Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Breakup process of liquid jet in gas film

Zhang Bin Cheng Peng Li Qing-Lian Chen Hui-Yuan Li Chen-Yang

Citation:

Breakup process of liquid jet in gas film

Zhang Bin, Cheng Peng, Li Qing-Lian, Chen Hui-Yuan, Li Chen-Yang
PDF
HTML
Get Citation
  • In order to study the breakup process of liquid jet in gas film, the backlit photography technique and the VOF TO DPM method are used for experimental and simulation research respectively. Water and air are used as simulant media. Grid adaptive technology is used to refine the gas-liquid interface grid and improve the capture accuracy of the gas-liquid interface. The results show that there are two main breakup processes of liquid jet in gas film: column breakup and surface breakup. The local high-pressure zone in front of the liquid jet makes the jet have a large normal velocity gradient, which causes R-T instability. The surface wave that is generated by the R-T instability is mainly responsible for the liquid column breakup. When the thin liquid film reaches a column breakup point, the airflow penetrating the trough of the surface wave causes the jet column to break. The tangential velocity gradient is generated when the gas film bypasses the liquid jet surface, which causes K-H instability. The K-H surface waves cause ligaments and droplets to strip from the surface of the liquid jet. The local momentum ratio has an important influence on the breakup process of the liquid jet in gas film. When the local momentum ratio is low, the breakup of liquid jet is dominated by the K-H instability. As the local momentum ratio increases, the breakup of liquid jet is gradually dominated by R-T instability. The local momentum ratio plays an important role in the distribution range of the liquid jet in gas film. When the local momentum ratio is low, the ligaments and droplets caused by the liquid jet are mainly distributed within the range of gas film. As the local momentum ratio increases, part of the ligaments and droplets escape from the range of the gas film. The liquid jet penetrates the gas film when the local momentum ratio is greater than 0.74. The breakup length and the penetration depth are both affected by the local momentum ratio. The breakup length increases with the local momentum ratio increasing. The penetration depth also increases with the local momentum ratio, and the penetration depth increases significantly when the liquid jet penetrates the gas film.
      Corresponding author: Cheng Peng, imchengpeng@yeah.net ; Li Qing-Lian, peakdreamer@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11472303, 11402298), the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 11902351), and the National Basic Research Program of China (Grant No. 613239)
    [1]

    岳春国, 李进贤, 侯晓, 冯喜平, 杨姝君 2009 中国科学: 技术科学 39 464Google Scholar

    Yue C G, Li J X, Hou X, Feng X P, Yang S J 2009 Sci. Sin.: Tech. 39 464Google Scholar

    [2]

    张雪松 2017 卫星与网络 6 40Google Scholar

    Zhang X S 2017 Satell. Network 6 40Google Scholar

    [3]

    Heister S D 2011 Handbook of Atomization and Sprays: Theory and Applications (New York: Springer Science Business Media) pp647−655

    [4]

    Son M, Radhakrishnan K, Yoon Y, Koo J 2017 Acta Astronaut. 135 139Google Scholar

    [5]

    Dressler G A, Bauer J M 2000 36th AIAA/ASME/SAE/ ASEE Joint Propulsion Conference and Exhibit Huntsville, Alabama, July 16–19, 2000 p2000

    [6]

    Ninish S, Vaidyanathan A, Nandakumar K 2018 Exp. Therm. Fluid Sci. 97 324Google Scholar

    [7]

    方昕昕, 沈赤兵, 张新桥 2016 航空动力学报 31 3004Google Scholar

    Fang X X, Shen C B, Zhang X Q 2016 J. Aerosp. Power 31 3004Google Scholar

    [8]

    方昕昕, 沈赤兵 2017 航空动力学报 32 2291Google Scholar

    Fang X X, Shen C B 2017 J. Aerosp. Power 32 2291Google Scholar

    [9]

    Son M, Yu K, Radhakrishnan K, Shin B, Koo J 2016 J. Therm. Sci. 25 90Google Scholar

    [10]

    刘昌波 2014 博士学位论文(西安: 西安航天动力研究所)

    Liu C B 2014 Ph. D. Dissertation (Xi’an: Xi’an Aerospace Propulsion Institute) (in Chinese)

    [11]

    Yates C L 1971 Proceedings of the 7 th Propulsion Joint Specialist Conference Salt Lake City, June 14–18, 1971 p724

    [12]

    Kush E A, Schetz J A 1973 AIAA J. 11 1223Google Scholar

    [13]

    Schetz J A, Kush E A, Joshi P B 1980 AIAA J. 18 774Google Scholar

    [14]

    陈亮, 乐嘉陵, 宋文艳, 杨顺华, 曹娜 2011 实验流体力学 25 29Google Scholar

    Cheng L, Le J L, Song W Y, Yang S H, Cao N 2011 J. Exp. Fluid Mech. 25 29Google Scholar

    [15]

    曹娜, 徐青, 曹亮, 雷岚, 韩长材, 马继明, 杜继业 2013 现代应用物理 4 323Google Scholar

    Cao N, Xu Q, Cao L, Lei L, Han C C, Ma J M, Du J Y 2013 Mod. Appl. Phys. 4 323Google Scholar

    [16]

    Yang S H, Le J L 2006 Proceedings of the 12th Chinese National Symposium on ShockWaves Luoyang, July 24, 2006 p70

    [17]

    徐胜利, Archer R D, Milton B E, 岳朋涛 2000 中国科学:技术科学 30 179Google Scholar

    Xu S L, Archer R D, Milton B E, Yue P T 2000 Sci. Sin.: Tech. 30 179Google Scholar

    [18]

    刘楠 2019 博士学位论文 (长沙: 国防科技大学)

    Liu N 2019 Ph. D. Dissertation (Changsha: National University of Defense Technology) (in Chinese)

    [19]

    Xiao F, Wang Z G, Sun M B, Liang J H, Liu N 2016 Int. J. Multiph. Flow 87 229Google Scholar

    [20]

    Xiao F, Sun M B 2019 Atom. Sprays 28 975Google Scholar

    [21]

    李春, 沈赤兵, 李清廉, 朱元昊 2019 国防科技大学学报 41 73Google Scholar

    Li C, Shen C B, Li Q L, Zhu Y H 2019 J. Natl. Univ. Def. Technol. 41 73Google Scholar

    [22]

    Cheng P, Li Q L, Chen H Y 2019 Acta Astronaut. 154 61Google Scholar

    [23]

    Chen H Y, Li Q L, Cheng P 2019 Acta Astronaut. 162 424Google Scholar

    [24]

    吴里银, 王振国, 李清廉, 李春 2016 65 094701Google Scholar

    Wu L Y, Wang Z G, Li Q L, Li C 2016 Acta Phys. Sin. 65 094701Google Scholar

    [25]

    Wu L Y, Wang Z G, Li Q L, Li C 2016 J. Vis. 19 337Google Scholar

    [26]

    Lin K C, Kirkendall K A, Kennedy P J, Jackson T A 1999 Proceedings of the 35th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit Los Angeles, California, June 20–24, 1999 p2374

    [27]

    Sallam K A, Aalburg C, Faeth G M, Lin K C, Carter C D, Jackson T A 2004 Proceedings of the 42nd AIAA Aerospace Sciences Meeting and Exhibit Reno, Nevada, January 5–8, 2004 p970

    [28]

    Sallam K A, Aalburg C, Faeth G M 2004 AIAA J. 42 2529Google Scholar

    [29]

    Richards J R, Lenhoff A M, Beris A N 1994 Phys. Fluids 6 2640Google Scholar

    [30]

    Srinivasan V, Salazar A J, Saito K 2011 Appl. Math. Model. 35 3710Google Scholar

    [31]

    Herrmann M 2011 Proc. Combust. Inst. 33 2079Google Scholar

    [32]

    Desjardins O, Pitsch H 2009 J. Comput. Phys. 228 1658Google Scholar

    [33]

    高亚军, 姜汉桥, 李俊键, 赵玉云, 胡锦川, 常元昊 2017 66 024702Google Scholar

    Gao Y J, Jiang H Q, Li J J, Zhao Y Y, Hu J C, Chang Y H 2017 Acta Phys. Sin. 66 024702Google Scholar

    [34]

    Xiao F, Wang Z G, Sun M B, Liu N, Yang X 2017 Proc. Combust. Inst. 36 2417Google Scholar

    [35]

    梁刚涛, 郭亚丽, 沈胜强 2013 62 024705Google Scholar

    Liang G T, Guo Y L, Shen S Q 2013 Acta Phys. Sin. 62 024705Google Scholar

    [36]

    Li X Y, Soteriou M C, Arienti M, Sussman M M 2011 Proceedings of the 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition Orlando, Florida, January 4–7, 2011 p99

    [37]

    Fontes D H, Vilela V, Souza Meira L D, Souza F J 2019 Int. J. Multiph. Flow 114 98Google Scholar

    [38]

    Chu W, Li X Q, Tong Y H, Reng Y J 2020 Acta Astronaut. 175 204Google Scholar

    [39]

    Liu N, Wang Z G, Sun M B, Deiterding R, Wang H B 2019 Aerosp. Sci. Technol. 91 456Google Scholar

    [40]

    Li P B, Wang Z G, Sun M B, Wang H B 2017 Acta Astronaut. 134 333Google Scholar

    [41]

    李佩波, 王振国, 孙明波, 汪洪波 2016 宇航学报 37 209Google Scholar

    Li P B, Wang Z G, Sun M B, Wang H B 2016 J. Astronaut. 37 209Google Scholar

    [42]

    成鹏 2018 博士学位论文 (长沙: 国防科技大学)

    Cheng P 2018 Ph. D. Dissertation (Changsha: National University of Defense Technology) (in Chinese)

    [43]

    Wu P K, Kirkendall K A, Fuller R P, Nejad A S 1997 J. Propul. Power 13 64Google Scholar

  • 图 1  (a) 针栓喷注器; (b)针栓喷注单元

    Figure 1.  (a) Pintle injector; (b) pintle injector element.

    图 2  实验系统示意图

    Figure 2.  Schematic diagram of the experimental setup.

    图 3  计算域

    Figure 3.  Computational domain.

    图 4  自适应加密后的网格

    Figure 4.  Mesh after adaptive.

    图 5  (a) 仿真结果; (b) 实验结果; (c) 破碎图像对比; (d)不稳定波长对比

    Figure 5.  (a) Simulation; (b) experiment; (c)comparison of breakup process; (d) comparison of unstable wavelength.

    图 6  (a) 压力云图; (b) 速度云图

    Figure 6.  (a) Contour of pressure; (b) contour of velocity.

    图 7  R-T不稳定波的发展过程 (a) t0; (b) t0 + 0.12 ms; (c) t0 + 0.24 ms; (d) t0 + 0.36 ms

    Figure 7.  The development of unsteady wave: (a) t0; (b) t0 + 0.12 ms; (c) t0 + 0.24 ms; (d) t0 + 0.36 ms.

    图 8  (a)射流近壁面的流线图; (b) 射流近壁面的速度矢量图

    Figure 8.  (a) Streamline diagram of jet near the wall; (b) velocity vector diagram of jet near the wall.

    图 9  气流穿透射流表面波波谷 (a)仿真; (b)实验

    Figure 9.  The gas penetrate the trough of surface wave: (a) Simulation; (b) experiment.

    图 10  射流迎风面的液滴剥离

    Figure 10.  Droplet striped from the windward surface of the jet.

    图 11  射流横截面变形过程

    Figure 11.  Deformation process of jet cross section

    图 12  射流横截面(Y = 1.0D)的速度矢量图

    Figure 12.  Velocity vector diagram of jet cross section (Y = 1.0D)

    图 13  流场流线图

    Figure 13.  Streamline of flow field.

    图 14  液体射流破碎过程示意图

    Figure 14.  Schematic diagram of liquid jet breaking process.

    图 15  不同LMR下的射流破碎过程 (a) LMR = 0.38; (b) LMR = 0.55; (c) LMR = 0.74; (d) LMR = 0.97; (e) LMR = 1.23; (f) LMR = 1.52

    Figure 15.  Breakup process of liquid jet under different LMR: (a) LMR = 0.38; (b) LMR = 0.55; (c) LMR = 0.74; (d) LMR = 0.97; (e) LMR = 1.23; (f) LMR = 1.52.

    图 16  不稳定波波长随LMR变化

    Figure 16.  Unsteady wavelength vs. LMR.

    图 17  射流近壁面的压力云图 (a) LMR = 0.38; (b) LMR = 0.55; (c) LMR = 0.74

    Figure 17.  Pressure contour of jet near the wall: (a) LMR = 0.38; (b) LMR = 0.55; (c) LMR = 0.74.

    图 18  气膜迹线图 (a) LMR = 0.38; (b) LMR = 0.55; (c) LMR = 0.74; (d) LMR = 0.97; (e) LMR = 1.23; (f) LMR = 1.52

    Figure 18.  Streamline of gas film: (a) LMR = 0.38; (b) LMR = 0.55; (c) LMR = 0.74; (d) LMR = 0.97; (e) LMR = 1.23; (f) LMR = 1.52

    图 19  (a) 破碎长度随时间变化(LMR = 1.23); (b) 破碎长度随LMR变化

    Figure 19.  (a) Breakup length with flow time (LMR = 1.23); (b) breakup length with different LMR

    图 20  (a) 穿透深度随LMR变化; (b) 展向扩张角随LMR变化

    Figure 20.  (a) Penetration depth vs. LMR; (b) spray spread angle vs. LMR.

    表 1  气膜工况参数

    Table 1.  Parameters of gas film.

    总压/
    MPa
    静压/
    MPa
    质量流量/
    (kg·s–1)
    速度/
    (m·s–1)

    度/K
    膜厚/
    mm
    0.20.10.02315.43003
    DownLoad: CSV

    表 2  液体射流工况参数

    Table 2.  Parameters of liquid jets.

    密度/
    (kg·m3)
    速度/
    (m·s–1)
    孔径/
    mm
    局部动量
    比LMR
    998.212.5, 15.0, 17.5,
    20.0, 22.5, 25.0
    1.30.38, 0.55, 0.74,
    0.97, 1.23, 1.52
    DownLoad: CSV
    Baidu
  • [1]

    岳春国, 李进贤, 侯晓, 冯喜平, 杨姝君 2009 中国科学: 技术科学 39 464Google Scholar

    Yue C G, Li J X, Hou X, Feng X P, Yang S J 2009 Sci. Sin.: Tech. 39 464Google Scholar

    [2]

    张雪松 2017 卫星与网络 6 40Google Scholar

    Zhang X S 2017 Satell. Network 6 40Google Scholar

    [3]

    Heister S D 2011 Handbook of Atomization and Sprays: Theory and Applications (New York: Springer Science Business Media) pp647−655

    [4]

    Son M, Radhakrishnan K, Yoon Y, Koo J 2017 Acta Astronaut. 135 139Google Scholar

    [5]

    Dressler G A, Bauer J M 2000 36th AIAA/ASME/SAE/ ASEE Joint Propulsion Conference and Exhibit Huntsville, Alabama, July 16–19, 2000 p2000

    [6]

    Ninish S, Vaidyanathan A, Nandakumar K 2018 Exp. Therm. Fluid Sci. 97 324Google Scholar

    [7]

    方昕昕, 沈赤兵, 张新桥 2016 航空动力学报 31 3004Google Scholar

    Fang X X, Shen C B, Zhang X Q 2016 J. Aerosp. Power 31 3004Google Scholar

    [8]

    方昕昕, 沈赤兵 2017 航空动力学报 32 2291Google Scholar

    Fang X X, Shen C B 2017 J. Aerosp. Power 32 2291Google Scholar

    [9]

    Son M, Yu K, Radhakrishnan K, Shin B, Koo J 2016 J. Therm. Sci. 25 90Google Scholar

    [10]

    刘昌波 2014 博士学位论文(西安: 西安航天动力研究所)

    Liu C B 2014 Ph. D. Dissertation (Xi’an: Xi’an Aerospace Propulsion Institute) (in Chinese)

    [11]

    Yates C L 1971 Proceedings of the 7 th Propulsion Joint Specialist Conference Salt Lake City, June 14–18, 1971 p724

    [12]

    Kush E A, Schetz J A 1973 AIAA J. 11 1223Google Scholar

    [13]

    Schetz J A, Kush E A, Joshi P B 1980 AIAA J. 18 774Google Scholar

    [14]

    陈亮, 乐嘉陵, 宋文艳, 杨顺华, 曹娜 2011 实验流体力学 25 29Google Scholar

    Cheng L, Le J L, Song W Y, Yang S H, Cao N 2011 J. Exp. Fluid Mech. 25 29Google Scholar

    [15]

    曹娜, 徐青, 曹亮, 雷岚, 韩长材, 马继明, 杜继业 2013 现代应用物理 4 323Google Scholar

    Cao N, Xu Q, Cao L, Lei L, Han C C, Ma J M, Du J Y 2013 Mod. Appl. Phys. 4 323Google Scholar

    [16]

    Yang S H, Le J L 2006 Proceedings of the 12th Chinese National Symposium on ShockWaves Luoyang, July 24, 2006 p70

    [17]

    徐胜利, Archer R D, Milton B E, 岳朋涛 2000 中国科学:技术科学 30 179Google Scholar

    Xu S L, Archer R D, Milton B E, Yue P T 2000 Sci. Sin.: Tech. 30 179Google Scholar

    [18]

    刘楠 2019 博士学位论文 (长沙: 国防科技大学)

    Liu N 2019 Ph. D. Dissertation (Changsha: National University of Defense Technology) (in Chinese)

    [19]

    Xiao F, Wang Z G, Sun M B, Liang J H, Liu N 2016 Int. J. Multiph. Flow 87 229Google Scholar

    [20]

    Xiao F, Sun M B 2019 Atom. Sprays 28 975Google Scholar

    [21]

    李春, 沈赤兵, 李清廉, 朱元昊 2019 国防科技大学学报 41 73Google Scholar

    Li C, Shen C B, Li Q L, Zhu Y H 2019 J. Natl. Univ. Def. Technol. 41 73Google Scholar

    [22]

    Cheng P, Li Q L, Chen H Y 2019 Acta Astronaut. 154 61Google Scholar

    [23]

    Chen H Y, Li Q L, Cheng P 2019 Acta Astronaut. 162 424Google Scholar

    [24]

    吴里银, 王振国, 李清廉, 李春 2016 65 094701Google Scholar

    Wu L Y, Wang Z G, Li Q L, Li C 2016 Acta Phys. Sin. 65 094701Google Scholar

    [25]

    Wu L Y, Wang Z G, Li Q L, Li C 2016 J. Vis. 19 337Google Scholar

    [26]

    Lin K C, Kirkendall K A, Kennedy P J, Jackson T A 1999 Proceedings of the 35th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit Los Angeles, California, June 20–24, 1999 p2374

    [27]

    Sallam K A, Aalburg C, Faeth G M, Lin K C, Carter C D, Jackson T A 2004 Proceedings of the 42nd AIAA Aerospace Sciences Meeting and Exhibit Reno, Nevada, January 5–8, 2004 p970

    [28]

    Sallam K A, Aalburg C, Faeth G M 2004 AIAA J. 42 2529Google Scholar

    [29]

    Richards J R, Lenhoff A M, Beris A N 1994 Phys. Fluids 6 2640Google Scholar

    [30]

    Srinivasan V, Salazar A J, Saito K 2011 Appl. Math. Model. 35 3710Google Scholar

    [31]

    Herrmann M 2011 Proc. Combust. Inst. 33 2079Google Scholar

    [32]

    Desjardins O, Pitsch H 2009 J. Comput. Phys. 228 1658Google Scholar

    [33]

    高亚军, 姜汉桥, 李俊键, 赵玉云, 胡锦川, 常元昊 2017 66 024702Google Scholar

    Gao Y J, Jiang H Q, Li J J, Zhao Y Y, Hu J C, Chang Y H 2017 Acta Phys. Sin. 66 024702Google Scholar

    [34]

    Xiao F, Wang Z G, Sun M B, Liu N, Yang X 2017 Proc. Combust. Inst. 36 2417Google Scholar

    [35]

    梁刚涛, 郭亚丽, 沈胜强 2013 62 024705Google Scholar

    Liang G T, Guo Y L, Shen S Q 2013 Acta Phys. Sin. 62 024705Google Scholar

    [36]

    Li X Y, Soteriou M C, Arienti M, Sussman M M 2011 Proceedings of the 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition Orlando, Florida, January 4–7, 2011 p99

    [37]

    Fontes D H, Vilela V, Souza Meira L D, Souza F J 2019 Int. J. Multiph. Flow 114 98Google Scholar

    [38]

    Chu W, Li X Q, Tong Y H, Reng Y J 2020 Acta Astronaut. 175 204Google Scholar

    [39]

    Liu N, Wang Z G, Sun M B, Deiterding R, Wang H B 2019 Aerosp. Sci. Technol. 91 456Google Scholar

    [40]

    Li P B, Wang Z G, Sun M B, Wang H B 2017 Acta Astronaut. 134 333Google Scholar

    [41]

    李佩波, 王振国, 孙明波, 汪洪波 2016 宇航学报 37 209Google Scholar

    Li P B, Wang Z G, Sun M B, Wang H B 2016 J. Astronaut. 37 209Google Scholar

    [42]

    成鹏 2018 博士学位论文 (长沙: 国防科技大学)

    Cheng P 2018 Ph. D. Dissertation (Changsha: National University of Defense Technology) (in Chinese)

    [43]

    Wu P K, Kirkendall K A, Fuller R P, Nejad A S 1997 J. Propul. Power 13 64Google Scholar

  • [1] Jin Xuan, Shen Chi-Bing. Fragmentation and atomization characteristics of near-orifice liquid jet under transverse gas film. Acta Physica Sinica, 2022, 71(11): 114701. doi: 10.7498/aps.71.20212374
    [2] Peng Xu, Li Bin, Wang Shun-Yao, Rao Guo-Ning, Chen Wang-Hua. Gas-liquid two-phase flow of liquid film breaking process under shock wave. Acta Physica Sinica, 2020, 69(24): 244702. doi: 10.7498/aps.69.20201051
    [3] Qian Wen-Wei, Li Wei-Feng, Shi Zhe-Hang, Liu Hai-Feng, Wang Fu-Chen. Characteristics of surface waves on the granular sheet of dense granular jet impingement. Acta Physica Sinica, 2016, 65(21): 214501. doi: 10.7498/aps.65.214501
    [4] Wu Li-Yin, Wang Zhen-Guo, Li Qing-Lian, Li Chun. Unsteady oscillation distribution model of liquid jet in supersonic crossflows. Acta Physica Sinica, 2016, 65(9): 094701. doi: 10.7498/aps.65.094701
    [5] Hu Hai-Bao, Wang De-Zheng, Bao Lu-Yao, Wen Jun, Zhang Zhao-Zhu. Maintaining large-scale gas layer by creating wettability difference on surfaces under water. Acta Physica Sinica, 2016, 65(13): 134701. doi: 10.7498/aps.65.134701
    [6] Chen Wei-Jun, Lu Ke-Qing, Hui Juan-Li, Wang Chun-Xiang, Yu Hui-Min, Hu Kai. Study on nonlinear surface waves along the boundary of LiNbO3 crystals. Acta Physica Sinica, 2015, 64(1): 014204. doi: 10.7498/aps.64.014204
    [7] Wu Zheng-Ren, Liu Mei, Liu Qiu-Sheng, Song Zhao-Xia, Wang Si-Si. Influence of the inclined waving wall on the surface wave evolution of liquid film. Acta Physica Sinica, 2015, 64(24): 244701. doi: 10.7498/aps.64.244701
    [8] Wang Song-Ling, Liu Mei, Wang Si-Si, Wu Zheng-Ren. Influence of uneven wall changing over time on the characteristics of liquid surface wave evolution. Acta Physica Sinica, 2015, 64(1): 014701. doi: 10.7498/aps.64.014701
    [9] Chen Zhao-Quan, Yin Zhi-Xiang, Chen Ming-Gong, Liu Ming-Hai, Xu Gong-Lin, Hu Ye-Lin, Xia Guang-Qing, Song Xiao, Jia Xiao-Fen, Hu Xi-Wei. Particle-in-cell simulation on surface-wave discharge process influenced by gas pressure and negative-biased voltage along ion sheath layer. Acta Physica Sinica, 2014, 63(9): 095205. doi: 10.7498/aps.63.095205
    [10] Li Yong-Feng, Zhang Jie-Qiu, Qu Shao-Bo, Wang Jia-Fu, Chen Hong-Ya, Xu Zhuo, Zhang An-Xue. Design and experimental verification of a two-dimensional phase gradient metasurface used for radar cross section reduction. Acta Physica Sinica, 2014, 63(8): 084103. doi: 10.7498/aps.63.084103
    [11] Ni Bao-Yu, Li Shuai, Zhang A-Man. Jet splitting after bubble breakup at the free surface. Acta Physica Sinica, 2013, 62(12): 124704. doi: 10.7498/aps.62.124704
    [12] Chen Zhao-Quan, Xia Guang-Qing, Liu Ming-Hai, Zheng Xiao-Liang, Hu Ye-Lin, Li Ping, Xu Gong-Lin, Hong Ling-Li, Shen Hao-Yu, Hu Xi-Wei. PIC/MCC simulation of the ionization process of SWP influenced by gas pressure and SPP. Acta Physica Sinica, 2013, 62(19): 195204. doi: 10.7498/aps.62.195204
    [13] Feng Tian-Run, Lu Ke-Qing, Chen Wei-Jun, Liu Shu-Qin, Niu Ping-Juan, Yu Li-Yuan. Study on surface waves formed at the interface between linear dielectric and centrosymmetric photorefractive crystals. Acta Physica Sinica, 2013, 62(23): 234205. doi: 10.7498/aps.62.234205
    [14] Sun Tong-Tong, Lu Ke-Qing, Chen Wei-Jun, Yao Feng-Xue, Niu Ping-Juan, Yu Li-Yuan. Surface waves formed at the interface between a metal and a photorefractive crystal. Acta Physica Sinica, 2013, 62(3): 034204. doi: 10.7498/aps.62.034204
    [15] Dong Tai-Yuan, Ye Kun-Tao, Liu Wei-Qing. The current status of surface wave plasma source development. Acta Physica Sinica, 2012, 61(14): 145202. doi: 10.7498/aps.61.145202
    [16] Wang Wei, Cao Xiang-Yu, Wang Shuai, Wang Rui, Zheng Qiu-Rong. Influence of dielectric substrates on surface wave bandgap of uniplanar electromagnetic band-gap structure. Acta Physica Sinica, 2009, 58(7): 4708-4716. doi: 10.7498/aps.58.4708
    [17] Sun Hong-Xiang, Xu Bai-Qiang, Wang Ji-Jun, Xu Gui-Dong, Xu Chen-Guang, Wang Feng. Numerical simulation of laser-generated Rayleigh wave by finite element method on viscoelastic materials. Acta Physica Sinica, 2009, 58(9): 6344-6350. doi: 10.7498/aps.58.6344
    [18] Liang Zhi-Wei, Sun Hai-Long, Wang Zhi-Jiang, Xu Jie, Xu Yue-Min. Measurement and analysis of plasma antenna input impedance. Acta Physica Sinica, 2008, 57(7): 4292-4297. doi: 10.7498/aps.57.4292
    [19] MIAO RUN-CAI, YANG ZONG-LI. THE PHYSICAL PROPERTIES OF LIQUID SURFACE WAVE AND ITS OPTICAL DIFFRACTION. Acta Physica Sinica, 1996, 45(9): 1521-1525. doi: 10.7498/aps.45.1521
    [20] WANG ZOU-QING, ZHOU SU-HUA, WANG CHENG-HAO. ON THE BRAGG-DIFFRACTION OF SURFACE ACOUSTIC WAVES BY ACOUSTIC GRATING. Acta Physica Sinica, 1983, 32(2): 156-167. doi: 10.7498/aps.32.156
Metrics
  • Abstract views:  8769
  • PDF Downloads:  331
  • Cited By: 0
Publishing process
  • Received Date:  24 August 2020
  • Accepted Date:  06 November 2020
  • Available Online:  21 February 2021
  • Published Online:  05 March 2021

/

返回文章
返回
Baidu
map