搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于耗散孤子种子的啁啾脉冲光纤放大系统输出特性

时雷 马挺 吴浩煜 孙青 马金栋 路桥 毛庆和

引用本文:
Citation:

基于耗散孤子种子的啁啾脉冲光纤放大系统输出特性

时雷, 马挺, 吴浩煜, 孙青, 马金栋, 路桥, 毛庆和

Output pulse compressibility of the chirped pulse fiber amplification based on the dissipative solitons

Shi Lei, Ma Ting, Wu Hao-Yu, Sun Qing, Ma Jin-Dong, Lu Qiao, Mao Qing-He
PDF
导出引用
  • 以不同滤波器带宽下获得的全正色散光纤激光器耗散孤子作为啁啾脉冲放大(CPA)系统的种子脉冲, 研究了光栅对和光纤展宽器CPA系统输出脉冲的可压缩性. 结果表明, 对于大能量耗散孤子种子脉冲, 当CPA系统采用正色散光纤展宽器时, 光纤群速色散与自相位调制之间的相互作用不仅可抑制耗散孤子脉冲光谱调制的影响, 还可使脉冲在光纤展宽器中自相似演化, 从而可提高CPA输出脉冲的可压缩性. 通过优化光纤展宽器长度, 对于耗散孤子种子源, 采用光纤展宽器的CPA系统输出脉冲可压缩性与主脉冲所占脉冲总能量之比均优于采用光栅对展宽器时的情况.
    The all-normal-dispersion mode locked fiber laser can produce the dissipative soliton pulses because the laser can tolerate much more nonlinear phase shift than the other mode locked fiber lasers. Such large energy mode locked fiber lasers are excellent seed pulse sources for generating very large-energy ultrashort pulses with fiber chirped pulse amplification (CPA) systems. However, the spectral amplitude modulation carried by the dissipative soliton pulses will severely restrict the compressibility of the output pulses from the typical CPA system. Therefore, it is necessary to investigate and design a suitable CPA system for improving the compressibility of the output pulses according to the properties of dissipative solitons. In this paper, using the dissipative solitons generated by the all-normal-dispersion fiber laser with different spectral filter bandwidths as the input seed pulses, the compressible properties of the pulses for the CPA system with both the grating pair stretcher and the fiber stretcher are investigated. Our simulation results show that, for such a large-energy dissipative soliton seed pulse, when the grating pair stretcher is used in the CPA system, the spectral amplitude modulation of the seed pulse can be mapped to the temporal amplitude modulation by the stretcher, and amplified by the subsequent fiber amplifier, which introduces additional nonlinear phase, finally restricts the compressibility of the output pulses; when the normal-dispersion fiber stretcher is used, the interaction between the group velocity dispersion and the self-phase modulation can not only eliminate the influence of the modulated spectrum of the dissipative soliton on the compressible properties of the pulses, but also make it possible to evolve the pulse self-similarity in the fiber stretcher, and thus improve the compressibility of the output pulses of the CPA system. For the normal-dispersion fiber stretcher CPA system, the compressibility of the output pulses is mainly determined by the fiber stretcher length. If the fiber length is too short, the compressibility of the output pulses may be affected by the uncompleted self-similar evolution of the pulse, while the pulse compressibility is also restricted because the pulse spectral width may exceed the amplifier gain bandwidth due to the self-similar evolution process if the fiber length is too long. Moreover, for the dissipative soliton seed pulses, both the compressibility of the output pulses and the energy ratio of the main pulse to the total pulse for the CPA system with the fiber stretcher are better than those with the grating pair stretcher when the normal fiber stretcher length is suitably optimized.
      通信作者: 毛庆和, mqinghe@aiofm.ac.cn
    • 基金项目: 国家自然科学基金(批准号: 61377044, 61275186, 61205099)、国家重点基础研究发展计划(批准号: 2013CB934304)和中国计量科学研究院基本科研业务费(批准号:AKY1404)资助的课题.
      Corresponding author: Mao Qing-He, mqinghe@aiofm.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61377044, 61275186, 61205099), the National Basic Research Program of China (Grant No. 2013CB934304), and the Basic Research Foundation of the National Institute of Metrology of China (Grant No. AKY1404).
    [1]

    Boullet J, Zaouter Y, Limpert J, Petit S, Mairesse Y, Fabre B, Higuet J, Mevel E, Constant E, Cormier E 2009 Opt. Lett. 34 1489

    [2]

    Dudovich N, Oron D, Silberberg Y 2002 Nature 418 512

    [3]

    Breitling D, Fohl C, Dausinger F, Kononenko T, Konov V 2004 Top. Appl. Phys. 96 131

    [4]

    Strickland D M, Mourou G 1985 Opt. Commun. 56 219

    [5]

    Fermann M E, Kruglov V I, Thomsen B C, Dudley J M, Harvey J D 2000 Phys. Rev. Lett. 84 6010

    [6]

    Klenke A, Hdrich S, Eidam T, Rothhardt J, Kienel M, Demmler S, Gottschall T, Limpert J, Tnnermann A 2014 Opt. Lett. 24 6875

    [7]

    Deng Y J, Chien C Y, Fidric B G, Kafka J D 2009 Opt. Lett. 34 3469

    [8]

    Chang G, Galvanauskas A, Winful H G 2004 Opt. Lett. 29 2647

    [9]

    Perry M D, Ditmire T, Stuar B C 1994 Opt. Lett. 19 2149

    [10]

    Chong A, Buckley J, Renninger W, Wise F 2006 Opt. Express 14 10095

    [11]

    Tamura K, Haus H A, Ippen E P 1992 Electron. Lett. 28 2226

    [12]

    Tamura K, Ippen E P, Haus H A, Nelson L E 1993 Opt. Lett. 18 1080

    [13]

    Mukhopadhyay P K, Ozgoren K, Budunoglu I L, Ilday F O 2009 IEEE J. Sel. Topics Quantum Electron. 15 145

    [14]

    Chong A, Renninger W H, Wise F W 2008 J. Opt. Soc. Am. B 25 140

    [15]

    Schimpf D N, Seise E, Limpert J, Tunnermann A 2008 Opt. Express 16 10664

    [16]

    Schimpf D N, Seise E, Limpert J, Tunnermann A 2009 Opt. Express 17 4997

    [17]

    Agrawal G P 2007 Nonlinear Fiber Optics (San Diego: Academic Press) pp47-51

    [18]

    Heidt A M 2009 J. Light. Technol. 27 3984

    [19]

    Oktem B, lgdr C, Ilday F 2010 Nature Photon. 4 307

    [20]

    Mukhopadhyay P K, Gupta P K, Bindra K S, Oak S M 2013 Rev. Sci. Instrum. 84 076107

    [21]

    Anderson D, Desaix M, Karlsson M, Lisak M, Quiroga-Teixeiro M L 1993 JOSAB 10 1185

    [22]

    Zhao J S, Li P, Chen X D, Feng S J, Mao Q H 2012 Chin. Phys. B 21 094217

    [23]

    Schimpf D N, Seise E, Limpert J, Tunnermann A 2008 Opt. Express 16 8876

  • [1]

    Boullet J, Zaouter Y, Limpert J, Petit S, Mairesse Y, Fabre B, Higuet J, Mevel E, Constant E, Cormier E 2009 Opt. Lett. 34 1489

    [2]

    Dudovich N, Oron D, Silberberg Y 2002 Nature 418 512

    [3]

    Breitling D, Fohl C, Dausinger F, Kononenko T, Konov V 2004 Top. Appl. Phys. 96 131

    [4]

    Strickland D M, Mourou G 1985 Opt. Commun. 56 219

    [5]

    Fermann M E, Kruglov V I, Thomsen B C, Dudley J M, Harvey J D 2000 Phys. Rev. Lett. 84 6010

    [6]

    Klenke A, Hdrich S, Eidam T, Rothhardt J, Kienel M, Demmler S, Gottschall T, Limpert J, Tnnermann A 2014 Opt. Lett. 24 6875

    [7]

    Deng Y J, Chien C Y, Fidric B G, Kafka J D 2009 Opt. Lett. 34 3469

    [8]

    Chang G, Galvanauskas A, Winful H G 2004 Opt. Lett. 29 2647

    [9]

    Perry M D, Ditmire T, Stuar B C 1994 Opt. Lett. 19 2149

    [10]

    Chong A, Buckley J, Renninger W, Wise F 2006 Opt. Express 14 10095

    [11]

    Tamura K, Haus H A, Ippen E P 1992 Electron. Lett. 28 2226

    [12]

    Tamura K, Ippen E P, Haus H A, Nelson L E 1993 Opt. Lett. 18 1080

    [13]

    Mukhopadhyay P K, Ozgoren K, Budunoglu I L, Ilday F O 2009 IEEE J. Sel. Topics Quantum Electron. 15 145

    [14]

    Chong A, Renninger W H, Wise F W 2008 J. Opt. Soc. Am. B 25 140

    [15]

    Schimpf D N, Seise E, Limpert J, Tunnermann A 2008 Opt. Express 16 10664

    [16]

    Schimpf D N, Seise E, Limpert J, Tunnermann A 2009 Opt. Express 17 4997

    [17]

    Agrawal G P 2007 Nonlinear Fiber Optics (San Diego: Academic Press) pp47-51

    [18]

    Heidt A M 2009 J. Light. Technol. 27 3984

    [19]

    Oktem B, lgdr C, Ilday F 2010 Nature Photon. 4 307

    [20]

    Mukhopadhyay P K, Gupta P K, Bindra K S, Oak S M 2013 Rev. Sci. Instrum. 84 076107

    [21]

    Anderson D, Desaix M, Karlsson M, Lisak M, Quiroga-Teixeiro M L 1993 JOSAB 10 1185

    [22]

    Zhao J S, Li P, Chen X D, Feng S J, Mao Q H 2012 Chin. Phys. B 21 094217

    [23]

    Schimpf D N, Seise E, Limpert J, Tunnermann A 2008 Opt. Express 16 8876

  • [1] 张鹏, 滕浩, 杨浩, 吕仁冲, 王柯俭, 朱江峰, 魏志义. 基于Herriott型多通结构的块材料展宽与棱栅对色散补偿的啁啾脉冲放大.  , 2022, 71(11): 114202. doi: 10.7498/aps.71.20212381
    [2] 王楠, 阮双琛. 啁啾脉冲放大激光系统中展宽器色散的解析算法.  , 2020, 69(2): 024201. doi: 10.7498/aps.69.20191587
    [3] 赵丹, 王逍, 母杰, 左言磊, 周松, 周凯南, 曾小明, 李志林, 粟敬钦, 朱启华. 拼接型光栅对压缩器中刻线密度差对输出脉冲的影响及补偿方案.  , 2017, 66(2): 024201. doi: 10.7498/aps.66.024201
    [4] 张磊, 李金增. 水中受激布里渊散射脉冲的反常压缩.  , 2014, 63(5): 054202. doi: 10.7498/aps.63.054202
    [5] 张伟, 滕浩, 王兆华, 沈忠伟, 刘成, 魏志义. 采用环形再生腔结构的飞秒激光啁啾脉冲放大研究.  , 2013, 62(10): 104211. doi: 10.7498/aps.62.104211
    [6] 郭淑艳, 叶蓬, 滕浩, 张伟, 李德华, 王兆华, 魏志义. 反射式棱栅对展宽器用于啁啾脉冲放大激光的研究.  , 2013, 62(9): 094202. doi: 10.7498/aps.62.094202
    [7] 叶荣, 张彬, 李恪宇. 利用群速度匹配的级联二阶非线性实现超短激光脉冲压缩.  , 2013, 62(9): 094212. doi: 10.7498/aps.62.094212
    [8] 王建州, 黄延穗, 许毅, 李妍妍, 陆效明, 冷雨欣. 基于交叉偏振波产生的脉冲净化技术研究与应用.  , 2012, 61(9): 094214. doi: 10.7498/aps.61.094214
    [9] 葛绪雷, 马景龙, 郑轶, 鲁欣, 蒋刚, 李玉同, 魏志义, 张杰. 多脉冲序列飞秒钛宝石激光的啁啾脉冲放大.  , 2012, 61(21): 214206. doi: 10.7498/aps.61.214206
    [10] 胡摇, 王逍, 朱启华. 三类构型激光脉冲压缩器光栅拼接误差容限比较.  , 2011, 60(12): 124205. doi: 10.7498/aps.60.124205
    [11] 方进勇, 黄惠军, 张治强, 黄文华, 江伟华. 基于圆柱谐振腔的高功率微波脉冲压缩系统.  , 2011, 60(4): 048404. doi: 10.7498/aps.60.048404
    [12] 马文文, 李曙光, 尹国冰, 冯荣普, 付博. 反常色散锥形微结构光纤中高效率脉冲压缩研究.  , 2010, 59(7): 4720-4725. doi: 10.7498/aps.59.4720
    [13] 谢旭东, 朱启华, 曾小明, 王逍, 黄小军, 左言磊, 张颖, 周凯南, 黄征. 钕玻璃啁啾脉冲放大器产生百焦耳亚皮秒脉冲.  , 2009, 58(11): 7690-7694. doi: 10.7498/aps.58.7690
    [14] 冯伟伟, 林礼煌, 王文耀, 李儒新, 汪丽春. 用钛宝石再生放大器产生高重复率啁啾脉冲列.  , 2007, 56(7): 3955-3960. doi: 10.7498/aps.56.3955
    [15] 陈晓伟, 朱 毅, 刘 军, 冷雨欣, 葛晓春, 李儒新, 徐至展. 飞秒激光脉冲在正色散固体材料中的自压缩.  , 2005, 54(11): 5178-5183. doi: 10.7498/aps.54.5178
    [16] 孙振红, 柴 路, 张志刚, 王清月, 张伟力, 袁晓东, 黄小军. 马丁内兹型啁啾脉冲放大系统高阶色散的混合补偿.  , 2005, 54(2): 777-781. doi: 10.7498/aps.54.777
    [17] 宋振明, 庞冬青, 张志刚, 王清月. 超短光脉冲在分段中空光波导中的光谱展宽和脉冲压缩.  , 2005, 54(6): 2769-2773. doi: 10.7498/aps.54.2769
    [18] 刘俭辉, 丁永奎, 谭莉, 胡智勇, 李世忱. 色散渐减光纤的脉冲压缩研究.  , 2004, 53(5): 1373-1377. doi: 10.7498/aps.53.1373
    [19] 朱鹏飞, 钱列加, 薛绍林, 林尊琪. 基于“神光-Ⅱ”装置的飞秒拍瓦级光学参量啁啾脉冲放大的特性分析与系统设计.  , 2003, 52(3): 587-594. doi: 10.7498/aps.52.587
    [20] 张民, 吴振森, 张延冬, 杨廷高. 脉冲波在强起伏湍流介质中的传播特征分析.  , 2001, 50(6): 1052-1057. doi: 10.7498/aps.50.1052
计量
  • 文章访问数:  6277
  • PDF下载量:  199
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-11-01
  • 修回日期:  2015-12-29
  • 刊出日期:  2016-04-05

/

返回文章
返回
Baidu
map