Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Investigation of an X band high efficiency klystron-like relativistic backward wave oscillator

Yang De-Wen Chen Chang-Hua Shi Yan-Chao Xiao Ren-Zhen Teng Yan Fan Zhi-Qiang Liu Wen-Yuan Song Zhi-Min Sun Jun

Citation:

Investigation of an X band high efficiency klystron-like relativistic backward wave oscillator

Yang De-Wen, Chen Chang-Hua, Shi Yan-Chao, Xiao Ren-Zhen, Teng Yan, Fan Zhi-Qiang, Liu Wen-Yuan, Song Zhi-Min, Sun Jun
PDF
HTML
Get Citation
  • This paper investigates an X band high efficiency klystron-like relativistic backward wave oscillator (RBWO) in detail. The klystron-like RBWO consists of a pre-modulation cavity, a resonant reflector with a ridge, a sectional slow wave structure, and an extraction cavity. First, this paper gives some theoretical studies about beam modulation and energy extraction. For beam modulation, the optimized distance between the pre-modulation cavity and the resonant reflector is studied theoretically, and theoretical results agree well with simulation results. For energy extraction, an ellipse extraction cavity with high power capacity is come up with, and the electric field on the inner surface of the ellipse extraction cavity decreases by 25% in PIC simulation. Also, the paper analyzes the effect of the position of dumped electron on conversion efficiency. Interestingly, it’s found that the efficiency dramatically decreases with the increase of the distance between the extraction cavity and the position of dumped electron, which is caused by the increase of potential energy of electron and the decrease of electric field. Fortunately, we find that the use of guiding magnet with special magnetic field distribution almost eliminate this unfavorable effect. Besides, effects of the distance between the cathode and anode Lak are investigated. It’s shown that the optimized diode voltage decrease with the increase of the distance Lak, and the conversion efficiency is higher at larger Lak. The experimental studies are also given. The power capacity of ellipse extraction cavity is verified, also we find that the efficiency is enhanced by 10% and the width of microwave pulse increases by 7 ns when the roughness of RF structure surface is improved from Ra 0.4 μm to Ra 0.05 μm. Typically, the klystron-like RBWO outputs X band high power microwave with power of 2.15 GW, with pulse duration of 25 ns, and with conversion efficiency of 50%(± 5%). Experimental results agree well with theoretical and PIC simulation results.
      Corresponding author: Yang De-Wen, yangdewen@nint.ac.cn
    [1]

    Nation 1970 J Appl. Phys. Lett. 17 491Google Scholar

    [2]

    Kovalev N F, Petelin M I, Raizer M D, Smorgonskii A V, Tsopp L E 1973 JETP Lett. 18 138

    [3]

    Bromborsky A, Still G W, Kehs R A, Clark C, Early L, Rohwein G, Poukey J 1989 J. Appl. Phys. 66 3871Google Scholar

    [4]

    Chen C H, Liu G Z, Huang W H, Song Z M, Fan J P, Wang H J 2002 IEEE Trans. Plasma Sci. 30 1108Google Scholar

    [5]

    Xiao R Z, Chen C H, Zhang X W, Sun J 2009 J. Appl. Phys. 105 053306Google Scholar

    [6]

    Xiao R Z, Zhang X W, Zhang L J, Li X Z, Zhang L G, Song W, Hu Y M, Sun J, Huo S F, Chen C H, Zhang Q Y, Liu G Z 2010 Laser Part. Beams 28 505Google Scholar

    [7]

    Tot’meninov E M, Vykhodtsev P V, Kitsanov S A, Klimov A I, Rostov V V 2011 Technical Physics 56 1009Google Scholar

    [8]

    Jin Z X, Zhang J, Yang J H, Zhong H H, Qian B L, Shu T, Zhang J D, Zhou S Y, Xu L R 2011 Rev. Sci. Instrum. 82 084704Google Scholar

    [9]

    Wu P, Fan J P, Teng Y, Shi Y C, Deng Y Q, S un 2014 J Phys. Plasmas 21 103110Google Scholar

    [10]

    Yang D W, Shi Y C, Xiao R Z, Teng Y, Sun J, Chen C H 2018 AIP Advances 8 095229Google Scholar

    [11]

    Korovin S D, Polevin S D, Roitman A M, Rostov V V 1996 Russian Physics Journal 39 1206Google Scholar

    [12]

    Yang D W, Chen C H, Xiao R Z, Shi Y C, Cao Y B, Teng Y, Sun J 2018 Phys. Plasmas 25 123101Google Scholar

    [13]

    Xiao R Z, Chen C H, Cao Y B, Sun J 2013 J. Appl. Phys. 114 213301Google Scholar

    [14]

    Rostov V V, Gunin A V, Tsygankov R V, Romanchenko I V, Yalandin M I 2018 IEEE Trans. Plasma Sci. 46 33Google Scholar

    [15]

    Rostov V V, Totmeninov E M, Tsygankov R V, Kurkan I K, Kovalchuk O B, Elchaninov A A, Stepchenko A S, Gunin A V, Konev V Y, Yushchenko A Y, Emelyanov E V 2018 IEEE Transactions on Electron Devices 65 3019Google Scholar

    [16]

    史彦超, 陈昌华, 肖仁珍, 滕雁, 邓昱群, 孙钧 2015 第十届全国高功率微波学术研讨会, 呼和浩特, 2015

    Shi Y C, Chen C H, Xiao R Z, Teng Y, Deng Y Q, Sun J 2015 The Tenth High Power Microwave Conference, Huhehot (in Chinese)

    [17]

    郭硕鸿 2008 电动力学 (第3版) (北京: 高等教育出版社)

    Guo S H 2008 Electrodynamics (3rd Ed.) (Beijing: Higher Education Press) (in Chinese)

    [18]

    Xiao R Z, Chen C H, Sun J, Zhang X W, Zhang L J 2011 Appl. Phys. Lett. 98 101502Google Scholar

    [19]

    Swegle J A, Poukey J W, Leifeste G T 1985 Physics of Fluids 28 2882Google Scholar

    [20]

    Cao Y B, Sun J, Zhang Y C, Song Z M, Wu P, Fan Z Q, Teng Y, He T, Chen C H 2018 IEEE Trans. Plasma Sci. 46 90

  • 图 1  一种高效率速调型相对论返波管结构图 (1 预调制腔; 2调制脊; 3 慢波结构; 4 提取腔; 5 电子束收集极; 6谐振腔反射器; 7电子束; 8 引导磁体; 9 阴极)

    Figure 1.  Schematic of a high efficiency klystron-like RBWO. (1 pre-modulation cavity; 2 modulation ridge; 3 slow wave structure; 4 extraction cavity; 5 electron beam collector; 6 resonant reflector; 7 electron beam; 8 guiding magnet; 9 cathode)

    图 2  含两个预调制腔的预调制结构

    Figure 2.  Pre-modulation structure with two cavities.

    图 3  两个调制腔间距L1对效率的影响

    Figure 3.  Effect of the two modulation cavity spacing L1 on efficiency.

    图 4  提取腔改进的示意图 (a)矩形提取腔; (b)“理想”提取腔

    Figure 4.  Schematic of enhanced extraction cavity: (a) Rectangular extraction cavity; (b) perfect extraction cavity.

    图 5  两种提取腔结构示意图 (a)矩形提取腔; (b)椭圆形提取腔

    Figure 5.  Schematic of two extraction cavities: (a) Rectangular extraction cavity; (b) ellipse extraction cavity.

    图 6  PIC仿真中矩形提取腔中的场强分布 (a)电场分量Ez朝–z方向的情形; (b)电场分量Ez朝+z方向的情形

    Figure 6.  Field distribution in rectangular extraction cavity in PIC simulation: (a) Ez orients –z direction; (b) Ez orients +z direction.

    图 7  PIC仿真中椭圆形提取腔中的纵向电场分布 (a)纵向电场Ez朝–z方向的情形; (b)纵向电场Ez朝+z方向的情形

    Figure 7.  Longitudinal electric field distribution in ellipse extraction cavity in PIC simulation: (a) Ez orients –z direction; (b) Ez orients +z direction.

    图 8  超导磁体的磁场

    Figure 8.  Magnetic field of superconductor magnet.

    图 9  螺线管磁场和超导磁场下的相空间图 (a)螺线管磁体的情形; (b)超导磁场的情形

    Figure 9.  Phasespace of electron beam under solenoid and superconductor magnet: (a) Case with solenoid magnet; (b) case with superconductor magnet.

    图 10  螺线管磁场和超导磁场下的效率随Lec的变化

    Figure 10.  Variation of efficiency with Lec under solenoid and superconductor magnet.

    图 11  PIC数值模拟中的典型结果 (a)输出功率; (b)频谱

    Figure 11.  Typical results in PIC simulation: (a) Microwave power; (b) frequency spectrum.

    图 12  不同阴阳极间距Lak的电压规律 (a)效率随电压的变化; (b)频率随电压的变化

    Figure 12.  Effect of diode voltage under different Lak: (a) Variation of efficiency with diode voltage; (b) variation of frequency with diode voltage.

    图 13  实验系统示意图

    Figure 13.  Schematic of experiment system.

    图 14  速调型相对论返波管外观

    Figure 14.  Picture of the Klystron-like RBWO.

    图 15  辐射场测量系统示意图

    Figure 15.  Schematic of measurement system.

    图 16  检波器的标定曲线

    Figure 16.  Calibration result of envelope detector.

    图 17  不同粗糙度的表面 (a)粗糙度Ra = 0.4; (b)粗糙度Ra = 0.05

    Figure 17.  Surface with different roughness: (a) Roughness Ra = 0.4; (b) roughness Ra = 0.05.

    图 18  不同粗糙度时的输出波形 (a)粗糙度Ra = 0.4; (b)粗糙度Ra = 0.05. (通道1: 在线微波波形; 通道2, 3: 辐射场微波波形)

    Figure 18.  Output waveform for different roughness: (a) Roughness Ra = 0.4; (b) Roughness Ra = 0.05. (channel 1, online microwave; channel 2 and 3, radiation field)

    图 19  不同粗糙度120个微波脉冲后的表面痕迹 (a)粗糙度Ra = 0.4; (b)粗糙度Ra = 0.05

    Figure 19.  Breakdown traces after 120 pulses for different roughness: (a) Roughness Ra = 0.4; (b) roughness Ra = 0.05.

    图 20  提取腔的寿命现象 (a) 100个脉冲后; (b) 130个脉冲后. (通道1: 在线微波波形; 通道2, 3: 辐射场微波波形)

    Figure 20.  Lifetime of extraction cavity: (a) After 100 pulses; (b) after 130 pulses. (channel 1, online microwave; channel 2 and 3, radiation field)

    图 21  矩形提取腔和椭圆形提取腔时的波形 (a)矩形提取腔; (b)椭圆形提取腔. (通道1: 二极管电压波形; 通道2: 二极管电流波形; 3: 辐射场波形)

    Figure 21.  Waveform under rectangular and ellipse extraction cavity: (a) Rectangular extraction cavity; (b) ellipse extraction cavity. (channel 1, diode voltage; channel 2, diode current; channel 3, radiation field)

    图 22  40个微波脉冲后的击穿痕迹 (a)矩形提取腔; (b)椭圆形提取腔

    Figure 22.  Breakdown trace after 40 pulses: (a) Rectangular extraction cavity; (b) ellipse extraction cavity.

    图 23  辐射场功率密度分布

    Figure 23.  Power density distribution of radiation field.

    图 24  微波波形和频谱

    Figure 24.  Microwave waveform and frequency spectrum.

    表 1  矩形提取腔各参数

    Table 1.  Parameters of rectangular extraction cavity.

    参数rrec/mmLrec/mmrrec1/mmrrec2/mmrc/mm
    取值31.007.002.252.0023.00
    DownLoad: CSV

    表 2  椭圆形提取腔各参数

    Table 2.  Parameters of ellipse extraction cavity.

    参数R0/mmZ0/mmrec/mmzec/mmr1/mmr2/mmLe/mmrc/mm
    取值8.502.2532.00243.000.754.006.7523.00
    DownLoad: CSV

    表 3  测量元件的衰减标定值

    Table 3.  Calibration result of measurement element.

    部件衰减值/dB
    衰减器26.256
    5 m微波缆5.165
    定向耦合器和波同转换器30.05
    DownLoad: CSV
    Baidu
  • [1]

    Nation 1970 J Appl. Phys. Lett. 17 491Google Scholar

    [2]

    Kovalev N F, Petelin M I, Raizer M D, Smorgonskii A V, Tsopp L E 1973 JETP Lett. 18 138

    [3]

    Bromborsky A, Still G W, Kehs R A, Clark C, Early L, Rohwein G, Poukey J 1989 J. Appl. Phys. 66 3871Google Scholar

    [4]

    Chen C H, Liu G Z, Huang W H, Song Z M, Fan J P, Wang H J 2002 IEEE Trans. Plasma Sci. 30 1108Google Scholar

    [5]

    Xiao R Z, Chen C H, Zhang X W, Sun J 2009 J. Appl. Phys. 105 053306Google Scholar

    [6]

    Xiao R Z, Zhang X W, Zhang L J, Li X Z, Zhang L G, Song W, Hu Y M, Sun J, Huo S F, Chen C H, Zhang Q Y, Liu G Z 2010 Laser Part. Beams 28 505Google Scholar

    [7]

    Tot’meninov E M, Vykhodtsev P V, Kitsanov S A, Klimov A I, Rostov V V 2011 Technical Physics 56 1009Google Scholar

    [8]

    Jin Z X, Zhang J, Yang J H, Zhong H H, Qian B L, Shu T, Zhang J D, Zhou S Y, Xu L R 2011 Rev. Sci. Instrum. 82 084704Google Scholar

    [9]

    Wu P, Fan J P, Teng Y, Shi Y C, Deng Y Q, S un 2014 J Phys. Plasmas 21 103110Google Scholar

    [10]

    Yang D W, Shi Y C, Xiao R Z, Teng Y, Sun J, Chen C H 2018 AIP Advances 8 095229Google Scholar

    [11]

    Korovin S D, Polevin S D, Roitman A M, Rostov V V 1996 Russian Physics Journal 39 1206Google Scholar

    [12]

    Yang D W, Chen C H, Xiao R Z, Shi Y C, Cao Y B, Teng Y, Sun J 2018 Phys. Plasmas 25 123101Google Scholar

    [13]

    Xiao R Z, Chen C H, Cao Y B, Sun J 2013 J. Appl. Phys. 114 213301Google Scholar

    [14]

    Rostov V V, Gunin A V, Tsygankov R V, Romanchenko I V, Yalandin M I 2018 IEEE Trans. Plasma Sci. 46 33Google Scholar

    [15]

    Rostov V V, Totmeninov E M, Tsygankov R V, Kurkan I K, Kovalchuk O B, Elchaninov A A, Stepchenko A S, Gunin A V, Konev V Y, Yushchenko A Y, Emelyanov E V 2018 IEEE Transactions on Electron Devices 65 3019Google Scholar

    [16]

    史彦超, 陈昌华, 肖仁珍, 滕雁, 邓昱群, 孙钧 2015 第十届全国高功率微波学术研讨会, 呼和浩特, 2015

    Shi Y C, Chen C H, Xiao R Z, Teng Y, Deng Y Q, Sun J 2015 The Tenth High Power Microwave Conference, Huhehot (in Chinese)

    [17]

    郭硕鸿 2008 电动力学 (第3版) (北京: 高等教育出版社)

    Guo S H 2008 Electrodynamics (3rd Ed.) (Beijing: Higher Education Press) (in Chinese)

    [18]

    Xiao R Z, Chen C H, Sun J, Zhang X W, Zhang L J 2011 Appl. Phys. Lett. 98 101502Google Scholar

    [19]

    Swegle J A, Poukey J W, Leifeste G T 1985 Physics of Fluids 28 2882Google Scholar

    [20]

    Cao Y B, Sun J, Zhang Y C, Song Z M, Wu P, Fan Z Q, Teng Y, He T, Chen C H 2018 IEEE Trans. Plasma Sci. 46 90

  • [1] Wen Ya-Fei, Zhuang Yuan-Yuan, Wang Zhi-Qiang, Gao Shi-Hui. Experimental study of efficient temporal-multimode Duan-Lukin-Cirac-Zoller storage scheme. Acta Physica Sinica, 2024, 73(18): 180301. doi: 10.7498/aps.73.20240799
    [2] Li Yu-Qing, Wang Hong-Guang, Zhai Yong-Gui, Yang Wen-Jin, Wang Yue, Li Yun, Li Yong-Dong. Influence of quality factor on operating mode of TM02 mode relativistic backwave oscillator. Acta Physica Sinica, 2024, 73(3): 035202. doi: 10.7498/aps.73.20231577
    [3] Wang Hong-Guang, Liu Peng-Fei, Zhang Jian-Wei, Li Yong-Dong, Cao Yi-Bing, Sun Jun. Particle-in-cell simulation on effect of collector outgassing on relativistic backward oscillator. Acta Physica Sinica, 2019, 68(18): 185203. doi: 10.7498/aps.68.20190554
    [4] Wen Ya-Fei, Wang Sheng-Zhi, Xu Zhong-Xiao, Li Shu-Jing, Wang Hai. Highly-efficient optical storage of two orthogonal polarization modes in a cold atom ensemble. Acta Physica Sinica, 2018, 67(1): 014204. doi: 10.7498/aps.67.20171217
    [5] Guo Jing, He Guang-Yuan, Jiao Zhong-Xing, Wang Biao. High-efficiency intracavity 2 μm degenerate optical parametric oscillator. Acta Physica Sinica, 2015, 64(8): 084207. doi: 10.7498/aps.64.084207
    [6] Chen Zai-Gao, Wang Jian-Guo, Wang Yue, Zhu Xiang-Qin, Zhang Dian-Hui, Qiao Hai-Liang. Numerical simulation of generation and radiation of super-radiation from relativistic backward wave oscillators. Acta Physica Sinica, 2014, 63(3): 038402. doi: 10.7498/aps.63.038402
    [7] Chen Zai-Gao, Wang Jian-Guo, Wang Yue, Qiao Hai-Liang, Guo Wei-Jie, Zhang Dian-Hui. Optimal design of high-power microwave source based on particle simulation and genetic algorithms. Acta Physica Sinica, 2013, 62(16): 168402. doi: 10.7498/aps.62.168402
    [8] Wang Hui-Hui, Meng Lin, Liu Da-Gang, Liu La-Qun, Yang Chao. Numerical optimization study of PIC/PSO for RBWO. Acta Physica Sinica, 2013, 62(13): 138401. doi: 10.7498/aps.62.138401
    [9] Wang Yu, Chen Zai-Gao, Lei Yi-An. Simulation of 0.14 THz relativistic backward-wave oscillator filled with plasma. Acta Physica Sinica, 2013, 62(12): 125204. doi: 10.7498/aps.62.125204
    [10] Liu Zhen-Bang, Jin Xiao, Huang Hua, Chen Huai-Bi, Wang Gan-Ping. Experimental study on an X-band coaxial multi-beam relativistic klystron amplifier. Acta Physica Sinica, 2012, 61(23): 238402. doi: 10.7498/aps.61.238402
    [11] Li Wei, Liu Yong-Gui, Yang Jian-Hua. Investigation on the power combination of the relativistic magnetrons with axial extraction. Acta Physica Sinica, 2012, 61(3): 038401. doi: 10.7498/aps.61.038401
    [12] You Hai-Long, Lan Jian-Chun, Fan Ju-Ping, Jia Xin-Zhang, Zha Wei. Research on characteristics degradation of n-metal-oxide-semiconductor field-effect transistor induced by hot carrier effect due to high power microwave. Acta Physica Sinica, 2012, 61(10): 108501. doi: 10.7498/aps.61.108501
    [13] Li Wei, Liu Yong-Gui. Simulation investigation of the 2 mode operating tunable relativistic magnetron with axial radiation. Acta Physica Sinica, 2011, 60(12): 128403. doi: 10.7498/aps.60.128403
    [14] Huang Hua, Guo Yan-Hua, Jin Xiao, He Hu, Lei Lu-Rong, Luo Xiong, Chang An-Bi, Li Zheng-Hong. Phase investigation on relativistic klystron amplifier. Acta Physica Sinica, 2011, 60(3): 035201. doi: 10.7498/aps.60.035201
    [15] Ma Qiao-Sheng, Jin Xiao, Xu Ming, Li Zheng-Hong, Wu Yang. Design of X-band backward wave oscillator with 10 GW output power. Acta Physica Sinica, 2011, 60(10): 105201. doi: 10.7498/aps.60.105201
    [16] Huang Hua, Luo Xiong, Lei Lu-Rong, Luo Guang-Yao, Zhang Bei-Zhen, Jin Xiao, Tan Jie. Investigation on a long pulse relativistic extended interaction cavity oscillator. Acta Physica Sinica, 2010, 59(3): 1907-1912. doi: 10.7498/aps.59.1907
    [17] Huang Hua, Gan Yan-Qing, Lei Lu-Rong, Jin Xiao, Ju Bing-Quan, Xiang Fei, Feng Di-Chao, Liu Zhong. Investigation on an S-band relativistic klystron oscillator. Acta Physica Sinica, 2008, 57(3): 1765-1770. doi: 10.7498/aps.57.1765
    [18] Li Xiao-Ze, Wang Jian-Guo, Tong Chang-Jiang, Zhang Hai. PIC-MCC simulations on characteristics of RBWO filled with different gases. Acta Physica Sinica, 2008, 57(7): 4613-4622. doi: 10.7498/aps.57.4613
    [19] Huang Hua, Fan Zhi-Kai, Tan Jie, Ma Qiao-Sheng, Gan Yan-Qing, Chang An-Bi. Investigations on beam-current-pulse-shortening in a long pulse relativistic klystron amplifier. Acta Physica Sinica, 2004, 53(4): 1129-1135. doi: 10.7498/aps.53.1129
    [20] Gong Yu-Bin, Zhang Zhang, Wei Yan-Yu, Meng Fan-Bao, Fan Zhi-Kai, Wang Wen-Xiang. Simulation of pulse shortening phenomena in high power microwave tube using PIC method. Acta Physica Sinica, 2004, 53(11): 3990-3995. doi: 10.7498/aps.53.3990
Metrics
  • Abstract views:  6839
  • PDF Downloads:  116
  • Cited By: 0
Publishing process
  • Received Date:  22 March 2020
  • Accepted Date:  22 April 2020
  • Available Online:  18 May 2020
  • Published Online:  20 August 2020

/

返回文章
返回
Baidu
map