Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Molecular dynamics study of bubble nucleation on a nanoscale

Zhang Long-Yan Xu Jin-Liang Lei Jun-Peng

Citation:

Molecular dynamics study of bubble nucleation on a nanoscale

Zhang Long-Yan, Xu Jin-Liang, Lei Jun-Peng
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • With the rapid development of nanotechnology, nucleate boiling has been widely applied to the thermal management of nanoelectronics, owing to its highly-efficient heat transfer characteristics. Considering the scale effects, such as temperature jump at solid-liquid interface, a further study of nucleation boiling mechanism at a microscopic level is needed. At present, extensive studies have been carried out for providing a significant insight into the formation of nano-bubbles in a nanoscale thermal system, but the effect of heat transfer efficiency affected by the surface wettability on bubble nucleation over solid substrate is rarely available in the literature. Therefore, in this paper, the effect of surface wettability on the initial nucleation process and growth rate of bubbles are investigated and the mechanism of bubble nucleation on a nanoscale is analyzed, by the molecular dynamics simulation. The modified Lennard-Jones potential is used for investigating the solid-liquid interaction. Changing the potential parameters α and β can obtain different surface wettability. The atomic sites, liquid density profiles and bubble nucleus volumes are computed to compare the processes of bubble nucleation on different surfaces. The variation of liquid temperature, potential and absorbed heat flux with heating time are evaluated to explore the mechanism of bubble nucleation. The simulation results show that the surface wettability influences the bubble nucleation and heat transfer at liquid-solid interface significantly. On the one hand, the bubble nucleation is promoted by properly increasing the liquid-solid interaction, which is distinctly different from the existing classical theory related to nano-bubble preferably formed on a hydrophobic surface. This is because the thermal resistance of the solid-liquid interface on a nanoscale cannot be neglected. The interface thermal resistance will decrease with the increase of wettability. Therefore, the heat transfer efficiency is higher for a stronger liquid-solid interaction so that the liquid over the hot wall obtains more energy to make bubble nucleus generated earlier. On the other hand, the surface wettability also influences the bubble growth rate. The stronger the liquid-solid interaction, the faster the bubble grows. When the volume of bubble reaches a certain value, a vapor film is formed on the substrate, leading to film boiling. Furthermore, it also illustrates that initial heat flux increases with time. In this stage, the heat flux curve shows two kinds of slopes, corresponding to the occurrence of evaporation and bubble nucleation, respectively. Then, after a certain time, the heat flux profile presents a declining trend, indicating a change into film boiling.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51436004).
    [1]

    Agostini B, Fabbri M, Park J E, Wojtan L, Thome J R, Michel B 2007 Heat Transfer Eng. 28 258

    [2]

    Riofrío M C, Caney N, Gruss J A 2016 Appl. Therm. Eng. 104 333

    [3]

    Zhang S W, Yuan W, Tang Y, Chen J L, Li Z T 2016 Appl. Therm. Eng. 104 659

    [4]

    Marable D C, Shin S, Nobakht A Y 2017 Int. J. Heat Mass Transf. 109 28

    [5]

    Xu J L, Li Y X 2007 Int. J. Heat Mass Transf. 50 2571

    [6]

    bin Saleman A R, Chilukoti H K, Kikugawa G, Shibahara M, Ohara T 2017 Int. J. Therm. Sci. 120 273

    [7]

    Bourdon B, Bertrand E, di Marco P, Marengo M, Rioboo R, de Coninck J 2015 Adv. Colloid Interface Sci. 221 34

    [8]

    Jo H J, Ahn H S, Kang S H, Kim M H 2011 Int. J. Heat Mass Transf. 54 5643

    [9]

    Quan X J, Chen G, Cheng P 2011 Int. J. Heat Mass Transf. 54 4762

    [10]

    Xu X P, Qian T Z 2014 Phys. Rev. E 89 063002

    [11]

    Kinjo T, Matsumoto M 1998 Fluid Phase Equilib. 144 343

    [12]

    Kimura T, Maruyama S 2002 Microscale Thermophys. Eng. 6 3

    [13]

    Kinjo T, Gao G T, Zeng X C 2000 Prog. Theor. Phys. Suppl. 138 732

    [14]

    Mao Y J, Zhang Y W 2013 Nanoscale Microscale Thermophys. Eng. 17 79

    [15]

    Theofanous T G, Tu J P, Dinh A T, Dinh T N 2002 Exp. Therm. Fluid Sci. 26 775

    [16]

    Nagayama G, Tsuruta T, Cheng P 2006 Int. J. Heat Mass Transf. 49 4437

    [17]

    Bai B F, Li S J 2010 Proceedings of the 14th International Heat Transfer Conference Washington, United States of America, August 8-13, 2010 p177

    [18]

    Novak B R, Maginn E J, McCready M J 2008 J. Heat Transfer 130 042411

    [19]

    Carey V P, Wemhoff A P 2005 Int. J. Heat Mass Transf. 48 5431

    [20]

    Hens A, Agarwal R, Biswas G 2014 Int. J. Heat Mass Transf. 71 303

    [21]

    Yamamoto T, Matsumoto M 2012 J. Therm. Sci. Technol. Jpn. 7 334

    [22]

    Nagayama G, Kawagoe M, Tokunaga A, Tsuruta T 2010 Int. J. Therm. Sci. 49 59

    [23]

    Phan H T, Caney N, Marty P, Colasson S, Gavillet J 2009 Int. J. Heat Mass Transf. 52 5459

    [24]

    Gong S, Cheng P 2015 Int. J. Heat Mass Transf. 85 635

    [25]

    Leroy F, MüllerPlathe F 2010 J. Chem. Phys. 133 044110

    [26]

    Okumura H, Ito N 2003 Phys. Rev. E 67 045301

  • [1]

    Agostini B, Fabbri M, Park J E, Wojtan L, Thome J R, Michel B 2007 Heat Transfer Eng. 28 258

    [2]

    Riofrío M C, Caney N, Gruss J A 2016 Appl. Therm. Eng. 104 333

    [3]

    Zhang S W, Yuan W, Tang Y, Chen J L, Li Z T 2016 Appl. Therm. Eng. 104 659

    [4]

    Marable D C, Shin S, Nobakht A Y 2017 Int. J. Heat Mass Transf. 109 28

    [5]

    Xu J L, Li Y X 2007 Int. J. Heat Mass Transf. 50 2571

    [6]

    bin Saleman A R, Chilukoti H K, Kikugawa G, Shibahara M, Ohara T 2017 Int. J. Therm. Sci. 120 273

    [7]

    Bourdon B, Bertrand E, di Marco P, Marengo M, Rioboo R, de Coninck J 2015 Adv. Colloid Interface Sci. 221 34

    [8]

    Jo H J, Ahn H S, Kang S H, Kim M H 2011 Int. J. Heat Mass Transf. 54 5643

    [9]

    Quan X J, Chen G, Cheng P 2011 Int. J. Heat Mass Transf. 54 4762

    [10]

    Xu X P, Qian T Z 2014 Phys. Rev. E 89 063002

    [11]

    Kinjo T, Matsumoto M 1998 Fluid Phase Equilib. 144 343

    [12]

    Kimura T, Maruyama S 2002 Microscale Thermophys. Eng. 6 3

    [13]

    Kinjo T, Gao G T, Zeng X C 2000 Prog. Theor. Phys. Suppl. 138 732

    [14]

    Mao Y J, Zhang Y W 2013 Nanoscale Microscale Thermophys. Eng. 17 79

    [15]

    Theofanous T G, Tu J P, Dinh A T, Dinh T N 2002 Exp. Therm. Fluid Sci. 26 775

    [16]

    Nagayama G, Tsuruta T, Cheng P 2006 Int. J. Heat Mass Transf. 49 4437

    [17]

    Bai B F, Li S J 2010 Proceedings of the 14th International Heat Transfer Conference Washington, United States of America, August 8-13, 2010 p177

    [18]

    Novak B R, Maginn E J, McCready M J 2008 J. Heat Transfer 130 042411

    [19]

    Carey V P, Wemhoff A P 2005 Int. J. Heat Mass Transf. 48 5431

    [20]

    Hens A, Agarwal R, Biswas G 2014 Int. J. Heat Mass Transf. 71 303

    [21]

    Yamamoto T, Matsumoto M 2012 J. Therm. Sci. Technol. Jpn. 7 334

    [22]

    Nagayama G, Kawagoe M, Tokunaga A, Tsuruta T 2010 Int. J. Therm. Sci. 49 59

    [23]

    Phan H T, Caney N, Marty P, Colasson S, Gavillet J 2009 Int. J. Heat Mass Transf. 52 5459

    [24]

    Gong S, Cheng P 2015 Int. J. Heat Mass Transf. 85 635

    [25]

    Leroy F, MüllerPlathe F 2010 J. Chem. Phys. 133 044110

    [26]

    Okumura H, Ito N 2003 Phys. Rev. E 67 045301

  • [1] Li Wen, Ma Xiao-Jing, Xu Jin-Liang, Wang Yan, Lei Jun-Peng. Effects of base angle and wettability of nanostructures on droplet wetting behaviors. Acta Physica Sinica, 2021, 70(12): 126101. doi: 10.7498/aps.70.20201584
    [2] Xi Jian-Feng, Li Bao-He, Liu Dan, Li Xiong, Geng Ai-Cong, Li Xiao. Enhanced photovoltaic effect in LaAlO3/SrTiO3 interface. Acta Physica Sinica, 2021, 70(8): 086802. doi: 10.7498/aps.70.20201330
    [3] Zhang Meng, Yao Ruo-He, Liu Yu-Rong. A channel thermal noise model of nanoscaled metal-oxide-semiconductor field-effect transistor. Acta Physica Sinica, 2020, 69(5): 057101. doi: 10.7498/aps.69.20191512
    [4] Chen Dong, Yu Ben-Hai. Dual control of magnetism in LaMnO3/BaTiO3 superlattice by epitaxial strain and ferroelectric polarization. Acta Physica Sinica, 2020, 69(22): 226301. doi: 10.7498/aps.69.20200839
    [5] Yang Dong-Sheng, Liu Guan-Ting. Anti-plane fracture problem of four nano-cracks emanating from a regular 4n-polygon nano-hole in magnetoelectroelastic materials. Acta Physica Sinica, 2020, 69(24): 244601. doi: 10.7498/aps.69.20200850
    [6] Zhang Ye, Zhang Ran, Chang Qing, Li Hua. Surface effects on Couette gas flows in nanochannels. Acta Physica Sinica, 2019, 68(12): 124702. doi: 10.7498/aps.68.20190248
    [7] Chen Xian, Zhang Jing, Tang Zhao-Huan. Molecular dynamics study of release mechanism of stress at Si/Ge interface on a nanoscale. Acta Physica Sinica, 2019, 68(2): 026801. doi: 10.7498/aps.68.20181530
    [8] Shi Chao, Lin Chen-Sen, Chen Shuo, Zhu Jun. Molecular dynamics simulation of characteristic water molecular arrangement on graphene surface and wetting transparency of graphene. Acta Physica Sinica, 2019, 68(8): 086801. doi: 10.7498/aps.68.20182307
    [9] Dong Yang, Du Bo, Zhang Shao-Chun, Chen Xiang-Dong, Sun Fang-Wen. Solid quantum sensor based on nitrogen-vacancy center in diamond. Acta Physica Sinica, 2018, 67(16): 160301. doi: 10.7498/aps.67.20180788
    [10] Wang Peng-Wei, Liu Ming-Jie, Jiang Lei. Bioinspired multiscale interfacial materials with superwettability. Acta Physica Sinica, 2016, 65(18): 186801. doi: 10.7498/aps.65.186801
    [11] Liu En-Hua, Chen Zhao, Wen Xiao-Li, Chen Chang-Le. Influence of paramagnetic La2/3Sr1/3MnO3 layer on the multiferroic property of Bi0.8Ba0.2FeO3 film. Acta Physica Sinica, 2016, 65(11): 117701. doi: 10.7498/aps.65.117701
    [12] Song Xiao-Yan, Xu Wen-Wu, Zhang Zhe-Xu. Nanoscale stabilization of metastable phase: thermodynamic model and experimental studies. Acta Physica Sinica, 2012, 61(20): 200510. doi: 10.7498/aps.61.200510
    [13] Huang Xiu-Feng, Pan Li-Qing, Li Chen-Xi, Wang Qiang, Sun Gang, Lu Kun-Quan. Vibrational dynamics of water confined in mesoporous silica under low temperature. Acta Physica Sinica, 2012, 61(13): 136801. doi: 10.7498/aps.61.136801
    [14] Jia Lin-Nan, Huang An-Ping, Zheng Xiao-Hu, Xiao Zhi-Song, Wang Mei. Progress of memristor modulated by interfacial effect. Acta Physica Sinica, 2012, 61(21): 217306. doi: 10.7498/aps.61.217306
    [15] Xu Yong, Cai Jian-Wang. Effects of interfacial Ru, Pd, Ag, and Au insertion layers on the anisotropic magnetoresistance in Ta/NiFe/Ta trilayers. Acta Physica Sinica, 2011, 60(11): 117308. doi: 10.7498/aps.60.117308
    [16] Zhang Dong-Xian, Liu Chao, Zhang Hai-Jun. The effect of infrared laser-induced micro/nano photothermal expansion and the novel method of photothermal actuation. Acta Physica Sinica, 2008, 57(5): 3107-3112. doi: 10.7498/aps.57.3107
    [17] Cao Bing-Yang, Chen Min, Guo Zeng-Yuan. Velocity slip of liquid flow in nanochannels. Acta Physica Sinica, 2006, 55(10): 5305-5310. doi: 10.7498/aps.55.5305
    [18] Zeng Hua-Rong, Yu Han-Feng, Chu Rui-Qing, Li Guo-Rong, Yin Qing-Rui, Tang Xin-Gui. Field-induced displacement properties of nanoscale domain structure in PZT thin film. Acta Physica Sinica, 2005, 54(3): 1437-1441. doi: 10.7498/aps.54.1437
    [19] Miao Zhi-Wu, Ding Jian-Wen, Yan Xiao-Hong, Tang Na-Si. Effect of distortion on hopping conductivity:ThueMorse nanostructured model. Acta Physica Sinica, 2003, 52(5): 1213-1217. doi: 10.7498/aps.52.1213
    [20] TONG LIU-NIU, HE XIAN-MEI, LU MU. EFFECT OF ANNEALING ON THE MAGNETIC PROPERTIES OF Ni80Co20 THIN FILMS WITH IMPURITY LAYERS. Acta Physica Sinica, 2000, 49(11): 2290-2295. doi: 10.7498/aps.49.2290
Metrics
  • Abstract views:  7452
  • PDF Downloads:  215
  • Cited By: 0
Publishing process
  • Received Date:  22 May 2018
  • Accepted Date:  05 September 2018
  • Published Online:  05 December 2018

/

返回文章
返回
Baidu
map