-
This paper investigates an X band high efficiency klystron-like relativistic backward wave oscillator (RBWO) in detail. The klystron-like RBWO consists of a pre-modulation cavity, a resonant reflector with a ridge, a sectional slow wave structure, and an extraction cavity. First, this paper gives some theoretical studies about beam modulation and energy extraction. For beam modulation, the optimized distance between the pre-modulation cavity and the resonant reflector is studied theoretically, and theoretical results agree well with simulation results. For energy extraction, an ellipse extraction cavity with high power capacity is come up with, and the electric field on the inner surface of the ellipse extraction cavity decreases by 25% in PIC simulation. Also, the paper analyzes the effect of the position of dumped electron on conversion efficiency. Interestingly, it’s found that the efficiency dramatically decreases with the increase of the distance between the extraction cavity and the position of dumped electron, which is caused by the increase of potential energy of electron and the decrease of electric field. Fortunately, we find that the use of guiding magnet with special magnetic field distribution almost eliminate this unfavorable effect. Besides, effects of the distance between the cathode and anode Lak are investigated. It’s shown that the optimized diode voltage decrease with the increase of the distance Lak, and the conversion efficiency is higher at larger Lak. The experimental studies are also given. The power capacity of ellipse extraction cavity is verified, also we find that the efficiency is enhanced by 10% and the width of microwave pulse increases by 7 ns when the roughness of RF structure surface is improved from Ra 0.4 μm to Ra 0.05 μm. Typically, the klystron-like RBWO outputs X band high power microwave with power of 2.15 GW, with pulse duration of 25 ns, and with conversion efficiency of 50%(± 5%). Experimental results agree well with theoretical and PIC simulation results.
-
Keywords:
- high efficiency /
- klystron-like /
- relativistic backward wave oscillator /
- high power microwave
[1] Nation 1970 J Appl. Phys. Lett. 17 491Google Scholar
[2] Kovalev N F, Petelin M I, Raizer M D, Smorgonskii A V, Tsopp L E 1973 JETP Lett. 18 138
[3] Bromborsky A, Still G W, Kehs R A, Clark C, Early L, Rohwein G, Poukey J 1989 J. Appl. Phys. 66 3871Google Scholar
[4] Chen C H, Liu G Z, Huang W H, Song Z M, Fan J P, Wang H J 2002 IEEE Trans. Plasma Sci. 30 1108Google Scholar
[5] Xiao R Z, Chen C H, Zhang X W, Sun J 2009 J. Appl. Phys. 105 053306Google Scholar
[6] Xiao R Z, Zhang X W, Zhang L J, Li X Z, Zhang L G, Song W, Hu Y M, Sun J, Huo S F, Chen C H, Zhang Q Y, Liu G Z 2010 Laser Part. Beams 28 505Google Scholar
[7] Tot’meninov E M, Vykhodtsev P V, Kitsanov S A, Klimov A I, Rostov V V 2011 Technical Physics 56 1009Google Scholar
[8] Jin Z X, Zhang J, Yang J H, Zhong H H, Qian B L, Shu T, Zhang J D, Zhou S Y, Xu L R 2011 Rev. Sci. Instrum. 82 084704Google Scholar
[9] Wu P, Fan J P, Teng Y, Shi Y C, Deng Y Q, S un 2014 J Phys. Plasmas 21 103110Google Scholar
[10] Yang D W, Shi Y C, Xiao R Z, Teng Y, Sun J, Chen C H 2018 AIP Advances 8 095229Google Scholar
[11] Korovin S D, Polevin S D, Roitman A M, Rostov V V 1996 Russian Physics Journal 39 1206Google Scholar
[12] Yang D W, Chen C H, Xiao R Z, Shi Y C, Cao Y B, Teng Y, Sun J 2018 Phys. Plasmas 25 123101Google Scholar
[13] Xiao R Z, Chen C H, Cao Y B, Sun J 2013 J. Appl. Phys. 114 213301Google Scholar
[14] Rostov V V, Gunin A V, Tsygankov R V, Romanchenko I V, Yalandin M I 2018 IEEE Trans. Plasma Sci. 46 33Google Scholar
[15] Rostov V V, Totmeninov E M, Tsygankov R V, Kurkan I K, Kovalchuk O B, Elchaninov A A, Stepchenko A S, Gunin A V, Konev V Y, Yushchenko A Y, Emelyanov E V 2018 IEEE Transactions on Electron Devices 65 3019Google Scholar
[16] 史彦超, 陈昌华, 肖仁珍, 滕雁, 邓昱群, 孙钧 2015 第十届全国高功率微波学术研讨会, 呼和浩特, 2015
Shi Y C, Chen C H, Xiao R Z, Teng Y, Deng Y Q, Sun J 2015 The Tenth High Power Microwave Conference, Huhehot (in Chinese)
[17] 郭硕鸿 2008 电动力学 (第3版) (北京: 高等教育出版社)
Guo S H 2008 Electrodynamics (3rd Ed.) (Beijing: Higher Education Press) (in Chinese)
[18] Xiao R Z, Chen C H, Sun J, Zhang X W, Zhang L J 2011 Appl. Phys. Lett. 98 101502Google Scholar
[19] Swegle J A, Poukey J W, Leifeste G T 1985 Physics of Fluids 28 2882Google Scholar
[20] Cao Y B, Sun J, Zhang Y C, Song Z M, Wu P, Fan Z Q, Teng Y, He T, Chen C H 2018 IEEE Trans. Plasma Sci. 46 90
-
图 1 一种高效率速调型相对论返波管结构图 (1 预调制腔; 2调制脊; 3 慢波结构; 4 提取腔; 5 电子束收集极; 6谐振腔反射器; 7电子束; 8 引导磁体; 9 阴极)
Figure 1. Schematic of a high efficiency klystron-like RBWO. (1 pre-modulation cavity; 2 modulation ridge; 3 slow wave structure; 4 extraction cavity; 5 electron beam collector; 6 resonant reflector; 7 electron beam; 8 guiding magnet; 9 cathode)
表 1 矩形提取腔各参数
Table 1. Parameters of rectangular extraction cavity.
参数 rrec/mm Lrec/mm rrec1/mm rrec2/mm rc/mm 取值 31.00 7.00 2.25 2.00 23.00 表 2 椭圆形提取腔各参数
Table 2. Parameters of ellipse extraction cavity.
参数 R0/mm Z0/mm rec/mm zec/mm r1/mm r2/mm Le/mm rc/mm 取值 8.50 2.25 32.00 243.00 0.75 4.00 6.75 23.00 表 3 测量元件的衰减标定值
Table 3. Calibration result of measurement element.
部件 衰减值/dB 衰减器 26.256 5 m微波缆 5.165 定向耦合器和波同转换器 30.05 -
[1] Nation 1970 J Appl. Phys. Lett. 17 491Google Scholar
[2] Kovalev N F, Petelin M I, Raizer M D, Smorgonskii A V, Tsopp L E 1973 JETP Lett. 18 138
[3] Bromborsky A, Still G W, Kehs R A, Clark C, Early L, Rohwein G, Poukey J 1989 J. Appl. Phys. 66 3871Google Scholar
[4] Chen C H, Liu G Z, Huang W H, Song Z M, Fan J P, Wang H J 2002 IEEE Trans. Plasma Sci. 30 1108Google Scholar
[5] Xiao R Z, Chen C H, Zhang X W, Sun J 2009 J. Appl. Phys. 105 053306Google Scholar
[6] Xiao R Z, Zhang X W, Zhang L J, Li X Z, Zhang L G, Song W, Hu Y M, Sun J, Huo S F, Chen C H, Zhang Q Y, Liu G Z 2010 Laser Part. Beams 28 505Google Scholar
[7] Tot’meninov E M, Vykhodtsev P V, Kitsanov S A, Klimov A I, Rostov V V 2011 Technical Physics 56 1009Google Scholar
[8] Jin Z X, Zhang J, Yang J H, Zhong H H, Qian B L, Shu T, Zhang J D, Zhou S Y, Xu L R 2011 Rev. Sci. Instrum. 82 084704Google Scholar
[9] Wu P, Fan J P, Teng Y, Shi Y C, Deng Y Q, S un 2014 J Phys. Plasmas 21 103110Google Scholar
[10] Yang D W, Shi Y C, Xiao R Z, Teng Y, Sun J, Chen C H 2018 AIP Advances 8 095229Google Scholar
[11] Korovin S D, Polevin S D, Roitman A M, Rostov V V 1996 Russian Physics Journal 39 1206Google Scholar
[12] Yang D W, Chen C H, Xiao R Z, Shi Y C, Cao Y B, Teng Y, Sun J 2018 Phys. Plasmas 25 123101Google Scholar
[13] Xiao R Z, Chen C H, Cao Y B, Sun J 2013 J. Appl. Phys. 114 213301Google Scholar
[14] Rostov V V, Gunin A V, Tsygankov R V, Romanchenko I V, Yalandin M I 2018 IEEE Trans. Plasma Sci. 46 33Google Scholar
[15] Rostov V V, Totmeninov E M, Tsygankov R V, Kurkan I K, Kovalchuk O B, Elchaninov A A, Stepchenko A S, Gunin A V, Konev V Y, Yushchenko A Y, Emelyanov E V 2018 IEEE Transactions on Electron Devices 65 3019Google Scholar
[16] 史彦超, 陈昌华, 肖仁珍, 滕雁, 邓昱群, 孙钧 2015 第十届全国高功率微波学术研讨会, 呼和浩特, 2015
Shi Y C, Chen C H, Xiao R Z, Teng Y, Deng Y Q, Sun J 2015 The Tenth High Power Microwave Conference, Huhehot (in Chinese)
[17] 郭硕鸿 2008 电动力学 (第3版) (北京: 高等教育出版社)
Guo S H 2008 Electrodynamics (3rd Ed.) (Beijing: Higher Education Press) (in Chinese)
[18] Xiao R Z, Chen C H, Sun J, Zhang X W, Zhang L J 2011 Appl. Phys. Lett. 98 101502Google Scholar
[19] Swegle J A, Poukey J W, Leifeste G T 1985 Physics of Fluids 28 2882Google Scholar
[20] Cao Y B, Sun J, Zhang Y C, Song Z M, Wu P, Fan Z Q, Teng Y, He T, Chen C H 2018 IEEE Trans. Plasma Sci. 46 90
Catalog
Metrics
- Abstract views: 6839
- PDF Downloads: 116
- Cited By: 0