Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

All-optical devices based on two-dimensional materials

Xu Yi-Quan Wang Cong

Citation:

All-optical devices based on two-dimensional materials

Xu Yi-Quan, Wang Cong
PDF
HTML
Get Citation
  • The leap in communication technology in recent years has brought new challenges to the compactness, modulation speed, working bandwidth and control efficiency of modulation equipment. The discovery of graphene has led the two-dimensional materials to develop rapidly, and a series of new materials have continuously emerged, such as MXene, black phosphorus, transition metal sulfides, etc. These new two-dimensional materials have excellent nonlinear optical effects, strong light-matter interaction, and ultra-wide working bandwidth. Using their thermo-optic effect, nonlinear effect and the combination with optical structure, the needs of ultra-fast modulation in optical communication can be met. Compact, ultra-fast, and ultra-wide will become the tags for all-optical modulation of two-dimensional materials in the future. This article focuses on all-optical devices based on thermo-optical effects and non-linear effects of two-dimensional materials, and introduces fiber-type Mach-Zehnder interferometer structures, Michelson interferometer structures, polarization interferometer structures, and micro-ring structures. In this paper, the development status of all-optical devices is discussed from the perspectives of response time, loss, driving energy, extinction ratio, and modulation depth. Finally, we review the latest developments, analyze the challenges and opportunities faced by all-optical devices, and propose that all-optical devices should be developed in the direction of ring resonators and finding better new two-dimensional materials. We believe that all-optical devices will maintain high-speed development, acting as a cornerstone to promote the progress of all-optical systems.
      Corresponding author: Wang Cong, gxgcwang@163.com
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2019YFB2203503), the National Natural Science Foundation of China (Grant Nos. 61435010, 61575089, 61705140, 61805146), and the “ National ” Taipei University of Technology-Shenzhen University Joint Research Program, China (Grant No. 2019007).
    [1]

    Koos C, Vorreau P, Vallaitis T, et al. 2009 Nat. Photonics 3 216Google Scholar

    [2]

    Willner A E, Khaleghi S, Chitgarha M R, et al. 2014 J. Lightwave Technol. 32 660Google Scholar

    [3]

    Bigo S, Leclerc O, Desurvire E 1997 IEEE J. Sel. Top. Quantum Electron. 3 1208Google Scholar

    [4]

    Slavik R, Parmigiani F, Kakande J, et al. 2010 Nat. Photonics 4 690Google Scholar

    [5]

    Hu X, Wang A, Zeng M, et al. 2016 Sci. Rep.-UK 6 32911Google Scholar

    [6]

    Koos C, Jacome L, Poulton C, et al. 2007 Opt. Express 15 5976Google Scholar

    [7]

    Patel N S, Rauschenbach K A, Hall K L 1996 IEEE Photonics Technol. Lett. 8 1695Google Scholar

    [8]

    Wang J, Kahn J M 2004 IEEE Photonics Technol. Lett. 16 1397Google Scholar

    [9]

    Alloatti L, Palmer R, Diebold S, et al. 2014 Light-Sci. Appl. 3 e173Google Scholar

    [10]

    Soref R A, Bennett B R 1987 IEEE J. Quantum Electron. 23 123Google Scholar

    [11]

    Wooten E L, Kissa K M, Yi-Yan A, et al. 2000 IEEE J. Sel. Top. Quantum Electron. 6 69Google Scholar

    [12]

    Wang C, Zhang M, Chen X, et al. 2018 Nature 562 101Google Scholar

    [13]

    Grinblat G, Abdelwahab I, Nielsen M P, et al. 2019 ACS Nano 13 9504Google Scholar

    [14]

    Ono M, Hata M, Tsunekawa M, et al. 2020 Nat. Photonics 14 37Google Scholar

    [15]

    Almeida V R, Barrios C A, Panepucci R R, et al. 2004 Nature 431 1081Google Scholar

    [16]

    Hu X, Jiang P, Ding C, et al. 2008 Nat. Photonics 2 185Google Scholar

    [17]

    Volz T, Reinhard A, Winger M, et al. 2012 Nat. Photonics 6 605Google Scholar

    [18]

    Novoselov K S, Geim A K, Morozov S V, et al. 2004 Science 306 666Google Scholar

    [19]

    Novoselov K S, Jiang D, Schedin F, et al. 2005 Proc. Natl Acad. Sci. U.S.A. 102 10451Google Scholar

    [20]

    Zhang H 2015 ACS Nano 9 9451Google Scholar

    [21]

    Zhang Y B, Tan Y W, Stormer H L, et al. 2005 Nature 438 201Google Scholar

    [22]

    Stoller M D, Park S, Zhu Y, et al. 2008 Nano Lett. 8 3498Google Scholar

    [23]

    Lee C, Wei X, Kysar J W, et al. 2008 Science 321 385Google Scholar

    [24]

    Nair R R, Blake P, Grigorenko A N, et al. 2008 Science 320 1308Google Scholar

    [25]

    Balandin A A, Ghosh S, Bao W, et al. 2008 Nano Lett. 8 902Google Scholar

    [26]

    Fiori G, Bonaccorso F, Iannaccone G, et al. 2014 Nat. Nanotechnol. 9 768Google Scholar

    [27]

    Xia F, Wang H, Xiao D, et al. 2014 Nat. Photonics 8 899Google Scholar

    [28]

    Koppens F H L, Mueller T, Avouris P, et al. 2014 Nat. Nanotechnol 9 780Google Scholar

    [29]

    Cepellotti A, Fugallo G, Paulatto L, et al. 2015 Nat. Commun. 6 6400Google Scholar

    [30]

    Pakdel A, Bando Y, Golberg D 2014 Chem. Soc. Rev. 43 934Google Scholar

    [31]

    Huang X, Zeng Z, Zhang H 2013 Chem. Soc. Rev. 42 1934Google Scholar

    [32]

    Tan C, Zhang H 2015 Chem. Soc. Rev. 44 2713Google Scholar

    [33]

    Lv R, Robinson J A, Schaak R E, et al. 2015 Accounts Chem. Res. 48 56Google Scholar

    [34]

    Zhi C, Bando Y, Tang C, et al. 2009 Adv. Mater. 21 2889Google Scholar

    [35]

    Zhang J, Chen Y, Wang X 2015 Energy Environ. Sci. 8 3092Google Scholar

    [36]

    Osada M, Sasaki T 2009 J. Mater. Chem. 19 2503Google Scholar

    [37]

    Ma R, Sasaki T 2015 Accounts Chem. Res. 48 136Google Scholar

    [38]

    Wang Q, O'Hare D 2012 Chem. Rev. 112 4124Google Scholar

    [39]

    Naguib M, Mochalin V N, Barsoum M W, et al. 2014 Adv. Mater. 26 992Google Scholar

    [40]

    Wang C, Wang Y Z, Jiang X T, et al. 2019 Laser Phys. Lett. 16 651076Google Scholar

    [41]

    王聪, 刘杰, 张晗 2019 68 188101Google Scholar

    Wang C, Liu J, Zhang H 2019 Acta Phys. Sin. 68 188101Google Scholar

    [42]

    Bae S, Kim H, Lee Y, et al. 2010 Nat. Nanotechnol. 5 574Google Scholar

    [43]

    Bao Q, Zhang H, Wang Y, et al. 2009 Adv. Funct. Mater. 19 3077Google Scholar

    [44]

    Song Y, Jang S, Han W, et al. 2010 Appl. Phys. Lett. 96 511225Google Scholar

    [45]

    Tan W D, Su C Y, Knize R J, et al. 2010 Appl. Phys. Lett. 96 311063Google Scholar

    [46]

    Hasan T, Sun Z, Wang F, et al. 2009 Adv. Mater. 21 3874Google Scholar

    [47]

    Sun Z, Hasan T, Torrisi F, et al. 2010 ACS Nano 4 803Google Scholar

    [48]

    Sun D, Divin C, Rioux J, et al. 2010 Nano Lett. 10 1293Google Scholar

    [49]

    Polat E O, Kocabas C 2013 Nano Lett. 13 5851Google Scholar

    [50]

    Liu M, Yin X, Ulin-Avila E, et al. 2011 Nature 474 64Google Scholar

    [51]

    Lee C C, Mohr C, Bethge J, et al. 2012 Opt. Lett. 37 3084Google Scholar

    [52]

    Baylam I, Cizmeciyan M N, Ozharar S, et al. 2014 Opt. Lett. 39 5180Google Scholar

    [53]

    Liu M, Yin X, Zhang X 2012 Nano Lett. 12 1482Google Scholar

    [54]

    Lee E J, Choi S Y, Jeong H, et al. 2015 Nat. Commun. 6 6851Google Scholar

    [55]

    Lee C, Suzuki S, Xie W, et al. 2012 Opt. Express 20 5264Google Scholar

    [56]

    Martinez A, Sun Z 2013 Nat. Photonics 7 842Google Scholar

    [57]

    Luo Z, Wu D, Xu B, et al. 2016 Nanoscale 8 1066Google Scholar

    [58]

    Martinez A, Yamashita S 2012 Appl. Phys. Lett. 101 411184Google Scholar

    [59]

    Li W, Chen B, Meng C, et al. 2014 Nano Lett. 14 955Google Scholar

    [60]

    Gao Y, Shiue R, Gan X, et al. 2015 Nano Lett. 15 2001Google Scholar

    [61]

    Phare C T, Lee Y D, Cardenas J, et al. 2015 Nat. Photonics 9 511Google Scholar

    [62]

    Schall D, Neumaier D, Mohsin M, et al. 2014 ACS Photonics 1 781Google Scholar

    [63]

    Wang F, Zhang Y, Tian C, et al. 2008 Science 320 206Google Scholar

    [64]

    Zanella I, Guerini S, Fagan S B, et al. 2008 Phys. Rev. B 77 734047Google Scholar

    [65]

    Han M Y, Oezyilmaz B, Zhang Y, et al. 2007 Phys. Rev. Lett. 98 206805Google Scholar

    [66]

    Ni Z H, Yu T, Lu Y H, et al. 2008 ACS Nano 2 2301Google Scholar

    [67]

    Mak K F, Lee C, Hone J, et al. 2010 Phys. Rev. Lett. 105 136805Google Scholar

    [68]

    Splendiani A, Sun L, Zhang Y, et al. 2010 Nano Lett. 10 1271Google Scholar

    [69]

    Bridgman P W 1914 J. Am. Chem. Soc. 36 1344Google Scholar

    [70]

    Wang X, Lan S 2016 Adv. Opt. Photonics 8 618Google Scholar

    [71]

    Yuan H, Liu X, Afshinmanesh F, et al. 2015 Nat. Nanotechnol. 10 707Google Scholar

    [72]

    Xia F, Wang H, Jia Y 2014 Nat. Commun. 5 4458Google Scholar

    [73]

    Wang X, Jones A M, Seyler K L, et al. 2015 Nat. Nanotechnol. 10 517Google Scholar

    [74]

    Li D, Jussila H, Karvonen L, et al. 2015 Sci. Rep.-UK 5 15899Google Scholar

    [75]

    Wang Y, Zhang F, Tang X, et al. 2018 Laser Photonics Rev. 12 1800016Google Scholar

    [76]

    Song Y, Liang Z, Jiang X, et al. 2017 2D Mater. 4 450104Google Scholar

    [77]

    Anasori B, Lukatskaya M R, Gogotsi Y 2017 Nat. Rev. Mater. 2 16098Google Scholar

    [78]

    Jhon Y I, Koo J, Anasori B, et al. 2017 Adv. Mater. 29 1702496Google Scholar

    [79]

    Naguib M, Mashtalir O, Carle J, et al. 2012 ACS Nano 6 1322Google Scholar

    [80]

    Ying Y, Liu Y, Wang X, et al. 2015 ACS Appl. Mater. Interfaces 7 1795Google Scholar

    [81]

    Urbankowski P, Anasori B, Makaryan T, et al. 2016 Nanoscale 8 11385Google Scholar

    [82]

    Jiang X, Liu S, Liang W, et al. 2018 Laser Photonics Rev. 12 1700229Google Scholar

    [83]

    Li R, Zhang L, Shi L, et al. 2017 ACS Nano 11 3752Google Scholar

    [84]

    Liu B, Zhou K 2019 Prog. Mater. Sci. 100 99Google Scholar

    [85]

    Wang K, Feng Y, Chang C, et al. 2014 Nanoscale 6 10530Google Scholar

    [86]

    Demetriou G, Bookey H T, Biancalana F, et al. 2016 Opt. Express 24 13033Google Scholar

    [87]

    Wang K, Szydlowska B M, Wang G, et al. 2016 ACS Nano 10 6923Google Scholar

    [88]

    Ronchi R M, Arantes J T, Santos S F 2019 Ceram. Int. 45 18167Google Scholar

    [89]

    Zheng X, Chen R, Shi G, et al. 2015 Opt. Lett. 40 3480Google Scholar

    [90]

    Guo Q, Wu K, Shao Z, et al. 2019 Adv. Opt. Mater. 7 1900322Google Scholar

    [91]

    Zhou H, Cai Y, Zhang G, et al. 2017 NPJ 2D Mater. Appl. 1 14Google Scholar

    [92]

    Sotor J, Sobon G, Abramski K M 2014 Opt. Express 22 13244Google Scholar

    [93]

    Lee J, Koo J, Jhon Y M, et al. 2014 Opt. Express 22 6165Google Scholar

    [94]

    Sotor J, Sobon G, Macherzynski W, et al. 2014 Laser Phys. Lett. 11 55102Google Scholar

    [95]

    Zeng Z, Yin Z, Huang X, et al. 2011 Angew. Chem. Int. Ed. 50 11093Google Scholar

    [96]

    Aharon E, Albo A, Kalina M, et al. 2006 Adv. Funct. Mater. 16 980Google Scholar

    [97]

    Hernandez Y, Nicolosi V, Lotya M, et al. 2008 Nat. Nanotechnol. 3 563Google Scholar

    [98]

    Xia H, Li H, Lan C, et al. 2014 Opt. Express 22 17341Google Scholar

    [99]

    Reina A, Jia X, Ho J, et al. 2009 Nano Lett. 9 30Google Scholar

    [100]

    Wu Q, Chen S, Wang Y, et al. 2019 Adv. Mater. Technol.-US 4 1800532Google Scholar

    [101]

    Gan X, Zhao C, Wang Y, et al. 2015 Optica 2 468Google Scholar

    [102]

    Wu K, Guo C, Wang H, et al. 2017 Opt. Express 25 17639Google Scholar

    [103]

    Wang Y, Huang W, Wang C, et al. 2019 Laser Photonics Rev. 13 1800313Google Scholar

    [104]

    Wang Y, Huang W, Zhao J, et al. 2019 J. Mater. Chem. C 7 871Google Scholar

    [105]

    Wang C, Wang Y, Jiang X, et al. 2019 Adv. Opt. Mater. 7 1900060Google Scholar

    [106]

    Wang Y, Wu K, Chen J 2018 Chin. Opt. Lett. 16 20003Google Scholar

    [107]

    Wang Y, Gan X, Zhao C, et al. 2016 Appl. Phys. Lett. 108 171905Google Scholar

    [108]

    Chu R, Guan C, Bo Y, et al. 2020 Opt. Lett. 45 177Google Scholar

    [109]

    Wu Q, Huang W, Wang Y, et al. 2020 Adv. Opt. Mater. 8 1900977Google Scholar

    [110]

    Xing G, Guo H, Zhang X, et al. 2010 Opt. Express 18 4564Google Scholar

    [111]

    Wu Y, Wu Q, Sun F, et al. 2015 Proc. Natl Acad. Sci. U.S.A. 112 11800Google Scholar

    [112]

    Shao Z, Wu K, Chen J 2020 Chin. Opt. Lett. 18 60603Google Scholar

    [113]

    Shen M, Ruan L, Wang X, et al. 2011 Phys. Rev. A 83 45804Google Scholar

    [114]

    Eliasson B, Liu C S 2016 New J. Phys. 18 53007Google Scholar

    [115]

    Ge Y, Zhu Z, Xu Y, et al. 2018 Adv. Opt. Mater. 6 1701166Google Scholar

    [116]

    Zheng J, Tang X, Yang Z, et al. 2017 Adv. Opt. Mater. 5 1700026Google Scholar

    [117]

    FEJER M M, MAGEL G A, JUNDT D H, et al. 1992 IEEE J. Quantum Electron. 28 2631Google Scholar

    [118]

    Yu S, Wu X, Chen K, et al. 2016 Optica 3 541Google Scholar

    [119]

    Wu X, Yu S, Yang H, et al. 2016 Carbon 96 1114Google Scholar

    [120]

    Zhang F, Han S, Liu Y, et al. 2015 Appl. Phys. Lett. 106 91102Google Scholar

    [121]

    Xia F, Farmer D B, Lin Y, et al. 2010 Nano Lett. 10 715Google Scholar

    [122]

    Zheng J, Yang Z, Si C, et al. 2017 ACS Photonics 4 1466Google Scholar

    [123]

    Wang K, Zheng J, Huang H, et al. 2019 Opt. Express 27 16798Google Scholar

    [124]

    Chen S, Miao L, Chen X, et al. 2015 Adv. Opt. Mater. 3 1769Google Scholar

    [125]

    Liao Y, Feng G Y, Zhou H, et al. 2018 IEEE Photonics Technol. Lett. 30 661Google Scholar

    [126]

    Song Y, Chen Y, Jiang X, et al. 2018 Adv. Opt. Mater. 6 1701287Google Scholar

    [127]

    Song Y, Chen Y, Jiang X, et al. 2019 Adv. Opt. Mater. 7 1801777Google Scholar

    [128]

    Wu Y, Yao B, Cheng Y, et al. 2014 IEEE Photonics Technol. Lett. 26 249Google Scholar

    [129]

    Liu H, Neal A T, Zhu Z, et al. 2014 ACS Nano 8 4033Google Scholar

    [130]

    Wood J D, Wells S A, Jariwala D, et al. 2014 Nano Lett. 14 6964Google Scholar

    [131]

    Island J O, Steele G A, van der Zant H S J, et al. 2015 2D Mater. 2 11002Google Scholar

    [132]

    Doganov R A, O'Farrell E C T, Koenig S P, et al. 2015 Nat. Commun. 6 6647Google Scholar

    [133]

    Ohtsubo Y, Perfetti L, Goerbig M O, et al. 2013 New J. Phys. 15 33041Google Scholar

    [134]

    Rao S M, Heitz J J F, Roger T, et al. 2014 Opt. Lett. 39 5345Google Scholar

    [135]

    Li X, Cai W, An J, et al. 2009 Science 324 1312Google Scholar

    [136]

    Wu K, Soci C, Shum P P, et al. 2014 Opt. Express 22 295Google Scholar

    [137]

    Wu K, Garcia De Abajo J, Soci C, et al. 2014 Light-Sci. Appl. 3 e147Google Scholar

    [138]

    Rajbenbach H, Fainman Y, Lee S H 1987 Appl. Opt. 26 1024Google Scholar

    [139]

    O'Brien J L 2007 Science 318 1567Google Scholar

    [140]

    Caulfield H J, Dolev S 2010 Nat. Photonics 4 261Google Scholar

    [141]

    Appeltant L, Soriano M C, Van der Sande G, et al. 2011 Nat. Commun. 2 468Google Scholar

    [142]

    Woods D, Naughton T J 2012 Nat. Phys. 8 257Google Scholar

    [143]

    Chung I, Lee B, He J, et al. 2012 Nature 485 486Google Scholar

    [144]

    Lee M M, Teuscher J, Miyasaka T, et al. 2012 Science 338 643Google Scholar

    [145]

    Kim H, Lee C, Im J, et al. 2012 Sci. Rep.-UK 2 591Google Scholar

    [146]

    Dikin D A, Stankovich S, Zimney E J, et al. 2007 Nature 448 457Google Scholar

    [147]

    Sobon G, Sotor J, Jagiello J, et al. 2012 Opt. Express 20 19463Google Scholar

    [148]

    Moore J E 2010 Nature 464 194Google Scholar

    [149]

    Zhang H, Liu C, Qi X, et al. 2009 Nat. Phys. 5 438Google Scholar

    [150]

    Dash A, Palanchoke U, Gely M, et al. 2019 Opt. Express 27 34094Google Scholar

    [151]

    Qiu C, Yang Y, Li C, et al. 2017 Sci. Rep.-UK 7 17046Google Scholar

    [152]

    Gao Y, Zhou W, Sun X, et al. 2017 Opt. Lett. 42 1950Google Scholar

    [153]

    Yuhan Y, Kangkang W, Shan G, et al. 2020 Nanophotonics-Berlin 20190510Google Scholar

    [154]

    Grinblat G, Nielsen M P, Dichtl P, et al. 2019 Sci. Adv. 5 w32626Google Scholar

  • 图 1  (a)石墨烯[27], (b) TMDs[27], (c) BP[27]和(d) MXene[78]的原子结构及带隙结构; (e)各材料带隙分布图[27,78]

    Figure 1.  Atomic structures and band structures of (a) graphene[27], (b) TMDs[27], (c) BP[27]and (d) MXene[78]. (e) Distribution diagram of the bandgap of each material[27]. Reprinted by permission from Ref. [27]. Copyright Nature Photonics. Reprinted by permission from Ref. [78]. Copyright Advanced Materials.

    图 2  (a)基于MXene材料的MZI全光调制器的实验装置[100]; (b) MXene Ti3C2Tx纳米片的高放大倍数HRTEM原子晶格结构[100]; (c)沉积有MXenes的微纳光纤的光学显微镜图像[100]; (d) Ti3C2Tx和Ti3AlC2的拉曼光谱图[100]

    Figure 2.  (a) Experimental setup of an MZI all-optical modulator based on MXene materials; (b) high-magnification HRTEM atomic lattice structure of MXene nanosheet; (c) optical microscopy image of microfibers deposited with MXenes; (d) Raman spectrum of Ti3C2Tx and Ti3AlC2. Reprinted by permission from Ref. [100]. Copyright Advanced Materials.

    图 3  (a)两个输出端口的干涉频谱[100]; (b)在122 mW的控制光(泵)功率下的干涉条纹[100]; (c)相移与不同控制光功率的关系[100]

    Figure 3.  (a) Interference spectra of two output ports; (b) interference fringes at a control light (pump) power of 122 mW; (c) phase shift versus different control light (pump) powers. Reprinted by permission from Ref. [100]. Copyright Advanced Materials.

    图 4  (a) 980 nm控制光波形图[100]; (b)信号光开关转换及其拟合曲线[100]; (c)错误输出[100]; (d)信号光为40 Hz时的输出[100]

    Figure 4.  (a) Waveform of the 980 nm control light (pump); (b) signal light switch conversion and its fitting curve; (c) output breaking; (d) waveforms of signal light at 40 Hz. Reprinted by permission from Ref. [100]. Copyright Advanced Materials.

    图 5  (a) MI结构的全光开关实验装置[104]; (b)控制光和信号光的波形及拟合曲线[104]; (c)控制光调制频率改变时的信号光波形[104]

    Figure 5.  (a) All-optical switch experimental device with MI structure; (b) waveforms of control light and signal light and their fitting curves; (c) waveforms of signal light when control light modulation frequency changes. Reprinted by permission from Ref. [104]. Copyright Journal of Materials Chemistry C.

    图 6  (a) MI双芯光纤三维结构示意图[108]; (b)双芯光纤横截面[108]; (c), (d)双芯光纤抛光区域的横截面和抛光表面[108]; (e)双芯光纤输出光强度监视[108]

    Figure 6.  (a) Schematic diagram of the three-dimensional structure of MI twin-core fiber; (b) cross section of twin-core fiber; (c) cross section and (d) polished surface of the polished area of twin-core fiber; (e) twin-core fiber output light intensity monitoring. Reprinted by permission from Ref. [108]. Copyright Optics Letters.

    图 7  (a) PI结构全光调制实验装置[106]; (b)信号光波形, 插图为控制光波形[106]; (c)单个全光信号切换以及相应的拟合曲线[106]; (d)长期测量的输出信号光[106]

    Figure 7.  (a) PI structure all-optical modulation experimental device; (b) signal light waveform, illustration: control light waveform; (c) single all optical signal switching and corresponding fitting curve; (d) output signal light for long-term measurement. Reprinted by permission from Ref. [106]. Copyright Chinese Optics Letters.

    图 8  (a)基于MFR的全光开光实验装置[107]; (b) GMFR制备过程[107]; (c) GMFR光学显微镜图像[107]; (d)控制光开(黑色)和控制光关(蓝色)的GMFR透射光谱, 红线表示FBG过滤的反射峰[107]

    Figure 8.  (a) All-optical switch experimental device; (b) GMFR preparation process; (c) GMFR optical microscope image; (d) GMFR transmission spectrum of controlled light on (black) and controlled light off (blue), the red line represents the reflection peak of FBG filtering. Reprinted by permission from Ref. [107]. Copyright Applied Physics Letters.

    图 9  全光开关的信号光与控制光波形对比[107]

    Figure 9.  Comparison of signal light and control light waveforms of all-optical switches. Reprinted by permission from Ref. [107]. Copyright Applied Physics Letters.

    图 10  (a)基于锑材料微纳光纤的全光阈值器实验装置[76]; (b)光纤激光源脉冲的波形[76]; (c)噪声脉冲的波形[76]; (d)光纤激光源和噪声源合并后的脉冲波形[76]

    Figure 10.  (a) Experimental diagram of all-optical thresholder; (b) pulse profile of fiber laser source; (c) noise pulse tracking; (d) merger pulse trajectory includes fiber laser source and noise source. Reprinted by permission from Ref. [76]. Copyright 2D Materials.

    图 11  (a)光脉冲穿过锑材料微纳光纤之前的波形[76]; (b)光脉冲穿过锑材料微纳光纤之后的波形[76]

    Figure 11.  (a) Waveform of light pulse before passing through antimony micro-nano fiber; (b) waveform of light pulse after passing through micro-nano fiber of antimony material. Reprinted by permission from Ref. [76]. Copyright 2D Materials.

    图 12  (a)基于石墨烯光克尔效应的全光相位调制器实验装置[118]; (b) GCM的光学显微镜图像[118]; (c) GCM的传输频谱[118]; (d)顶部: 成对的开关脉冲; 中部: GCM的光纤的脉冲调制信号; 底部: 包含GCM的MZI脉冲调制信号[118]; (e)对于包含GCM的损耗调制(红色实线), MZI调制器相位调制(红色实线)以及MZI的损耗调制(蓝色虚线)的输出信号的MD与峰值开关功率的关系[118]

    Figure 12.  (a) Experimental device of all-optical phase modulator based on graphene optical Kerr effect; (b) optical microscope image of GCM; (c) transmission spectrum of GCM; (d) top: paired switching pulses; middle: pulse modulation signal of GCM fiber; bottom: MZI pulse modulation signal containing GCM; (e) for loss modulation including GCM (solid red line), MZI modulator phase modulation (solid red line) and MZI loss modulation (blue dotted line) output signal modulation depth and peak switching power relationship. Reprinted by permission from Ref. [118]. Copyright Optica.

    图 13  输出信号光在不同时间范围内的波形[118]

    Figure 13.  Waveforms of the output signal light in different time ranges. Reprinted by permission from Ref. [118]. Copyright Optica.

    图 14  (a)具有BP涂层的微纳光纤光学显微镜图像[122]; (b)基于BP四波混频的波长转换器示意图[122]; (c)系统输出光谱图[122]; (d)不同RF频率下的消光比和转换效率[122]; (e)不同RF频率下对应的FWM光频谱细节[122]

    Figure 14.  (a) Optic microscope image of BP-coated microfiber; (b) schematic diagram of wavelength converter based on BP four-wave mixing; (c) system output spectrum; (d) extinction ratio and conversion at different RF frequencies efficiency; (e) details of the corresponding FWM optical spectrum at different RF frequencies. Reprinted by permission from Ref. [122]. Copyright Acs Photonics.

    表 1  二维材料特性总结

    Table 1.  Properties of different 2D materials.

    二维材料
    种类
    能隙/eV厚度/Å导热系数
    /W·m–1·K-1
    饱和吸收强度Is/GW·cm–2三阶极化率
    $ {\rm{Im}}\chi^{(3)} $/esu
    非线性折射率n2/cm2·W–1载流子弛豫
    时间
    Ref.
    graphene03.351600—5300583–8.7 × 10–1510–7200 fs—1 ps[8486]
    TMDs1—26.04—6.9119—112381—590–(0.145—1.38) × 10–1410–121 ps—400 ps[84, 85]
    BP0.3—2.25.24—5.296—89459–7.85 × 10–156.8 × 10–9360 fs—1.36 ps[84, 89, 87]
    MXene$ < 0.2 $298—4601010–13–10–16[82, 88]
    DownLoad: CSV

    表 2  基于二维材料热光效应的全光纤器件总结

    Table 2.  Comparison of all-fiber devices based on two-dimensional material thermo-optic effect.

    全光器件结构二维材料类型耦合形式上升时间下降时间消光比/dB控制效率/$\pi$·mW–1Ref.
    MZIgrapheneMF4.00 ms1.40 ms200.091[101]
    MxeneMF4.10 ms3.55 ms18.530.061[100]
    phosphoreneMF2.50 ms2.10 ms170.029[75]
    boronMF0.48 ms0.69 ms10.50.01329[90]
    WS2MF7.30 ms3.50 ms150.0174[102]
    MIantimoneneMF3.20 ms2.90 ms250.049[103]
    bismutheneMF1.56 ms1.53 ms250.076[104]
    MXeneMF2.30 ms2.10 ms270.034[105]
    grapheneSPTCF55.80 ms15.50 ms70.0102[108]
    PIMoS2TF324.5 μs353.1 μs10NA[106]
    micro-ringgraphenenMF294.7 μs212.2 μs130.115[107]
    MXeneMF306 μs301 μs12.90.196[109]
    注: MF, microfiber. TF, Thin film. SPTCF, side-polished twin-core fiber.
    DownLoad: CSV

    表 3  基于不同二维材料非线性效应的全光器件总结

    Table 3.  Comparison of all-optical devices based on nonlinear effects of different two-dimensional materials.

    非线性效应类型二维材料类型耦合
    形式
    上升时间下降时间消光比/dB调制深度/%控制效率
    π·mW–1
    转换效率/dB调谐范围/nmRef.
    SAgrapheneMF~0~073.08, 79.11, 81.38
    (1310 nm, 1550 nm, 1610 nm)
    [125]
    BPMF~0.2 ns~0.4 ns4.7[116]
    Kerr effectgrapheneMF3 μs100 μs[118]
    bismuthineMF22[123]
    Topological insulatorsMF140.0125[124]
    BPMF260.0081[122]
    antimoneneMF120.0071126
    FWMbismuthineMF17-654[123]
    Topological insulatorsMF-346.4[124]
    BPMF10-603[122]
    antimoneneMF13-655.5[126]
    MXeneMF13-595[127]
    grapheneMF13-595[128]
    注: MF, microfiber. SA, saturable absorption. FWM, four-wave-mixing.
    DownLoad: CSV
    Baidu
  • [1]

    Koos C, Vorreau P, Vallaitis T, et al. 2009 Nat. Photonics 3 216Google Scholar

    [2]

    Willner A E, Khaleghi S, Chitgarha M R, et al. 2014 J. Lightwave Technol. 32 660Google Scholar

    [3]

    Bigo S, Leclerc O, Desurvire E 1997 IEEE J. Sel. Top. Quantum Electron. 3 1208Google Scholar

    [4]

    Slavik R, Parmigiani F, Kakande J, et al. 2010 Nat. Photonics 4 690Google Scholar

    [5]

    Hu X, Wang A, Zeng M, et al. 2016 Sci. Rep.-UK 6 32911Google Scholar

    [6]

    Koos C, Jacome L, Poulton C, et al. 2007 Opt. Express 15 5976Google Scholar

    [7]

    Patel N S, Rauschenbach K A, Hall K L 1996 IEEE Photonics Technol. Lett. 8 1695Google Scholar

    [8]

    Wang J, Kahn J M 2004 IEEE Photonics Technol. Lett. 16 1397Google Scholar

    [9]

    Alloatti L, Palmer R, Diebold S, et al. 2014 Light-Sci. Appl. 3 e173Google Scholar

    [10]

    Soref R A, Bennett B R 1987 IEEE J. Quantum Electron. 23 123Google Scholar

    [11]

    Wooten E L, Kissa K M, Yi-Yan A, et al. 2000 IEEE J. Sel. Top. Quantum Electron. 6 69Google Scholar

    [12]

    Wang C, Zhang M, Chen X, et al. 2018 Nature 562 101Google Scholar

    [13]

    Grinblat G, Abdelwahab I, Nielsen M P, et al. 2019 ACS Nano 13 9504Google Scholar

    [14]

    Ono M, Hata M, Tsunekawa M, et al. 2020 Nat. Photonics 14 37Google Scholar

    [15]

    Almeida V R, Barrios C A, Panepucci R R, et al. 2004 Nature 431 1081Google Scholar

    [16]

    Hu X, Jiang P, Ding C, et al. 2008 Nat. Photonics 2 185Google Scholar

    [17]

    Volz T, Reinhard A, Winger M, et al. 2012 Nat. Photonics 6 605Google Scholar

    [18]

    Novoselov K S, Geim A K, Morozov S V, et al. 2004 Science 306 666Google Scholar

    [19]

    Novoselov K S, Jiang D, Schedin F, et al. 2005 Proc. Natl Acad. Sci. U.S.A. 102 10451Google Scholar

    [20]

    Zhang H 2015 ACS Nano 9 9451Google Scholar

    [21]

    Zhang Y B, Tan Y W, Stormer H L, et al. 2005 Nature 438 201Google Scholar

    [22]

    Stoller M D, Park S, Zhu Y, et al. 2008 Nano Lett. 8 3498Google Scholar

    [23]

    Lee C, Wei X, Kysar J W, et al. 2008 Science 321 385Google Scholar

    [24]

    Nair R R, Blake P, Grigorenko A N, et al. 2008 Science 320 1308Google Scholar

    [25]

    Balandin A A, Ghosh S, Bao W, et al. 2008 Nano Lett. 8 902Google Scholar

    [26]

    Fiori G, Bonaccorso F, Iannaccone G, et al. 2014 Nat. Nanotechnol. 9 768Google Scholar

    [27]

    Xia F, Wang H, Xiao D, et al. 2014 Nat. Photonics 8 899Google Scholar

    [28]

    Koppens F H L, Mueller T, Avouris P, et al. 2014 Nat. Nanotechnol 9 780Google Scholar

    [29]

    Cepellotti A, Fugallo G, Paulatto L, et al. 2015 Nat. Commun. 6 6400Google Scholar

    [30]

    Pakdel A, Bando Y, Golberg D 2014 Chem. Soc. Rev. 43 934Google Scholar

    [31]

    Huang X, Zeng Z, Zhang H 2013 Chem. Soc. Rev. 42 1934Google Scholar

    [32]

    Tan C, Zhang H 2015 Chem. Soc. Rev. 44 2713Google Scholar

    [33]

    Lv R, Robinson J A, Schaak R E, et al. 2015 Accounts Chem. Res. 48 56Google Scholar

    [34]

    Zhi C, Bando Y, Tang C, et al. 2009 Adv. Mater. 21 2889Google Scholar

    [35]

    Zhang J, Chen Y, Wang X 2015 Energy Environ. Sci. 8 3092Google Scholar

    [36]

    Osada M, Sasaki T 2009 J. Mater. Chem. 19 2503Google Scholar

    [37]

    Ma R, Sasaki T 2015 Accounts Chem. Res. 48 136Google Scholar

    [38]

    Wang Q, O'Hare D 2012 Chem. Rev. 112 4124Google Scholar

    [39]

    Naguib M, Mochalin V N, Barsoum M W, et al. 2014 Adv. Mater. 26 992Google Scholar

    [40]

    Wang C, Wang Y Z, Jiang X T, et al. 2019 Laser Phys. Lett. 16 651076Google Scholar

    [41]

    王聪, 刘杰, 张晗 2019 68 188101Google Scholar

    Wang C, Liu J, Zhang H 2019 Acta Phys. Sin. 68 188101Google Scholar

    [42]

    Bae S, Kim H, Lee Y, et al. 2010 Nat. Nanotechnol. 5 574Google Scholar

    [43]

    Bao Q, Zhang H, Wang Y, et al. 2009 Adv. Funct. Mater. 19 3077Google Scholar

    [44]

    Song Y, Jang S, Han W, et al. 2010 Appl. Phys. Lett. 96 511225Google Scholar

    [45]

    Tan W D, Su C Y, Knize R J, et al. 2010 Appl. Phys. Lett. 96 311063Google Scholar

    [46]

    Hasan T, Sun Z, Wang F, et al. 2009 Adv. Mater. 21 3874Google Scholar

    [47]

    Sun Z, Hasan T, Torrisi F, et al. 2010 ACS Nano 4 803Google Scholar

    [48]

    Sun D, Divin C, Rioux J, et al. 2010 Nano Lett. 10 1293Google Scholar

    [49]

    Polat E O, Kocabas C 2013 Nano Lett. 13 5851Google Scholar

    [50]

    Liu M, Yin X, Ulin-Avila E, et al. 2011 Nature 474 64Google Scholar

    [51]

    Lee C C, Mohr C, Bethge J, et al. 2012 Opt. Lett. 37 3084Google Scholar

    [52]

    Baylam I, Cizmeciyan M N, Ozharar S, et al. 2014 Opt. Lett. 39 5180Google Scholar

    [53]

    Liu M, Yin X, Zhang X 2012 Nano Lett. 12 1482Google Scholar

    [54]

    Lee E J, Choi S Y, Jeong H, et al. 2015 Nat. Commun. 6 6851Google Scholar

    [55]

    Lee C, Suzuki S, Xie W, et al. 2012 Opt. Express 20 5264Google Scholar

    [56]

    Martinez A, Sun Z 2013 Nat. Photonics 7 842Google Scholar

    [57]

    Luo Z, Wu D, Xu B, et al. 2016 Nanoscale 8 1066Google Scholar

    [58]

    Martinez A, Yamashita S 2012 Appl. Phys. Lett. 101 411184Google Scholar

    [59]

    Li W, Chen B, Meng C, et al. 2014 Nano Lett. 14 955Google Scholar

    [60]

    Gao Y, Shiue R, Gan X, et al. 2015 Nano Lett. 15 2001Google Scholar

    [61]

    Phare C T, Lee Y D, Cardenas J, et al. 2015 Nat. Photonics 9 511Google Scholar

    [62]

    Schall D, Neumaier D, Mohsin M, et al. 2014 ACS Photonics 1 781Google Scholar

    [63]

    Wang F, Zhang Y, Tian C, et al. 2008 Science 320 206Google Scholar

    [64]

    Zanella I, Guerini S, Fagan S B, et al. 2008 Phys. Rev. B 77 734047Google Scholar

    [65]

    Han M Y, Oezyilmaz B, Zhang Y, et al. 2007 Phys. Rev. Lett. 98 206805Google Scholar

    [66]

    Ni Z H, Yu T, Lu Y H, et al. 2008 ACS Nano 2 2301Google Scholar

    [67]

    Mak K F, Lee C, Hone J, et al. 2010 Phys. Rev. Lett. 105 136805Google Scholar

    [68]

    Splendiani A, Sun L, Zhang Y, et al. 2010 Nano Lett. 10 1271Google Scholar

    [69]

    Bridgman P W 1914 J. Am. Chem. Soc. 36 1344Google Scholar

    [70]

    Wang X, Lan S 2016 Adv. Opt. Photonics 8 618Google Scholar

    [71]

    Yuan H, Liu X, Afshinmanesh F, et al. 2015 Nat. Nanotechnol. 10 707Google Scholar

    [72]

    Xia F, Wang H, Jia Y 2014 Nat. Commun. 5 4458Google Scholar

    [73]

    Wang X, Jones A M, Seyler K L, et al. 2015 Nat. Nanotechnol. 10 517Google Scholar

    [74]

    Li D, Jussila H, Karvonen L, et al. 2015 Sci. Rep.-UK 5 15899Google Scholar

    [75]

    Wang Y, Zhang F, Tang X, et al. 2018 Laser Photonics Rev. 12 1800016Google Scholar

    [76]

    Song Y, Liang Z, Jiang X, et al. 2017 2D Mater. 4 450104Google Scholar

    [77]

    Anasori B, Lukatskaya M R, Gogotsi Y 2017 Nat. Rev. Mater. 2 16098Google Scholar

    [78]

    Jhon Y I, Koo J, Anasori B, et al. 2017 Adv. Mater. 29 1702496Google Scholar

    [79]

    Naguib M, Mashtalir O, Carle J, et al. 2012 ACS Nano 6 1322Google Scholar

    [80]

    Ying Y, Liu Y, Wang X, et al. 2015 ACS Appl. Mater. Interfaces 7 1795Google Scholar

    [81]

    Urbankowski P, Anasori B, Makaryan T, et al. 2016 Nanoscale 8 11385Google Scholar

    [82]

    Jiang X, Liu S, Liang W, et al. 2018 Laser Photonics Rev. 12 1700229Google Scholar

    [83]

    Li R, Zhang L, Shi L, et al. 2017 ACS Nano 11 3752Google Scholar

    [84]

    Liu B, Zhou K 2019 Prog. Mater. Sci. 100 99Google Scholar

    [85]

    Wang K, Feng Y, Chang C, et al. 2014 Nanoscale 6 10530Google Scholar

    [86]

    Demetriou G, Bookey H T, Biancalana F, et al. 2016 Opt. Express 24 13033Google Scholar

    [87]

    Wang K, Szydlowska B M, Wang G, et al. 2016 ACS Nano 10 6923Google Scholar

    [88]

    Ronchi R M, Arantes J T, Santos S F 2019 Ceram. Int. 45 18167Google Scholar

    [89]

    Zheng X, Chen R, Shi G, et al. 2015 Opt. Lett. 40 3480Google Scholar

    [90]

    Guo Q, Wu K, Shao Z, et al. 2019 Adv. Opt. Mater. 7 1900322Google Scholar

    [91]

    Zhou H, Cai Y, Zhang G, et al. 2017 NPJ 2D Mater. Appl. 1 14Google Scholar

    [92]

    Sotor J, Sobon G, Abramski K M 2014 Opt. Express 22 13244Google Scholar

    [93]

    Lee J, Koo J, Jhon Y M, et al. 2014 Opt. Express 22 6165Google Scholar

    [94]

    Sotor J, Sobon G, Macherzynski W, et al. 2014 Laser Phys. Lett. 11 55102Google Scholar

    [95]

    Zeng Z, Yin Z, Huang X, et al. 2011 Angew. Chem. Int. Ed. 50 11093Google Scholar

    [96]

    Aharon E, Albo A, Kalina M, et al. 2006 Adv. Funct. Mater. 16 980Google Scholar

    [97]

    Hernandez Y, Nicolosi V, Lotya M, et al. 2008 Nat. Nanotechnol. 3 563Google Scholar

    [98]

    Xia H, Li H, Lan C, et al. 2014 Opt. Express 22 17341Google Scholar

    [99]

    Reina A, Jia X, Ho J, et al. 2009 Nano Lett. 9 30Google Scholar

    [100]

    Wu Q, Chen S, Wang Y, et al. 2019 Adv. Mater. Technol.-US 4 1800532Google Scholar

    [101]

    Gan X, Zhao C, Wang Y, et al. 2015 Optica 2 468Google Scholar

    [102]

    Wu K, Guo C, Wang H, et al. 2017 Opt. Express 25 17639Google Scholar

    [103]

    Wang Y, Huang W, Wang C, et al. 2019 Laser Photonics Rev. 13 1800313Google Scholar

    [104]

    Wang Y, Huang W, Zhao J, et al. 2019 J. Mater. Chem. C 7 871Google Scholar

    [105]

    Wang C, Wang Y, Jiang X, et al. 2019 Adv. Opt. Mater. 7 1900060Google Scholar

    [106]

    Wang Y, Wu K, Chen J 2018 Chin. Opt. Lett. 16 20003Google Scholar

    [107]

    Wang Y, Gan X, Zhao C, et al. 2016 Appl. Phys. Lett. 108 171905Google Scholar

    [108]

    Chu R, Guan C, Bo Y, et al. 2020 Opt. Lett. 45 177Google Scholar

    [109]

    Wu Q, Huang W, Wang Y, et al. 2020 Adv. Opt. Mater. 8 1900977Google Scholar

    [110]

    Xing G, Guo H, Zhang X, et al. 2010 Opt. Express 18 4564Google Scholar

    [111]

    Wu Y, Wu Q, Sun F, et al. 2015 Proc. Natl Acad. Sci. U.S.A. 112 11800Google Scholar

    [112]

    Shao Z, Wu K, Chen J 2020 Chin. Opt. Lett. 18 60603Google Scholar

    [113]

    Shen M, Ruan L, Wang X, et al. 2011 Phys. Rev. A 83 45804Google Scholar

    [114]

    Eliasson B, Liu C S 2016 New J. Phys. 18 53007Google Scholar

    [115]

    Ge Y, Zhu Z, Xu Y, et al. 2018 Adv. Opt. Mater. 6 1701166Google Scholar

    [116]

    Zheng J, Tang X, Yang Z, et al. 2017 Adv. Opt. Mater. 5 1700026Google Scholar

    [117]

    FEJER M M, MAGEL G A, JUNDT D H, et al. 1992 IEEE J. Quantum Electron. 28 2631Google Scholar

    [118]

    Yu S, Wu X, Chen K, et al. 2016 Optica 3 541Google Scholar

    [119]

    Wu X, Yu S, Yang H, et al. 2016 Carbon 96 1114Google Scholar

    [120]

    Zhang F, Han S, Liu Y, et al. 2015 Appl. Phys. Lett. 106 91102Google Scholar

    [121]

    Xia F, Farmer D B, Lin Y, et al. 2010 Nano Lett. 10 715Google Scholar

    [122]

    Zheng J, Yang Z, Si C, et al. 2017 ACS Photonics 4 1466Google Scholar

    [123]

    Wang K, Zheng J, Huang H, et al. 2019 Opt. Express 27 16798Google Scholar

    [124]

    Chen S, Miao L, Chen X, et al. 2015 Adv. Opt. Mater. 3 1769Google Scholar

    [125]

    Liao Y, Feng G Y, Zhou H, et al. 2018 IEEE Photonics Technol. Lett. 30 661Google Scholar

    [126]

    Song Y, Chen Y, Jiang X, et al. 2018 Adv. Opt. Mater. 6 1701287Google Scholar

    [127]

    Song Y, Chen Y, Jiang X, et al. 2019 Adv. Opt. Mater. 7 1801777Google Scholar

    [128]

    Wu Y, Yao B, Cheng Y, et al. 2014 IEEE Photonics Technol. Lett. 26 249Google Scholar

    [129]

    Liu H, Neal A T, Zhu Z, et al. 2014 ACS Nano 8 4033Google Scholar

    [130]

    Wood J D, Wells S A, Jariwala D, et al. 2014 Nano Lett. 14 6964Google Scholar

    [131]

    Island J O, Steele G A, van der Zant H S J, et al. 2015 2D Mater. 2 11002Google Scholar

    [132]

    Doganov R A, O'Farrell E C T, Koenig S P, et al. 2015 Nat. Commun. 6 6647Google Scholar

    [133]

    Ohtsubo Y, Perfetti L, Goerbig M O, et al. 2013 New J. Phys. 15 33041Google Scholar

    [134]

    Rao S M, Heitz J J F, Roger T, et al. 2014 Opt. Lett. 39 5345Google Scholar

    [135]

    Li X, Cai W, An J, et al. 2009 Science 324 1312Google Scholar

    [136]

    Wu K, Soci C, Shum P P, et al. 2014 Opt. Express 22 295Google Scholar

    [137]

    Wu K, Garcia De Abajo J, Soci C, et al. 2014 Light-Sci. Appl. 3 e147Google Scholar

    [138]

    Rajbenbach H, Fainman Y, Lee S H 1987 Appl. Opt. 26 1024Google Scholar

    [139]

    O'Brien J L 2007 Science 318 1567Google Scholar

    [140]

    Caulfield H J, Dolev S 2010 Nat. Photonics 4 261Google Scholar

    [141]

    Appeltant L, Soriano M C, Van der Sande G, et al. 2011 Nat. Commun. 2 468Google Scholar

    [142]

    Woods D, Naughton T J 2012 Nat. Phys. 8 257Google Scholar

    [143]

    Chung I, Lee B, He J, et al. 2012 Nature 485 486Google Scholar

    [144]

    Lee M M, Teuscher J, Miyasaka T, et al. 2012 Science 338 643Google Scholar

    [145]

    Kim H, Lee C, Im J, et al. 2012 Sci. Rep.-UK 2 591Google Scholar

    [146]

    Dikin D A, Stankovich S, Zimney E J, et al. 2007 Nature 448 457Google Scholar

    [147]

    Sobon G, Sotor J, Jagiello J, et al. 2012 Opt. Express 20 19463Google Scholar

    [148]

    Moore J E 2010 Nature 464 194Google Scholar

    [149]

    Zhang H, Liu C, Qi X, et al. 2009 Nat. Phys. 5 438Google Scholar

    [150]

    Dash A, Palanchoke U, Gely M, et al. 2019 Opt. Express 27 34094Google Scholar

    [151]

    Qiu C, Yang Y, Li C, et al. 2017 Sci. Rep.-UK 7 17046Google Scholar

    [152]

    Gao Y, Zhou W, Sun X, et al. 2017 Opt. Lett. 42 1950Google Scholar

    [153]

    Yuhan Y, Kangkang W, Shan G, et al. 2020 Nanophotonics-Berlin 20190510Google Scholar

    [154]

    Grinblat G, Nielsen M P, Dichtl P, et al. 2019 Sci. Adv. 5 w32626Google Scholar

  • [1] Jiang Long-Xing, Li Qing-Chao, Zhang Xu, Li Jing-Feng, Zhang Jing, Chen Zu-Xin, Zeng Min, Wu Hao. Spintronic devices based on topological and two-dimensional materials. Acta Physica Sinica, 2024, 73(1): 017505. doi: 10.7498/aps.73.20231166
    [2] Yu Ze-Hao, Zhang Li-Fa, Wu Jing, Zhao Yun-Shan. Recent progress of 2-dimensional layered thermoelectric materials. Acta Physica Sinica, 2023, 72(5): 057301. doi: 10.7498/aps.72.20222095
    [3] Liu Ning, Liu Ken, Zhu Zhi-Hong. Research progress of nonlinear optical properties of integrated two-dimensional materials. Acta Physica Sinica, 2023, 72(17): 174202. doi: 10.7498/aps.72.20230729
    [4] Duan Xiu-Ming, Yi Zhi-Jun. Theoretical study on regulatory mechanism of dielectric environmental screening effects on binding energy of two-dimensional InX (X = Se, Te) exciton. Acta Physica Sinica, 2023, 72(14): 147102. doi: 10.7498/aps.72.20230528
    [5] Wu Ze-Fei, Huang Mei-Zhen, Wang Ning. Nonlinear Hall effects in two-dimensional moiré superlattices. Acta Physica Sinica, 2023, 72(23): 237301. doi: 10.7498/aps.72.20231324
    [6] Chen Xiao-Juan, Xu Kang, Zhang Xiu, Liu Hai-Yun, Xiong Qi-Hua. Research progress of bulk photovoltaic effect in two-dimensional materials. Acta Physica Sinica, 2023, 72(23): 237201. doi: 10.7498/aps.72.20231786
    [7] Li Ce, Yang Dong-Liang, Sun Lin-Feng. Research progress of neuromorphic devices based on two-dimensional layered materials. Acta Physica Sinica, 2022, 71(21): 218504. doi: 10.7498/aps.71.20221424
    [8] Tian Jin-Peng, Wang Shuo-Pei, Shi Dong-Xia, Zhang Guang-Yu. Vertical short-channel MoS2 field-effect transistors. Acta Physica Sinica, 2022, 71(21): 218502. doi: 10.7498/aps.71.20220738
    [9] Liu Yu-Ting, He Wen-Yu, Liu Jun-Wei, Shao Qi-Ming. Berry curvature-induced emerging magnetic response in two-dimensional materials. Acta Physica Sinica, 2021, 70(12): 127303. doi: 10.7498/aps.70.20202132
    [10] Liao Jun-Yi, Wu Juan-Xia, Dang Chun-He, Xie Li-Ming. Methods of transferring two-dimensional materials. Acta Physica Sinica, 2021, 70(2): 028201. doi: 10.7498/aps.70.20201425
    [11] Huang Shen-Yang, Zhang Guo-Wei, Wang Fan-Jie, Lei Yu-Chen, Yan Hu-Gen. Optical properties of two-dimensional black phosphorus. Acta Physica Sinica, 2021, 70(2): 027802. doi: 10.7498/aps.70.20201497
    [12] Wang Hui, Xu Meng, Zheng Ren-Kui. Research progress and device applications of multifunctional materials based on two-dimensional film/ferroelectrics heterostructures. Acta Physica Sinica, 2020, 69(1): 017301. doi: 10.7498/aps.69.20191486
    [13] Wu Xiang-Shui, Tang Wen-Ting, Xu Xiang-Fan. Recent progresses of thermal conduction in two-dimensional materials. Acta Physica Sinica, 2020, 69(19): 196602. doi: 10.7498/aps.69.20200709
    [14] Xi Yu-Ying, Han Yue, Li Guo-Hui, Zhai Ai-Ping, Ji Ting, Hao Yu-Ying, Cui Yan-Xia. Application of heterostructures in halide perovskite photovoltaic devices. Acta Physica Sinica, 2020, 69(16): 167804. doi: 10.7498/aps.69.20200591
    [15] Wei Zhong-Ming, Xia Jian-Bai. Recent progress in polarization-sensitive photodetectors based on low-dimensional semiconductors. Acta Physica Sinica, 2019, 68(16): 163201. doi: 10.7498/aps.68.20191002
    [16] Shi Ruo-Yu, Wang Lin-Feng, Gao Lei, Song Ai-Sheng, Liu Yan-Min, Hu Yuan-Zhong, Ma Tian-Bao. Quantitative calculation of atomic-scale frictional behavior of two-dimensional material based on sliding potential energy surface. Acta Physica Sinica, 2017, 66(19): 196802. doi: 10.7498/aps.66.196802
    [17] Liu Yun-Feng, Liu Bin, He Xing-Dao, Li Shu-Jing. High efficiency all-optical diode based on hexagonal lattice photonic crystal waveguide. Acta Physica Sinica, 2016, 65(6): 064207. doi: 10.7498/aps.65.064207
    [18] Ren Guang-Hui, Chen Shao-Wu, Cao Tong-Tong. Theoretical analysis of a thermal-optical tunable filter based on Vernier effect of cascade microring resonators. Acta Physica Sinica, 2012, 61(3): 034215. doi: 10.7498/aps.61.034215
    [19] Xiao Yi, Guo Qi. Kerr-type spatial optical solitons in planar waveguides with finite width and the design of all optical devices. Acta Physica Sinica, 2008, 57(2): 923-933. doi: 10.7498/aps.57.923
    [20] Li Hong-Xia, Wu Fu-Quan, Fan Ji-Yang. Thermodynamic effect on transmitted intensity perturbance of air-gaped Glan-typ e polarizing prisms. Acta Physica Sinica, 2003, 52(8): 2081-2086. doi: 10.7498/aps.52.2081
Metrics
  • Abstract views:  14596
  • PDF Downloads:  611
  • Cited By: 0
Publishing process
  • Received Date:  02 May 2020
  • Accepted Date:  09 June 2020
  • Available Online:  22 September 2020
  • Published Online:  20 September 2020

/

返回文章
返回
Baidu
map