Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

State-of-the-art passive protection technologies of lunar dust

Mu Meng Zhang Hai-Yan Wang Xiao Li Cun-Hui Zhang Xiao-Ping Wang Ming-Zhi Zhu Ying-Min Gao Li-Bo Zhao Cheng-Xuan Lu Yang Wang Wei-Dong

Citation:

State-of-the-art passive protection technologies of lunar dust

Mu Meng, Zhang Hai-Yan, Wang Xiao, Li Cun-Hui, Zhang Xiao-Ping, Wang Ming-Zhi, Zhu Ying-Min, Gao Li-Bo, Zhao Cheng-Xuan, Lu Yang, Wang Wei-Dong
科大讯飞翻译 (iFLYTEK Translation)
PDF
HTML
Get Citation
  • In lunar circumstances, lunar dust has special properties such as conductivity, which can cause lunar dust to easily adhere to the surface of detection equipment. And this behavior will cause the equipment to fail to function properly and thus affecting the lunar exploration missions. According to the researches of lunar dust protection, in this article the passive protection technology of lunar dust is mainly analyzed. Firstly, the lunar-dust caused adverse factors and effects on detection equipment are analyzed. Then the mechanism of lunar dust adhesion is studied, and the theoretical basis of the two main forces that cause adhesion is discussed. Secondly, the main methods of reducing the adhesion of lunar dust particles are systematically explained according to different adhesion mechanisms, and the latest progress of the passive protection technology of the lunar dust is introduced in detail. Combined with the different protection methods, the method of testing the adhesion of the lunar dust is summarized. These studies lay the foundation for effectively protecting the surface of detection equipment from being affected by the lunar dust.
      Corresponding author: Li Cun-Hui, licunhui@spacechina.com ; Wang Wei-Dong, wangwd@mail.xidian.edu.cn
    • Funds: Project supported by the Fund of the Science and Technology on Vacuum Technology and Physics Laboratory, China (Grant No. HTKJ2019KL510007), the National Natural Science Foundation of China (Grant Nos. 42004157, 12075108), and the Key R&D Program of Shaanxi Province, China (Grant No. 2020GY-252)
    [1]

    Zhang H, Wang Y, Chen L, Zhang H, Li C, Zhuang J, Li D, Wang Y, Yang S, Li X, Wang W 2020 Sci. China Ser. E: Technol. Sci. 63 520Google Scholar

    [2]

    裴照宇, 侯军, 王琼 2020 红外与激光工程 49 19Google Scholar

    Pei Z Y, Hou J, Wang Q 2020 Infrared Laser Eng. 49 19Google Scholar

    [3]

    Gaier J R 2011 SAE Int. J. Aerosp. 4 279Google Scholar

    [4]

    Mcallister F 1972 NASA Technical Report TN D-6737

    [5]

    Morea S F 1992 Conference on Lunar Bases and Space Activities of the 21st Century Houston, USA, April 5–7, 1988 p619

    [6]

    Buhler C R, Calle C I, Clements J S, Mantovani J, Ritz M I 2007 IEEE Aerospace Conference Big Sky, USA, March 3–10, 2007 p1

    [7]

    潘万竞 2016 硕士学位论文 (哈尔滨: 哈尔滨工业大学)

    Pan W J 2016 M. S. Thesis (Harbin: Harbin Institute of Technology) (in Chinese)

    [8]

    Sun Y, Liu J, Zheng Y, Xiao C, Wan B, Guo L, Wang X, Bo W 2017 J. Chin. Med. Assoc. 81 133Google Scholar

    [9]

    Walton O R 2007 NASA Technical Report 214685

    [10]

    Berkebile S, Street K, Gaier J 2011 3rd AIAA Atmospheric Space Environments Conference Honolulu, USA, June 27–30, 2011 p3675

    [11]

    Greenberg P S, Chen D R, Smith S A 2007 NASA Technical Report 214956

    [12]

    Yang L, Jaesung P, Darren S, Eddy H, Lawrence A T 2008 J. Aerosp. Eng. 21 272Google Scholar

    [13]

    Heavens N G, Richardson M I, Kleinböhl A 2011 J. Geophys. Res.Planets 4 116Google Scholar

    [14]

    Grün E, Horanyi M, Sternovsky Z 2011 Planet. Space Sci. 59 1672Google Scholar

    [15]

    Horanyi M 1996 Annu. Rev. Astron. Astrophys. 34 383Google Scholar

    [16]

    Rima J I, Daniel J, Luis A, Benjamin F, Monhammed A 2019 Sol. Energy Mater. Sol. Cells 191 413Google Scholar

    [17]

    Dzyaloshinskii IE, Lifshitz EM, Pitaevskii LP 1961 Adv. Phys. 10 165Google Scholar

    [18]

    Hamed A, Geoffrey E, Roberto M A 2016 Powder Technol. 299 9Google Scholar

    [19]

    Avijit K, Shuvojit P, Soumitro B, Banerjee A 2019 Appl. Phys. Lett. 115 123701Google Scholar

    [20]

    Valmacco V, Elzbieciak-Wodka M, Besnard C, Maroni P, Trefalt G, Borkovec M 2016 Nanoscale Horiz. 1 325Google Scholar

    [21]

    Holger G, Miltiadis V P 2017 Powder Technol. 322 185Google Scholar

    [22]

    Javid M, Amin K M, Vahid A, Shokoufeh A, Matthew S 2019 J. Electrostat. 97 58Google Scholar

    [23]

    Wang J, Wang X, Zhu T, Zhao Y 2018 J. Electrostat. 94 14Google Scholar

    [24]

    Zhao Y, Fang J, Wang Y, Shen Y, Wang C 2019 Powder Technol. 357 33Google Scholar

    [25]

    Zhu K, Rao S M, Huang H Q, Wang C H, Matsusaka S, Masuda H 2004 Chem. Eng. Sci. 59 3201Google Scholar

    [26]

    Nein M E, Davis B 1991 Proc. SPIE 98 110Google Scholar

    [27]

    Polizos G, Sharma J K, Smith D B, Tuncer E, Park J, Voylov D, Sololov A P, Meyer H M, Aman M 2018 Sol. Energy Mater. Sol. Cells 188 255Google Scholar

    [28]

    薛伟, 郑蓓蓉, 张淼, 解国新, 王权 2009 4 2518Google Scholar

    Xue W, Zheng R R, Zhang M, Xie G X, Wang Q 2009 Acta Phys. Sin. 4 2518Google Scholar

    [29]

    颜晨曦, 宋娟娟, 曹建平 2019 电镀与精饰 41 14Google Scholar

    Yan C X, Song J J, Cao J P 2019 Plat. Finish. 41 14Google Scholar

    [30]

    Zhan W, Wang W, Xiao Z, Yu X, Zhang Y 2018 Surf. Coat. Technol. 356 123Google Scholar

    [31]

    Amiriafshar M, Rafieazad M, Duan X, AliNasiri A 2020 Surf. Interfaces 100526Google Scholar

    [32]

    Peillon S, Autricque A, Redolfi M, Stancu C, Pluchery O 2019 J. Aerosol Sci. 137 105431Google Scholar

    [33]

    Moutinho H R, Jiang C S, To B, Perkins, Muller M, Al-Jassim M M, Simpson L 2017 Sol. Energy Mater. Sol. Cells 172 145Google Scholar

    [34]

    Wu S, Altenried S, Zogg A, Zuber F, Maniura K, Ren Q 2018 ACS Omega 3 6456Google Scholar

    [35]

    Li D, Li N, Su X, Liu K, Ji P, Wang B 2019 Appl. Surf. Sci. 489 648Google Scholar

    [36]

    Ji Z, Bao L, Wang H, Chen R 2017 Mater. Lett. 207 21Google Scholar

    [37]

    Gotlib-Vainstein K, Gouzman I, Girshevitz O, Bolker A, Atar N, Grossman E, Sukenlk, Chaim N 2015 ACS Appl. Mater. Interfaces 7 3539Google Scholar

    [38]

    Du Q, Ai J, Qin Z, Liu J, Zeng X 2018 J. Mater. Process. Technol. 251 188Google Scholar

    [39]

    Critchlow G, Webb P, Tremlett C, Brown K 2000 Int. J. Adhes. Adhes. 20 113Google Scholar

    [40]

    Van Dam J P B, Abrahami S T, Yilmaz A, Gonzalez G, Trrryn H 2020 Int. J. Adhes. Adhes. 96 102450Google Scholar

    [41]

    Chen J, Qi A, Rodriguez R D, Sheremmet E, Wang Y, Sowade E, Baumann R R, Feng Z 2019 Appl. Surf. Sci. 487 503Google Scholar

    [42]

    Quan Y Y, Zhang L Z 2017 Sol. Energy Mater. Sol. Cells 160 382Google Scholar

    [43]

    Chi F T, Liu D J, Wu H Y, Lei J H 2019 Sol. Energy Mater. Sol. Cells 200 109939Google Scholar

    [44]

    Maharjan S, Liao K, Wang A, Barton K, Curran S A 2020 Mater. Chem. Phys. 239 122000Google Scholar

    [45]

    Cui H, Zheng Z 2019 Thin Solid Films 691 137612Google Scholar

    [46]

    Choi D Y, Jung S H, Song D K, An E J, Park D, Kim T O, Jung J H, Lee H M 2017 ACS Appl. Mater. Interfaces 9 16495Google Scholar

    [47]

    Masuda S, Fujibayashi K, Ishida K, Inaba H 1972 Electr. Eng. Jpn. 92 43Google Scholar

    [48]

    Kawamoto H, Uchiyama M, Cooper B L, McKay D S 2011 J. Electrostat. 69 370Google Scholar

    [49]

    Kawamoto H, Guo B 2018 J. Electrostat. 91 28Google Scholar

    [50]

    Yilbas B S, Al-Qahtani H, Al-Sharafi A, Bahattab S, Kassas M 2019 Sci. Rep. 9 8703Google Scholar

    [51]

    Kohli R 2019 Developments in Surface Contamination and Cleaning: Applications of Cleaning Techniques (Vol. 11) (Amsterdam: Elsevier) p391

    [52]

    Manyapu K K, De Leon P, Peltz L, Gaier J R, Waters D 2017 Acta Astronaut. 137 472Google Scholar

    [53]

    Kavya K M, Leora P, Pablo D L 2019 J. Space Saf. Eng. 6 248Google Scholar

    [54]

    Richard D, Norman J W, Maria K 2018 48th International Conference on Environmental Systems. Albuquerque, New Mexico, July 8-12, 2018 p183

    [55]

    Jiang J, Lu Y, Zhao H, Wang L 2019 Acta Astronaut. 165 17Google Scholar

    [56]

    Lu Y, Jiang J, Yan X, Wang L 2019 Smart Mater. Struct. 28 085010Google Scholar

    [57]

    Zhang J, Zhu C, Lv J, Wei C, Feng J 2018 ACS Appl. Mater. Interfaces 10 40219Google Scholar

    [58]

    Crowder M S, Stover R, Lawitzke A, Devaud G, Dove A, Wang X 2010 Optical System Contamination: Effects, Measurements, and Control San Diego, USA, August 10, 2008 p77940G

    [59]

    Nguyen T T, Rambanapasi C, Boer A H D, Fruhkubj H W, Ven P, Vries J, Busscher H, Maarschalk K 2010 Int. J. Pharm. 393 89Google Scholar

    [60]

    徐阳, 齐振一, 王志浩, 田东波 2019 表面技术 48 167Google Scholar

    Xu Y, Qi Z Y, Wang Z H, Tian D P 2019 Surf. Technol. 48 167Google Scholar

    [61]

    Gaier J, Waters D L, Misconin R, Banks B, Crowder M 2011 41st International Conference on Environmental System Portland, Oregon, July 17-21, 2011 p5183

    [62]

    孙旗霞, 杨宁宁, 蔡小兵, 胡更开 2012 力学进展 6 113Google Scholar

    Sun Q X, Yang N N, Cai X B, Hu G K 2012 Adv. Mech. 6 113Google Scholar

    [63]

    Gaier J R, Jaworske D A 2007 AIP Conference Proc. 880 27Google Scholar

    [64]

    Kulvanich P, Stewart P 1987 Int. J. Pharm. 35 111Google Scholar

    [65]

    Booth S W, Newton J M 1987 J. Pharm. Pharmacol. 39 679Google Scholar

    [66]

    Salazar-Banda G R, Felicetti M A, Concalves J A S, Coury J R, Aguiar M L 2007 Powder Technol. 173 107Google Scholar

    [67]

    Markelonis A, Wang J S, Ullrich B U, Chien M W, Brown G J 2014 Appl. Nanoscience 5 457Google Scholar

    [68]

    Schulze H, Wahl B, Gottschalk G 1989 J. Colloid Interface Sci. 128 57Google Scholar

    [69]

    Kawamoto H, Seki K 2005 Trans. Jpn. Soc. Mech. Eng. C 71 1161Google Scholar

    [70]

    Kawamoto H 2012 Proceedings of Earth and Space Conference Shanghai, China, June 8–11, 2012 p94

    [71]

    王志浩, 白羽, 田东波, 李蔓 2015 装备环境工程 12 75Google Scholar

    Wang Z H, Bai Y, Tian D B, Li M 2015 Equip. Environ. Eng. 12 75Google Scholar

    [72]

    李青, 任德鹏, 王闯, 张熇 2018 航天器工程 27 137Google Scholar

    Li Q, Ren D P, Wang C, Zhang H 2018 Spacecraft Eng. 27 137Google Scholar

  • 图 1  Appllo任务中被月尘污染的宇航服 (a)宇航服整体污染情况; (b)宇航服局部污染情况[7]

    Figure 1.  Spacesuit contaminated by lunar dust during Apollo mission: (a) Overall pollution of spacesuit; (b) local contamination of spacesuit[7].

    图 2  不同形貌的20 μm月尘颗粒扫描电子显微镜(SEM)暗场像[12]

    Figure 2.  Various surface and shape features of 20 μm lunar dust particles via scanning electron microscope (SEM)[12].

    图 3  不同方式处理后的玻璃表面的黏附力 (a), (b)太阳能玻璃表面上的粒子组件的AFM图像; (c)用PDMS预处理的太阳能玻璃、太阳能玻璃、涂有纳米结构粒子组件的太阳能玻璃上的黏附力值; 在10个不同的区域进行测量, 值的误差小于10%, 灰色区域对应于将二氧化硅球从表面分离所需的能量[27]

    Figure 3.  Adhesion force of solar glass surface treated in different ways: (a), (b) AFM images of the particle assemblies on the solar glass surface; (c) adhesion force values on the surface of solar glass pretreated with PDMS, solar glass, and solar glass coated with nanostructured particle assemblies. Measurements were performed on ten different areas. The error in the values is less than 10%. The grey areas correspond to the energy required to separate a silica sphere from the surface[27].

    图 4  纳米结构涂层的制备及表面特征 (a)纳米结构涂层的制备; (b)—(e)在700 °C进行2 h相分离处理后的涂层SEM图像, 其中(b)酸预处理后的表面图像; (c)酸蚀刻处理后的表面低倍率图像和(d)高倍率图像; (e)热处理后的涂层的SEM图像[30]

    Figure 4.  Preparation and surface characteristics of nanostructured coatings. (a) Preparation of the nanostructured coatings. (b)–(e) SEM images of coatings after phase separation treatment at 700 °C for 2 h: (b) Image of the surface after acid pretreatment; (c) low-magnification and (d) high-magnification images of the surface after acid etching treatment; (e) SEM image of the coating after heat treatment[30].

    图 5  (a)接收样品、(b)喷砂样品和(c)研磨样品表面SEM图像; (d), (e), (f) EDX叠加在接收、喷砂、研磨样品的SEM图像; (g) 研磨样品(f)的高倍扫描电镜显微图; (h)涂Zn涂层的研磨样品截面图[31]

    Figure 5.  SEM micrographs taken from the surface of (a) as-received, (b) sand-blasted, and (c) ground samples. The EDX chemical concentration maps superimposed on the SEM images of the coated (d) as-received, (e) sand-blasted, and (f) ground surfaces. (g) Higher magnification SEM micrograph of the ground surface shown in (f). (h) SEM image showing the applied Zn coating cross-sectional view on the ground surface[31].

    图 6  表面粗糙度值不同时AFM针尖和SiO2球的附着力[33]

    Figure 6.  Adhesion of AFM tip and SiO2 ball with different surface roughness values[33].

    图 7  电容耦合放电等离子体中的刻蚀示意图

    Figure 7.  Schematic diagram of etching in capacitively coupled discharge plasma.

    图 8  具有自清洁和抗磨损的抗反射膜[36]

    Figure 8.  Anti-reflective film with self-cleaning and anti-wear[36].

    图 9  不同激光功率强度及强度处理的聚酰亚胺表面的水接触角[38] (a) 7.7 × 104 W/cm2, 40%; (b) 7.7 × 104 W/cm2, 60%; (c) 7.7 × 104 W/cm2, 90%; (d)前进角7.7 × 104 W/cm2, 90%; (e)滞后角7.7 × 104 W/cm2, 90%; (f) 1.0 × 106 W/cm2, –40%; (g) 1.0 × 106 W/cm2, 0%; (h) 1.0 × 106 W/cm2, 40%

    Figure 9.  Water contact angle of polyimide surface treated with different laser power intensities and overlaps: (a) 7.7 × 104 W/cm2 and 40%; (b) 7.7 × 104 W/cm2 and 60%; (c) 7.7 × 104 W/cm2 and 90%; (d) advancing angle at 7.7 × 104 W/cm2 and 90%; (e) receding angle at 7.7 × 104 W/cm2 and 90%; (f) 1.0 × 106 W/cm2 and –40%; (g) 1.0 × 106 W/cm2 and 0%; (h) 1.0 × 106 W/cm2 and 40%[38].

    图 10  聚酰亚胺(PI)薄膜表面形貌图[41] (a), (d), (g)原始PI薄膜的SEM, AFM, EDS图像; (b), (e), (h)使用KOH预处理后的PI薄膜的SEM, AFM, EDS图像; (c), (f), (i)使用GA-PEI进一步处理后的PI薄膜的SEM, AFM, EDS图像

    Figure 10.  Surface topography of polyimide film[41]: SEM images, AFM images and EDS spectra of (a), (d), (g) original PI film, (b), (e), (h) pre-modified PI film treated with KOH and (c), (f), (i) PI film further treated with GA-PEI.

    图 11  电沉积法制备的ITO (a) 和TiO2/ITO (b)的涂层玻璃基底的FE-SEM图像[45]

    Figure 11.  FE-SEM images of ITO (a) and TiO2/ITO (b) coated glass substrates prepared by electrodeposition for 5 min [45].

    图 12  采用(a)行波和(b)驻波的静电清洗系统原理图[49]

    Figure 12.  Schematic diagrams of the electrostatic cleaning systems that use a (a) traveling wave and (b) standing wave[49].

    图 13  STF减缓粉尘渗入及EPG壳层织物的超疏水处理[54]

    Figure 13.  STF reduces dust penetration and super-hydrophobic treatment of EPG shell fabric[54].

    图 14  表面月尘涂敷及“吹扫”过程[58]

    Figure 14.  Lunar dust coating and “purge” process[58].

    图 15  几种不同的用于测颗粒黏附的离心管结构[64-68]

    Figure 15.  Several different centrifuge tube structures used to measure particle adhesion[64-68].

    图 16  一种用于防尘测试的真空离心装置[58]

    Figure 16.  Vacuum centrifugal device for dustproof test[58].

    图 17  表面处理前后样品表面灰尘吸附效果[61]

    Figure 17.  Dust adsorption effect on sample surface before and after surface treatment[61].

    图 18  四相电帘在空气与真空环境下的除尘效果[70]

    Figure 18.  Dust removal effect of four-phase electric curtain in air and vacuum environment[70].

    图 19  月球环境模拟装置LDAB[63]

    Figure 19.  Lunar Environment Simulator LDAB[63].

    Baidu
  • [1]

    Zhang H, Wang Y, Chen L, Zhang H, Li C, Zhuang J, Li D, Wang Y, Yang S, Li X, Wang W 2020 Sci. China Ser. E: Technol. Sci. 63 520Google Scholar

    [2]

    裴照宇, 侯军, 王琼 2020 红外与激光工程 49 19Google Scholar

    Pei Z Y, Hou J, Wang Q 2020 Infrared Laser Eng. 49 19Google Scholar

    [3]

    Gaier J R 2011 SAE Int. J. Aerosp. 4 279Google Scholar

    [4]

    Mcallister F 1972 NASA Technical Report TN D-6737

    [5]

    Morea S F 1992 Conference on Lunar Bases and Space Activities of the 21st Century Houston, USA, April 5–7, 1988 p619

    [6]

    Buhler C R, Calle C I, Clements J S, Mantovani J, Ritz M I 2007 IEEE Aerospace Conference Big Sky, USA, March 3–10, 2007 p1

    [7]

    潘万竞 2016 硕士学位论文 (哈尔滨: 哈尔滨工业大学)

    Pan W J 2016 M. S. Thesis (Harbin: Harbin Institute of Technology) (in Chinese)

    [8]

    Sun Y, Liu J, Zheng Y, Xiao C, Wan B, Guo L, Wang X, Bo W 2017 J. Chin. Med. Assoc. 81 133Google Scholar

    [9]

    Walton O R 2007 NASA Technical Report 214685

    [10]

    Berkebile S, Street K, Gaier J 2011 3rd AIAA Atmospheric Space Environments Conference Honolulu, USA, June 27–30, 2011 p3675

    [11]

    Greenberg P S, Chen D R, Smith S A 2007 NASA Technical Report 214956

    [12]

    Yang L, Jaesung P, Darren S, Eddy H, Lawrence A T 2008 J. Aerosp. Eng. 21 272Google Scholar

    [13]

    Heavens N G, Richardson M I, Kleinböhl A 2011 J. Geophys. Res.Planets 4 116Google Scholar

    [14]

    Grün E, Horanyi M, Sternovsky Z 2011 Planet. Space Sci. 59 1672Google Scholar

    [15]

    Horanyi M 1996 Annu. Rev. Astron. Astrophys. 34 383Google Scholar

    [16]

    Rima J I, Daniel J, Luis A, Benjamin F, Monhammed A 2019 Sol. Energy Mater. Sol. Cells 191 413Google Scholar

    [17]

    Dzyaloshinskii IE, Lifshitz EM, Pitaevskii LP 1961 Adv. Phys. 10 165Google Scholar

    [18]

    Hamed A, Geoffrey E, Roberto M A 2016 Powder Technol. 299 9Google Scholar

    [19]

    Avijit K, Shuvojit P, Soumitro B, Banerjee A 2019 Appl. Phys. Lett. 115 123701Google Scholar

    [20]

    Valmacco V, Elzbieciak-Wodka M, Besnard C, Maroni P, Trefalt G, Borkovec M 2016 Nanoscale Horiz. 1 325Google Scholar

    [21]

    Holger G, Miltiadis V P 2017 Powder Technol. 322 185Google Scholar

    [22]

    Javid M, Amin K M, Vahid A, Shokoufeh A, Matthew S 2019 J. Electrostat. 97 58Google Scholar

    [23]

    Wang J, Wang X, Zhu T, Zhao Y 2018 J. Electrostat. 94 14Google Scholar

    [24]

    Zhao Y, Fang J, Wang Y, Shen Y, Wang C 2019 Powder Technol. 357 33Google Scholar

    [25]

    Zhu K, Rao S M, Huang H Q, Wang C H, Matsusaka S, Masuda H 2004 Chem. Eng. Sci. 59 3201Google Scholar

    [26]

    Nein M E, Davis B 1991 Proc. SPIE 98 110Google Scholar

    [27]

    Polizos G, Sharma J K, Smith D B, Tuncer E, Park J, Voylov D, Sololov A P, Meyer H M, Aman M 2018 Sol. Energy Mater. Sol. Cells 188 255Google Scholar

    [28]

    薛伟, 郑蓓蓉, 张淼, 解国新, 王权 2009 4 2518Google Scholar

    Xue W, Zheng R R, Zhang M, Xie G X, Wang Q 2009 Acta Phys. Sin. 4 2518Google Scholar

    [29]

    颜晨曦, 宋娟娟, 曹建平 2019 电镀与精饰 41 14Google Scholar

    Yan C X, Song J J, Cao J P 2019 Plat. Finish. 41 14Google Scholar

    [30]

    Zhan W, Wang W, Xiao Z, Yu X, Zhang Y 2018 Surf. Coat. Technol. 356 123Google Scholar

    [31]

    Amiriafshar M, Rafieazad M, Duan X, AliNasiri A 2020 Surf. Interfaces 100526Google Scholar

    [32]

    Peillon S, Autricque A, Redolfi M, Stancu C, Pluchery O 2019 J. Aerosol Sci. 137 105431Google Scholar

    [33]

    Moutinho H R, Jiang C S, To B, Perkins, Muller M, Al-Jassim M M, Simpson L 2017 Sol. Energy Mater. Sol. Cells 172 145Google Scholar

    [34]

    Wu S, Altenried S, Zogg A, Zuber F, Maniura K, Ren Q 2018 ACS Omega 3 6456Google Scholar

    [35]

    Li D, Li N, Su X, Liu K, Ji P, Wang B 2019 Appl. Surf. Sci. 489 648Google Scholar

    [36]

    Ji Z, Bao L, Wang H, Chen R 2017 Mater. Lett. 207 21Google Scholar

    [37]

    Gotlib-Vainstein K, Gouzman I, Girshevitz O, Bolker A, Atar N, Grossman E, Sukenlk, Chaim N 2015 ACS Appl. Mater. Interfaces 7 3539Google Scholar

    [38]

    Du Q, Ai J, Qin Z, Liu J, Zeng X 2018 J. Mater. Process. Technol. 251 188Google Scholar

    [39]

    Critchlow G, Webb P, Tremlett C, Brown K 2000 Int. J. Adhes. Adhes. 20 113Google Scholar

    [40]

    Van Dam J P B, Abrahami S T, Yilmaz A, Gonzalez G, Trrryn H 2020 Int. J. Adhes. Adhes. 96 102450Google Scholar

    [41]

    Chen J, Qi A, Rodriguez R D, Sheremmet E, Wang Y, Sowade E, Baumann R R, Feng Z 2019 Appl. Surf. Sci. 487 503Google Scholar

    [42]

    Quan Y Y, Zhang L Z 2017 Sol. Energy Mater. Sol. Cells 160 382Google Scholar

    [43]

    Chi F T, Liu D J, Wu H Y, Lei J H 2019 Sol. Energy Mater. Sol. Cells 200 109939Google Scholar

    [44]

    Maharjan S, Liao K, Wang A, Barton K, Curran S A 2020 Mater. Chem. Phys. 239 122000Google Scholar

    [45]

    Cui H, Zheng Z 2019 Thin Solid Films 691 137612Google Scholar

    [46]

    Choi D Y, Jung S H, Song D K, An E J, Park D, Kim T O, Jung J H, Lee H M 2017 ACS Appl. Mater. Interfaces 9 16495Google Scholar

    [47]

    Masuda S, Fujibayashi K, Ishida K, Inaba H 1972 Electr. Eng. Jpn. 92 43Google Scholar

    [48]

    Kawamoto H, Uchiyama M, Cooper B L, McKay D S 2011 J. Electrostat. 69 370Google Scholar

    [49]

    Kawamoto H, Guo B 2018 J. Electrostat. 91 28Google Scholar

    [50]

    Yilbas B S, Al-Qahtani H, Al-Sharafi A, Bahattab S, Kassas M 2019 Sci. Rep. 9 8703Google Scholar

    [51]

    Kohli R 2019 Developments in Surface Contamination and Cleaning: Applications of Cleaning Techniques (Vol. 11) (Amsterdam: Elsevier) p391

    [52]

    Manyapu K K, De Leon P, Peltz L, Gaier J R, Waters D 2017 Acta Astronaut. 137 472Google Scholar

    [53]

    Kavya K M, Leora P, Pablo D L 2019 J. Space Saf. Eng. 6 248Google Scholar

    [54]

    Richard D, Norman J W, Maria K 2018 48th International Conference on Environmental Systems. Albuquerque, New Mexico, July 8-12, 2018 p183

    [55]

    Jiang J, Lu Y, Zhao H, Wang L 2019 Acta Astronaut. 165 17Google Scholar

    [56]

    Lu Y, Jiang J, Yan X, Wang L 2019 Smart Mater. Struct. 28 085010Google Scholar

    [57]

    Zhang J, Zhu C, Lv J, Wei C, Feng J 2018 ACS Appl. Mater. Interfaces 10 40219Google Scholar

    [58]

    Crowder M S, Stover R, Lawitzke A, Devaud G, Dove A, Wang X 2010 Optical System Contamination: Effects, Measurements, and Control San Diego, USA, August 10, 2008 p77940G

    [59]

    Nguyen T T, Rambanapasi C, Boer A H D, Fruhkubj H W, Ven P, Vries J, Busscher H, Maarschalk K 2010 Int. J. Pharm. 393 89Google Scholar

    [60]

    徐阳, 齐振一, 王志浩, 田东波 2019 表面技术 48 167Google Scholar

    Xu Y, Qi Z Y, Wang Z H, Tian D P 2019 Surf. Technol. 48 167Google Scholar

    [61]

    Gaier J, Waters D L, Misconin R, Banks B, Crowder M 2011 41st International Conference on Environmental System Portland, Oregon, July 17-21, 2011 p5183

    [62]

    孙旗霞, 杨宁宁, 蔡小兵, 胡更开 2012 力学进展 6 113Google Scholar

    Sun Q X, Yang N N, Cai X B, Hu G K 2012 Adv. Mech. 6 113Google Scholar

    [63]

    Gaier J R, Jaworske D A 2007 AIP Conference Proc. 880 27Google Scholar

    [64]

    Kulvanich P, Stewart P 1987 Int. J. Pharm. 35 111Google Scholar

    [65]

    Booth S W, Newton J M 1987 J. Pharm. Pharmacol. 39 679Google Scholar

    [66]

    Salazar-Banda G R, Felicetti M A, Concalves J A S, Coury J R, Aguiar M L 2007 Powder Technol. 173 107Google Scholar

    [67]

    Markelonis A, Wang J S, Ullrich B U, Chien M W, Brown G J 2014 Appl. Nanoscience 5 457Google Scholar

    [68]

    Schulze H, Wahl B, Gottschalk G 1989 J. Colloid Interface Sci. 128 57Google Scholar

    [69]

    Kawamoto H, Seki K 2005 Trans. Jpn. Soc. Mech. Eng. C 71 1161Google Scholar

    [70]

    Kawamoto H 2012 Proceedings of Earth and Space Conference Shanghai, China, June 8–11, 2012 p94

    [71]

    王志浩, 白羽, 田东波, 李蔓 2015 装备环境工程 12 75Google Scholar

    Wang Z H, Bai Y, Tian D B, Li M 2015 Equip. Environ. Eng. 12 75Google Scholar

    [72]

    李青, 任德鹏, 王闯, 张熇 2018 航天器工程 27 137Google Scholar

    Li Q, Ren D P, Wang C, Zhang H 2018 Spacecraft Eng. 27 137Google Scholar

Metrics
  • Abstract views:  11350
  • PDF Downloads:  252
  • Cited By: 0
Publishing process
  • Received Date:  11 September 2020
  • Accepted Date:  09 November 2020
  • Available Online:  03 March 2021
  • Published Online:  20 March 2021

/

返回文章
返回
Baidu
map