reichel J, Hommelhoff P, Hänsch T W 2001 Phys. Rev. Lett. 86 608Google Scholar

    [24]

    Long R, Rom T, Hänsel W, Hänsch T W, Reichel J 2005 Eur. Phys. J. D 35 125Google Scholar

    [25]

    Roy R, Condylis P C, Prakash V 2017 Sci. Rep. 7 1

    [26]

    Hu J, Yin J 2002 J. Opt. Soc. Am. B 19 2844Google Scholar

    [27]

    胡建军, 印建平 2005 光学学报 25 412Google Scholar

    Hu J J, Yin J P 2005 Acta Optic. Sin. 25 412Google Scholar

    [28]

    周锋 2018 博士学位论文 (武汉: 华中科技大学)

    Zhou F 2018 Ph. D. Dissertation (Wuhan: Huazhong University of Science and Technology)(in Chinese)

    [29]

    Pollock S, Cotter J P, Laliotis A 2011 New. J. Phys. 13 215

    [30]

    Nshii C C, Vangeleyn M, Cotter J P, Griffin P F, Hinds E A, Ironside C. N, See P, Sinclair A G, Riis E, Arnold A. S 2013 Nat. Nanaotechnol. 8 321

    [31]

    Mcgilligan J P, Griffin P F, Riis E, Arnold A S 2016 J. Opt. Soc. Am. B 33 6

    [32]

    周晟, 李沫, 赵杰, 姜伟 2017 量子信息技术与应用研讨会中国 北京 2017年6月15—16日

    Zhou S, Li M, Zhao J, Jiang W 2017 Workshop on Quantum Information Technology and Applications, Beijing, China, June 15–16, 2017 (in Chinese)

    [33]

    McGilligan J P, Griffin P F, Elvin R, Ingleby S J, Riis E, Arnold A S 2017 Sci. Rep. 7 384Google Scholar

    [34]

    Lingxiao Z, Xuan L, Basudeb S 2020 Sci. Adv. 6 1

    [35]

    Muller D, Anderson D Z, Grow R J, Schwindt P D, Cornell E A 1999 Phys. Rev. Lett. 83 5104

    [36]

    Thywissena J H, Olshanii M, Zabow G, DrndiC M, Johnsonb K S, Westervelt R M, Prentiss M 1999 Eur. Phys. J. D 7 361

    [37]

    Dekker N H, Lee C S, Lorent V, Thywissen J H, Smith S P, Drndic M, Westervelt R M, Prentiss M 2000 Phys. Rev. Lett. 84 1124Google Scholar

    [38]

    Baker P M, Stickney J A, Squires M B, Scoville J A, Carlson E J, Buchwald W R, Miller S M 2009 Phys. Rev. A 80 063615Google Scholar

    [39]

    Lesanovsky I, Schumm T, Hofferberth S, Andersson L M, Krüger P, Schmiedmayer J 2006 Phys. Rev. A 73 033619Google Scholar

    [40]

    凌云龙, 汪川, 张海潮 2020 69 100301Google Scholar

    Ling Y L, Wang C, Zhang H C 2020 Acta Phys. Sin. 69 100301Google Scholar

    [41]

    Horne S A, Sackett C A, 2017 Rev. Sci. Instrum. 88 013102Google Scholar

    [42]

    Esteve J, Schumm T, Trebbia J B, Bouchoule I, Aspect A, Westbrook C I 2005 Eur. Phys. J. D 35 141

    [43]

    Hommelhoff P, Hänsel W, Steinmetz T, Hänsch T W, Reichel J 2005 New J. Phys. 7 1Google Scholar

    [44]

    Shin Y, Sanner C, Jo G B, Pasquini T A, Saba M, Ketterle W, Pritchard D E 2005 Phys. Rev. A 72 021604Google Scholar

    [45]

    Treutlein P, Hänsch T W, Reichel J, Negretti A, Cirone M A, Calarco T 2006 Phys. Rev. A 74 022312Google Scholar

    [46]

    Böhi P, Riedel M F, Hoffrogge J, Reichel J, Hansch T W, Treutlein P 2009 Nat. Phys. 5 592Google Scholar

    [47]

    Cassettari D, Hessmo B, Folman R, Maier T, Schmiedmayer J 2000 Phys. Rev. Lett. 85 5483Google Scholar

    [48]

    Müller D, Cornell E A, Prevedelli M, Schwindt P D D, Zozulya A, Anderson D Z 2000 Opt. Lett. 25 1382Google Scholar

    [49]

    Colombe Y, Knyazchyan E, Morizot O, Mercier B, Lorent V, Perrin H 2004 Euro. Phys. Lett. 67 593Google Scholar

    [50]

    Levy S, Lahoud E, Shomroni I, Steinhauer J 2007 Nature 449 579Google Scholar

    [51]

    Zobay O, Garraway B M 2001 Phys. Rev. Lett. 86 1195Google Scholar

    [52]

    Kim S J, Yu H, Gang S T, Kim J B 2017 Appl. Phys. B 123 154

    [53]

    Johnson K S, Chu A P, Berggren K K, Prentiss M 1996 Opt. Commun. 126 326Google Scholar

    [54]

    Wang Y J, Anderson D Z, Bright V M, Cornell E A, Diot Q, Kishimoto T, Prentiss M, Saravanan R. A, Segal S R, Wu S 2005 Phys. Rev. Lett. 94 090405

    [55]

    Leung V Y F, Pijn D R M, Schlatter H, Torralbo-Campo L, La Rooij A L, Mulder G B, Naber J, Soudijn M L, Tauschinsky A, Abarbanel C, Hadad B, Golan E, Folman R, Spreeuw R J C 2014 Rev. Sci. Instrum. 85 053102Google Scholar

    [56]

    West A D, Weatherill K J, Hayward T J, Fry P W, Schrefl T G, Mike R J, Adams C S, Allwood D A, Hughes I G 2012 Nano. Lett. 12 4065

    [57]

    Folman R, Treutlein P, Schmiedmayer J 2011 Atom Chip Fabrication. In Atom Chips (Weinheim: Reichel J, Vuletić V) p61

    [58]

    Lloyd J R, Clement J J, 1996 Thin Solid Films 262 135

    [59]

    Wei B Q, Vajtai R, Ajayan P M 2001 Appl. Phys. Lett. 79 1172Google Scholar

    [60]

    Peano V, Thorwart M, Kasper A, Egger R 2005 Appl. Phys. B 81 1075

    [61]

    Petrov P G, Machluf S, Younis S, Macaluso R, David T, Hadad B, Japha Y, Keil M, Joselevich E, Folman R 2009 Phys. Rev. A. 79 043403Google Scholar

    [62]

    Subramaniam C, Yamada T, Kobashi K, Sekiguchi A, Futaba D N, Yumura, M, Hata K 2013 Nat. Commun. 4 2202Google Scholar

    [63]

    罗小嘉, 李儒, 李沫, 姜伟, 周晟, 王旺平, 陈飞良 2020 中国专利 CN109637975 A [2020-09-18]

    Luo X J, Li R, Li M, Jiang W, Zhou S, Wang W P, Chen F L 2020 Chinese Patent CN109637975 A [2020-09-18] (in Chinese)

    [64]

    Hohenester U, Eiguren A, Scheel S, Hinds E 2007 Phys. Rev. A. 76 33618Google Scholar

    [65]

    Bernon S, Hattermann H, Bothner D, Martin K, Patrizia W, Florian J, Daniel C, Matthias K, Reinhold K, Dieter K, József F 2013 Nat. Commun. 4 1

    [66]

    Günther A, Kemmler M, Kraft S, Vale S J, Zimmermann C, Fortagh J 2005 Phys. Rev. A. 71 063619Google Scholar

    [67]

    Chuang H, Lin Y, Lin Y, Huang C 2014 J. Micromech. Microeng. 24 045013Google Scholar

    [68]

    王旺平, 李沫, 陈飞良, 周晟, 姜伟, 赵杰, 张健 2019 中国专利 CN106847715 [2019-08-20]

    Wang W P, Li M, Chen F L, Zhou S, Jiang W, Zhao J, Zhang J 2019 Chinese Patent CN 106847715 [2019-08-20] (in Chinese)

    [69]

    Jenks W G, Sadeghi S S H, Wikswo J P 1997 J. Phys. D: Appl. Phys. 30 293Google Scholar

    [70]

    Berggren S, Palacios A 2014 Eur. Phys. J. B 87 1Google Scholar

    [71]

    Volk M, Whitlock S, Wolff C H, Hall B V, Sidorov A I 2008 Rev. of Sci. Instr. 79 023702Google Scholar

    [72]

    Wildermuth S, Hofferberth S, Lesanovsky I, Haller E, Andersson L M, Groth S, Bar-Joseph I, Krüger P, Schmiedmayer J 2005 Nature 435 440Google Scholar

    [73]

    柯敏, 2009 博士学位论文(上海: 中国科学院上海光机所)

    Ke M 2009 Ph. D. Dissertation (Shanghai: Institute of Optics and Fine Mechanics, the Chinese Academy of Sciences) (in Chinese)

    [74]

    Folman R, Krüger P, Cassettari D, Hessmo B, Maier T, Schmiedmaye J 2000 Phys. Rev. Lett. 84 4749Google Scholar

    [75]

    Kohnen M, Succo M, Petrov P G, Nyman R A, Trupke M, Hinds E A 2010 Nature Photon. 5 35

    [76]

    Kitching J, 2018 Appl. Phys. Rev. 5 031302Google Scholar

    [77]

    Keil M, Amit O, Zhou S, Groswasser D, Japha Y, Folman R 2016 J. Mod. Optic. 63 1840Google Scholar

    [78]

    Shkel A 2013 Gps World 24 8

    [79]

    程俊, 张敬芳, 许忻平, 蒋小军, 李晓林, 张海潮, 王育竹 2016 65 060302Google Scholar

    Cheng J, Zhang J F, Xu X P, Jiang X J, Li X L, Zhang H C, Wang Y Z 2016 Acta Phys. Sin. 65 060302Google Scholar

    [80]

    颜辉, 2009 博士学位论文 (武汉: 中国科学院武汉物理与数学研究所)

    Yan H 2009 Ph. D. Dissertation (Wuhan: Institute of Physics and Mathematics, Chinese Academy of Sciences) (in Chinese)

    [81]

    Schumm T, Hofferberth S, Andersson L M, Wildermuth S, Groth S, Bar-Joseph I, Schmiedmayer J, Krüger P 2005 Nat. Phys. 1 57Google Scholar

    [82]

    Jo G B, Shin Y, Will S, Pasquini T A, Saba M, Ketterle W, Pritchard D E, Vengalattore M, Prentiss M 2006 Phys. Rev. Lett. 98 030407

    [83]

    Wu S, Su E, Prentiss M 2007 Phys. Rev. Lett. 99 173201Google Scholar

    [84]

    Burke J H T, Sackett C A 2009 Phys. Rev. A 80 061603Google Scholar

    [85]

    Yan H 2012 Appl. Phys. Lett. 101 194102

    [86]

    Muntinga H, Ahlers H, Krutzik M, Wenzlawski A, Arnold S, Becker D, Bongs K, Dittus H, Duncker H, Gaaloul N, Gherasim C, Giese E, Grzeschik C, Hänsch T W, Hellmig O, Herr W, Herrmann S, Kajari E, Kleinert S, Lämmerzahl C, Lewoczko-Adamczyk W, Malcolm J, Meyer N, Nolte R, Peters A, Popp M, Reichel J, Roura A, Rudolph J, Schiemangk M, Schneider M, Seidel S T, Sengstock K, Tamma V 2013 Phys. Rev. Lett. 110 093602Google Scholar

    [87]

    Rudolph J, Herr W, Grzeschik C, Sternke T, Grote A, Popp M, Becker D, Müntinga H, Ahlers H, Peters A, Lammerzahl C, Sengstock K, Gaaloul N, Ertmer W, Rasel E M 2015 New. J. Phys. 17 065001Google Scholar

    [88]

    Wu X, Zi F, Dudley J, Bilotta R J, Canoza P, Müller H 2017 Optica 4 1545Google Scholar

    [89]

    Moan E R, Horne R A, Arpornthip T, Luo Z, Fallon A J, Berl S J, Sackett C A 2020 Phys. Rev. Lett. 124 120403Google Scholar

    [90]

    Bongs K, Holynski M, Vovrosh J, Bouyer P, Condon G, Rasel E, Schubert C, Schleich W P, Roura A 2019 Nat. Rev. Phys. 1 731Google Scholar

    [91]

    Abend S, Gebbe M, Gersemann M, Ahlers H, Müntinga H, Giese E, Gaaloul N, Schubert C, Lammerzahl C, Ertmer W, Schleich W P, Rasel E M 2016 Phys. Rev. Lett. 117 203003

    [92]

    Wu X, Pagel Z, Malek B S, Nguyen T H, Zi F, Scheirer D S, Müller H 2019 Sci. Adv. 5 aax0800Google Scholar

    [93]

    Schmiedmayer J, Folman R, Calarco T 2002 J. Mod. Optic. 49 1375Google Scholar

    [94]

    Trupke M, Metz J, Beige A, Hinds E A 2007 J. Mod. Optic. 54 1639Google Scholar

    [95]

    Houck A A, Türeci, Hakan E, Koch J 2012 Nat. Phys. 8 292Google Scholar

    [96]

    La Rooij A L, Den Heuvell H B, Spreeuw R J, Spreeuw R J C 2019 Phys. Rev. A 99 2

    [97]

    Bautista-Salvador A, Zarantonello G, Hahn H, Preciado-Grijalva A, Morgner J, Wahnschaffe M, Ospelkaus C 2019 New. J. Phys. 21 043011Google Scholar

    [98]

    Ockeloen C F, Schmied R, Riedel M F, Treutlein P 2013 Phys. Rev. Lett. 111 143001Google Scholar

    [99]

    Carter J D, Cherry O, Martin J D 2013 Phys. Rev. A 86 053401

    [100]

    Riedel M, Böhi P, Li Y, Hänsch T W, Sinatra A, Treutlein P 2010 Nature 464 1170Google Scholar

    [101]

    Aveline D C, Williams J R, Elliott E R, Dutenhoffer C, Thompson R J 2020 Nature 582 193Google Scholar

    [102]

    Tajik M, Rauer B, Schweigler T, Cataldini F, Schmiedmayer J 2019 OPT Express 27 33474Google Scholar

    [103]

    ()https://scienceandtechnology.jpl.nasa.gov/good-bad-and-quantum-nasa-jpl%E2%80%99 s-cold-atom-laboratory [EB/OL]. 2019-02-06

    [104]

    Thompson R, Sengupta A, Aveline D, Kohel J [EB/OL] http://paragon.myvnc.com/TheParagon-Space/TheParagon-Space/New_Space/ScienceTheories/Cold%20 Particles-Theories.pdf

  • [1] Cheng Yong-Jun, Dong Meng, Sun Wen-Jun, Wu Xiang-Min, Zhang Ya-Fei, Jia Wen-Jie, Feng Cun, Zhang Rui-Fang. Ultra-high vacuum measurement based on 7Li cold atoms manipulation. Acta Physica Sinica, 2024, 73(22): 220601. doi: 10.7498/aps.73.20241215
    [2] Zhai Hui. Non-equilibrium quantum many-body physics with ultracold atoms. Acta Physica Sinica, 2023, 72(23): 230701. doi: 10.7498/aps.72.20231375
    [3] Zhang Su-Zhao, Sun Wen-Jun, Dong Meng, Wu Hai-Bin, Li Rui, Zhang Xue-Jiao, Zhang Jing-Yi, Cheng Yong-Jun. Vacuum pressure measurement based on 6Li cold atoms in a magneto-optical trap. Acta Physica Sinica, 2022, 71(9): 094204. doi: 10.7498/aps.71.20212204
    [4] Wu Bin, Cheng Bing, Fu Zhi-Jie, Zhu Dong, Wu Li-Ming, Wang Kai-Nan, Wang He-Lin, Wang Zhao-Ying, Wang Xiao-Long, Lin Qiang. Influence of Raman laser sidebands effect on the measurement accuracy of cold atom gravimeter. Acta Physica Sinica, 2019, 68(19): 194205. doi: 10.7498/aps.68.20190581
    [5] He Tian-Chen, Li Ji. Measurement of gravity acceleration by cold atoms in a harmonic trap using Kapitza-Dirac pulses. Acta Physica Sinica, 2019, 68(20): 203701. doi: 10.7498/aps.68.20190749
    [6] Liu Ji-Cai, Cheng Fei, Zhao Ya-Nan, Guo Fen-Fen. Atom-subjected optical dipole force exerted by femtosecond laser field. Acta Physica Sinica, 2019, 68(3): 033701. doi: 10.7498/aps.68.20182016
    [7] Wu Bin, Cheng Bing, Fu Zhi-Jie, Zhu Dong, Zhou Yin, Weng Kan-Xing, Wang Xiao-Long, Lin Qiang. Measurement of absolute gravity based on cold atom gravimeter at large tilt angle. Acta Physica Sinica, 2018, 67(19): 190302. doi: 10.7498/aps.67.20181121
    [8] Lu Jun-Fa, Zhou Qi, Pan Xiao-Qing, Yin Jian-Ping. Theoretical and experimental study of a novel double-well optical dipole trap for two-species of cold atoms or molecules. Acta Physica Sinica, 2013, 62(23): 233701. doi: 10.7498/aps.62.233701
    [9] Xiong Zong-Yuan, Yao Zhan-Wei, Wang Ling, Li Run-Bin, Wang Jin, Zhan Ming-Sheng. Control of atomic path in projectile cold atom gyroscope. Acta Physica Sinica, 2011, 60(11): 113201. doi: 10.7498/aps.60.113201
    [10] Lu Jun-Fa, Zhou Qi, Yin Jian-Ping, Ji Xian-Ming. A combinative triple-well optical trap for three-species cold atoms or molecules. Acta Physica Sinica, 2011, 60(6): 063701. doi: 10.7498/aps.60.063701
    [11] Lu Xiang-Dong, Li Tong-Bao, Ma Yan, Wang Li-Dong. Investigation of atom-optical properties of laser focused Cr atomic deposition. Acta Physica Sinica, 2009, 58(12): 8205-8211. doi: 10.7498/aps.58.8205
    [12] Shi Tao, Yan Hui, Yang Guo-Qing, Wang Jin, Zhan Ming-Sheng. An application of digital signals in an atom Chip. Acta Physica Sinica, 2009, 58(3): 1586-1589. doi: 10.7498/aps.58.1586
    [13] Ji Xian-Ming, Lu Jun-Fa, Mu Ren-Wang, Yin Jian-Ping. A novel all-optical surface atomic (molecular) funnel. Acta Physica Sinica, 2007, 56(4): 2061-2066. doi: 10.7498/aps.56.2061
    [14] Li Xiao-Lin, Ke Min, Yan Bo, Tang Jiu-Yao, Wang Yu-Zhu. A Z-trap in an atom chip for trapping neutral 87Rb atoms. Acta Physica Sinica, 2007, 56(11): 6367-6372. doi: 10.7498/aps.56.6367
    [15] Jiang Kai-Jun, Li Ke, Wang Jin, Zhan Ming-Sheng. Dependence of number of trapped atoms on the experimental parameters of Rb magneto-optical trap. Acta Physica Sinica, 2006, 55(1): 125-129. doi: 10.7498/aps.55.125
    [16] Lu Jun-Fa, Ji Xian-Ming, Yin Jian-Ping. Controllable four-well optical trap for cold atoms or molecules. Acta Physica Sinica, 2006, 55(4): 1740-1750. doi: 10.7498/aps.55.1740
    [17] Tang Lin, Huang Jian-Hua, Duan Zheng-Lu, Zhang Wei-Ping, Zhou Zhao-Ying, Feng Yan-Ying, Zhu Rong. Quantum tunnelling time of cold atom passing through a laser beam. Acta Physica Sinica, 2006, 55(12): 6606-6611. doi: 10.7498/aps.55.6606
    [18] Geng Tao, Yan Shu-Bin, Wang Yan-Hua, Yang Hai-Jing, Zhang Tian-Cai, Wang Jun-Min. Temperature measurement of cold atoms in a cesium magneto-optical trap by means of short-distance time-of-flight absorption spectrum. Acta Physica Sinica, 2005, 54(11): 5104-5108. doi: 10.7498/aps.54.5104
    [19] Ji Xian-Ming, Yin Jian-Ping. Controllable doublewell optical trapfor cold atoms or molecules. Acta Physica Sinica, 2004, 53(12): 4163-4172. doi: 10.7498/aps.53.4163
    [20] Luo You-Hua, Huang Zheng, Wang Yu-Zhu. . Acta Physica Sinica, 2002, 51(8): 1706-1710. doi: 10.7498/aps.51.1706
Metrics
  • Abstract views:  15660
  • PDF Downloads:  735
  • Cited By: 0
Publishing process
  • Received Date:  21 September 2020
  • Accepted Date:  04 November 2020
  • Available Online:  15 January 2021
  • Published Online:  20 January 2021

/

返回文章
返回
Baidu
map