Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

High performance temperature and refractive index dual-purpose sensor based on the ethanol-sealed metal-dielectric-metal waveguide

Qi Yun-Ping Zhang Ting Guo Jia Zhang Bao-He Wang Xiang-Xian

Citation:

High performance temperature and refractive index dual-purpose sensor based on the ethanol-sealed metal-dielectric-metal waveguide

Qi Yun-Ping, Zhang Ting, Guo Jia, Zhang Bao-He, Wang Xiang-Xian
PDF
HTML
Get Citation
  • In order to enhance the working performance of existing temperature sensor and refractive index sensor of sub-wavelength waveguide, the design of ring regular octagon surface plasmon resonance sensor with sharp transmission peak, high sensitivity and high integration was proposed in this paper based on surface plasmon polaritons. The feasibility of using ethanol as a thermosensitive filler to establish a linear conversion relationship between temperature and effective refractive index was analyzed theoretically. The reason why the real part of effective refractive index changes abruptly with the change of waveguide width is also explained. The multimode interference coupled mode theory (MICMT) was used to fit and analyze the transmission peak of the sensor, and then the finite element methods (FEM) is used for simulation analysis. Results obtained by the theory of the MICMT are consistent very well with those from simulation. In order to obtain the optimal parameter setting of the ring regular octagon surface plasmon resonance sensor, various parameters of the sensor are simulated by FEM. It is found that increasing L and decreasing H will improve the sensitivity of the sensor, while decreasing parameter w can not only improve the amplitude of transmission peak, but also keep the sensitivity unchanged. This characteristic of parameter w greatly improves the robustness of the sensor. All kinds of physical phenomena in this paper are analyzed in detail. Firstly, the phenomenon of transmission peak displacement caused by parameter changes is explained through the analysis of magnetic field distribution, and then the phenomenon of inconsistent sensitivity of different transmission peaks is explained through photon energy formula. Compared with the previous structural design, the dual-purpose sensor has many advantages such as wide operating wavelength range, narrow full width at half maximum and easy to integrate. As a temperature sensor and refractive index sensor, its sensitivity was as high as 0.9 nm/℃ and 2400 nm/RIU. The study of this structure broke through the limitations of some traditional cavities, in order to provide a high- performance cavity selection for the micro-nano photon temperature and refractive index dual-purpose sensor based on the design of surface plasmon polaritons in the future.
      Corresponding author: Qi Yun-Ping, qiyunping@nwnu.edu.cn
    [1]

    Barnes W L, Dereux A, Ebbesen T W 2003 Nature 424 824Google Scholar

    [2]

    Amini A, Aghili S, Golmohammadi S, Gasemi P 2017 Opt. Commun. 403 226Google Scholar

    [3]

    Hua L, Wang G X, Liu X M 2013 Chin. Sci. Bull. 58 3607Google Scholar

    [4]

    Hwang Y, Kim J E, Park H Y 2011 Opt. Commun. 284 4778Google Scholar

    [5]

    张志东, 赵亚男, 卢东, 熊祖洪, 张中月 2012 61 187301Google Scholar

    Zhang Z D, Zhao Y N, Lu D, Xiong Z H, Zhang Z Y 2012 Acta Phys. Sin. 61 187301Google Scholar

    [6]

    陈颖, 谢进朝, 周鑫德, 张灿, 杨惠, 李少华 2019 68 237301Google Scholar

    Chen Y, Xie J Z, Zhou X D, Zhang C, Yang H, Li S H 2019 Acta Phys. Sin. 68 237301Google Scholar

    [7]

    Zhang X W, Qi Y P, Zhou P Y, Hu B B, Yan C M 2018 Photonic Sens. 8 367Google Scholar

    [8]

    Chen J, Wang X X, Tang F, Ye X, Yang L M, Zhang Y B 2020 Results Phys. 16 102867Google Scholar

    [9]

    Wang X X, Zhu J K, Wen X L, Wu X X, Wu Y, Su Y W, Tong H, Qi Y P, Yang H 2019 Opt. Mater. Express 9 3079Google Scholar

    [10]

    Singh M, Datta A 2018 IEEE Photonics Technol. Lett. 30 997Google Scholar

    [11]

    Shibayama J, Kawai H, Yamauchi J, Nakano H 2019 Opt. Commun. 452 360Google Scholar

    [12]

    Wang X X, Zhu J K, Wu Y, Xu Y Q, Su Y W, Zhang L P 2020 Results Phys. 17 103175Google Scholar

    [13]

    Li J K, Chen X F, Yi Z, Yang H, Tang Y J, Yi Y, Yao W T, Wang J Q, Yi Y G 2020 Mater. Today Energy 16 100390Google Scholar

    [14]

    Wang Y Y, Chen Z Q, Xu D Y, Yi Z, Chen X F, Chen J, Tang Y J, Wu P H, Li G F, Yi Y G 2020 Results Phys. 16 102951Google Scholar

    [15]

    Qi Y P, Zhang Y, Liu C Q, Zhang T, Zhang B H, Wang L Y, Deng X Y, Bai Y L, Wang X X 2020 Results Phys. 16 103012Google Scholar

    [16]

    Chen J, Nie H, Peng C, Qi S B, Tang C J, Zhang Y, Wang L H, Park G S 2018 J. Lightwave Technol. 36 3481Google Scholar

    [17]

    Pang Z Y, Tong H, Wu X X, Zhu J K, Wang X X, Yang H, Qi Y P 2018 Opt. Quantum Electron. 50 335Google Scholar

    [18]

    Chen J, Nie H, Zha T Q, Mao P, Tang C J, Shen X Y, Park G S 2018 J. Lightwave Technol. 36 2791Google Scholar

    [19]

    Li S L, Wang Y L, Jiao R Z, Wang L L, Yu L 2017 Opt. Express 25 3525Google Scholar

    [20]

    Wu T, Liu Y M, Yu Z Y, Peng Y W, Shu C G, Ye H 2014 Opt. Express 22 7669Google Scholar

    [21]

    Liu Q, Liu M W, Zhan S P, Wu L X, Xie S X, Chen Z H, Zhang Y C 2019 Plasmonics 14 1005Google Scholar

    [22]

    Cen C L, Lin H, Huang J, Liang C P, Chen X F, Tang Y J, Yi Z, Ye X, Liu J W, Yi Y G, Xiao S Y 2018 Sensors 18 4489Google Scholar

    [23]

    Li Z F, Wen K H, Chen L, Lei L, Zhou J Y, Zhou D Y, Fang Y H, Wu B Y 2019 Appl. Opt. 58 4878Google Scholar

    [24]

    Wu T S, Liu Y M, Yu Z Y, Ye H, Peng Y W, Shu C G, Yang C H, Zhang W, He H F 2015 Opt. Commun. 339 1Google Scholar

    [25]

    Qi Y P, Zhou P Y, Zhang T, Zhang X W, Wang Y, Liu C Q, Bai Y L, Wang X X 2019 Results Phys. 14 102506Google Scholar

    [26]

    伍铁生, 王丽, 王哲, 刘玉敏, 胡署阳, 尹丽丹 2012 中国激光 39 1114002Google Scholar

    Wu T S, Wang L, Wang Z, Liu Y M, Yin L D 2012 Chin. J. Lasers 39 1114002Google Scholar

    [27]

    Sundari S T, Srinivasu K, Dash S, Tyagi A K 2013 Solid State Commun. 167 36Google Scholar

    [28]

    Lin X S, Huang X G 2009 Opt. Lett. 33 2874

    [29]

    祁云平, 张雪伟, 周培阳, 胡兵兵, 王向贤 2018 67 197301Google Scholar

    Qi Y P, Zhang X W, Zhou P Y, Hu B B, Wang X X 2018 Acta Phys. Sin. 67 197301Google Scholar

    [30]

    Dionne J A, Sweatlock L A, Atwater H A 2006 Phys. Rev. B 73 035407Google Scholar

    [31]

    Wu T S, Liu Y M, Yu Z Y, Peng Y W, Shu C G, He H F 2014 Opt. Commun. 323 44Google Scholar

    [32]

    Cheng Q Q, Li T, Li L, Wang S M, Zhu S N 2014 Opt. Lett. 39 3900Google Scholar

    [33]

    Ren M X, Pan C P, Li Q Q, Cai W 2013 Opt. Lett. 38 3133Google Scholar

  • 图 1  正八边环形共振腔MIM波导结构示意图 (a)三维模型; (b) 二维模型

    Figure 1.  The structure schematic of two slits MIM SPPs waveguides with a regular octagon ring resonator: (a) 3D model; (b) 2D model.

    图 2  (a) T = 20 ℃时, 有效折射率实部与入射波长和波导宽度的关系图; (b) d = 50 nm时, 有效折射率实部与入射波长和温度的关系图

    Figure 2.  (a) The real part of ${n_{{\rm{eff}}}}$ as functions of wavelength and d when T = 20 ℃; (b) the real part of ${n_{{\rm{eff}}}}$ as functions of wavelength and T when d = 50 nm.

    图 3  (a) 该温度传感器的透射率仿真值和理论值对比图; (b) Peak I的磁场分布图, ${\lambda _{10}} = 714\;{\rm{nm}}$; (c) Peak II的磁场分布图, ${\lambda _{20}} = 776\;{\rm{nm}}$; (d) Peak III的磁场分布图, ${\lambda _{30}} = 884\;{\rm{nm}}$; (e) Peak IV的磁场分布图, ${\lambda _{40}} = 1212\;{\rm{nm}}$; (f) Peak V的磁场分布图, ${\lambda _{50}} = $ 2234 nm

    Figure 3.  (a) Comparison of the simulation and the theoretical results of transmittance of the temperature sensor; (b) the magnetic field $\left| {{H_z}} \right|$ of peak I at ${\lambda _{10}} = 714\;{\rm{nm}}$; (c) the magnetic field $\left| {{H_z}} \right|$ of peak II at ${\lambda _{20}} = 776\;{\rm{nm}}$; (d) the magnetic field $\left| {{H_z}} \right|$ of peak III at ${\lambda _{30}} = 884\;{\rm{nm}}$; (e) the magnetic field $\left| {{H_z}} \right|$ of peak IV at ${\lambda _{40}} = 1212\;{\rm{nm}}$; (f) the magnetic field $\left| {{H_z}} \right|$ of peak V at ${\lambda _{50}} = 2234\;{\rm{nm}}$.

    图 4  温度变化时该温度传感器的透射光谱图 (a) 入射波长范围为690—1100 nm, Peak I, Peak II, Peak III在该光谱范围内; (b) 入射波长范围为1000—2500 nm, Peak IV, Peak V在该光谱范围内

    Figure 4.  The transmission spectra of the temperature sensor under different T: (a) Peak I, Peak II and Peak III in the wavelength range of 690 nm to 1100 nm; (b) peak IV and Peak V in the wavelength range of 1000 nm to 2500 nm.

    图 5  五个透射峰的共振波长与温度T的关系

    Figure 5.  The relationship between the resonance wavelength and T of the five transmission peaks.

    图 6  改变参数H的透射谱图 (a) 在740—1025 nm的入射波长下; (b) 在1000—2500 nm的入射波长下. (c) 在1000—3000 nm的入射波长下, 改变参数L的透射谱图; (d) Peak V和Peak IV的灵敏度和参数H的关系图; (e) Peak V和Peak IV的灵敏度和参数L的关系图

    Figure 6.  The transmission spectra of the structure under different H: (a) In the wavelength range of 690 nm to 1100 nm; (b) in the wavelength range of 1000 nm to 2500 nm. (c) the transmission spectra of the structure under different L in the wavelength range of 1000 nm to 3000 nm; (d) the relationship between sensitivity of Peak V and Peak IV and parameter H; (e) the relationship between sensitivity of Peak V and Peak IV and parameter L.

    图 7  (a) 在不同的w取值下的透射谱图; (b) Peak IV在w = 5 nm和w = 10 nm时温度从20 ℃变到–20 ℃时共振峰位移量对比图; (c) 在w不同取值情况下随入射波长变化的透射光谱图; (d) Peak V在w = 5 nm和w = 10 nm时温度从20 ℃变到–20 ℃时共振峰位移量对比图

    Figure 7.  (a) The transmission spectra of the structure under different w; (b) when the temperature changes from 20 ℃ to –20 ℃, the displacement of Peak IV at w = 5 nm and w = 10 nm; (c) the transmission spectra of the structure with different wavelength and w; (d) when the temperature changes from 20 ℃ to –20 ℃, the displacement of Peak V at w = 5 nm and w = 10 nm.

    图 8  (a) 该系统作为温度传感器时, 在T = 20 ℃和T = –20 ℃下的透射谱图; (b) 该系统作为折射率传感器时, 在n = 1和n = 1.01下的透射谱图

    Figure 8.  (a) When the system is used as a temperature sensor, the transmission spectra at T = 20 ℃ and T = –20 ℃; (b) when the system is used as a refractive index sensor, the transmission spectra at n = 1 and n = 1.01.

    表 1  各类温度传感器和折射率传感器性能比较

    Table 1.  Performance comparison of various temperature sensors and refractive index sensors.

    参考文献温度传感器折射率传感器半峰全宽共振峰数工作波段/nmFOM
    S/nm·℃S/nm·RIU–1FWHM/nm
    [20]1.363460≈2003500—2000≈17.3
    [24]0.6550.62600—1700
    [29]1500≈803600—2000≈18.7
    [31]0.511736177.31550—9009.79
    This work0.92400185700—3200133
    DownLoad: CSV
    Baidu
  • [1]

    Barnes W L, Dereux A, Ebbesen T W 2003 Nature 424 824Google Scholar

    [2]

    Amini A, Aghili S, Golmohammadi S, Gasemi P 2017 Opt. Commun. 403 226Google Scholar

    [3]

    Hua L, Wang G X, Liu X M 2013 Chin. Sci. Bull. 58 3607Google Scholar

    [4]

    Hwang Y, Kim J E, Park H Y 2011 Opt. Commun. 284 4778Google Scholar

    [5]

    张志东, 赵亚男, 卢东, 熊祖洪, 张中月 2012 61 187301Google Scholar

    Zhang Z D, Zhao Y N, Lu D, Xiong Z H, Zhang Z Y 2012 Acta Phys. Sin. 61 187301Google Scholar

    [6]

    陈颖, 谢进朝, 周鑫德, 张灿, 杨惠, 李少华 2019 68 237301Google Scholar

    Chen Y, Xie J Z, Zhou X D, Zhang C, Yang H, Li S H 2019 Acta Phys. Sin. 68 237301Google Scholar

    [7]

    Zhang X W, Qi Y P, Zhou P Y, Hu B B, Yan C M 2018 Photonic Sens. 8 367Google Scholar

    [8]

    Chen J, Wang X X, Tang F, Ye X, Yang L M, Zhang Y B 2020 Results Phys. 16 102867Google Scholar

    [9]

    Wang X X, Zhu J K, Wen X L, Wu X X, Wu Y, Su Y W, Tong H, Qi Y P, Yang H 2019 Opt. Mater. Express 9 3079Google Scholar

    [10]

    Singh M, Datta A 2018 IEEE Photonics Technol. Lett. 30 997Google Scholar

    [11]

    Shibayama J, Kawai H, Yamauchi J, Nakano H 2019 Opt. Commun. 452 360Google Scholar

    [12]

    Wang X X, Zhu J K, Wu Y, Xu Y Q, Su Y W, Zhang L P 2020 Results Phys. 17 103175Google Scholar

    [13]

    Li J K, Chen X F, Yi Z, Yang H, Tang Y J, Yi Y, Yao W T, Wang J Q, Yi Y G 2020 Mater. Today Energy 16 100390Google Scholar

    [14]

    Wang Y Y, Chen Z Q, Xu D Y, Yi Z, Chen X F, Chen J, Tang Y J, Wu P H, Li G F, Yi Y G 2020 Results Phys. 16 102951Google Scholar

    [15]

    Qi Y P, Zhang Y, Liu C Q, Zhang T, Zhang B H, Wang L Y, Deng X Y, Bai Y L, Wang X X 2020 Results Phys. 16 103012Google Scholar

    [16]

    Chen J, Nie H, Peng C, Qi S B, Tang C J, Zhang Y, Wang L H, Park G S 2018 J. Lightwave Technol. 36 3481Google Scholar

    [17]

    Pang Z Y, Tong H, Wu X X, Zhu J K, Wang X X, Yang H, Qi Y P 2018 Opt. Quantum Electron. 50 335Google Scholar

    [18]

    Chen J, Nie H, Zha T Q, Mao P, Tang C J, Shen X Y, Park G S 2018 J. Lightwave Technol. 36 2791Google Scholar

    [19]

    Li S L, Wang Y L, Jiao R Z, Wang L L, Yu L 2017 Opt. Express 25 3525Google Scholar

    [20]

    Wu T, Liu Y M, Yu Z Y, Peng Y W, Shu C G, Ye H 2014 Opt. Express 22 7669Google Scholar

    [21]

    Liu Q, Liu M W, Zhan S P, Wu L X, Xie S X, Chen Z H, Zhang Y C 2019 Plasmonics 14 1005Google Scholar

    [22]

    Cen C L, Lin H, Huang J, Liang C P, Chen X F, Tang Y J, Yi Z, Ye X, Liu J W, Yi Y G, Xiao S Y 2018 Sensors 18 4489Google Scholar

    [23]

    Li Z F, Wen K H, Chen L, Lei L, Zhou J Y, Zhou D Y, Fang Y H, Wu B Y 2019 Appl. Opt. 58 4878Google Scholar

    [24]

    Wu T S, Liu Y M, Yu Z Y, Ye H, Peng Y W, Shu C G, Yang C H, Zhang W, He H F 2015 Opt. Commun. 339 1Google Scholar

    [25]

    Qi Y P, Zhou P Y, Zhang T, Zhang X W, Wang Y, Liu C Q, Bai Y L, Wang X X 2019 Results Phys. 14 102506Google Scholar

    [26]

    伍铁生, 王丽, 王哲, 刘玉敏, 胡署阳, 尹丽丹 2012 中国激光 39 1114002Google Scholar

    Wu T S, Wang L, Wang Z, Liu Y M, Yin L D 2012 Chin. J. Lasers 39 1114002Google Scholar

    [27]

    Sundari S T, Srinivasu K, Dash S, Tyagi A K 2013 Solid State Commun. 167 36Google Scholar

    [28]

    Lin X S, Huang X G 2009 Opt. Lett. 33 2874

    [29]

    祁云平, 张雪伟, 周培阳, 胡兵兵, 王向贤 2018 67 197301Google Scholar

    Qi Y P, Zhang X W, Zhou P Y, Hu B B, Wang X X 2018 Acta Phys. Sin. 67 197301Google Scholar

    [30]

    Dionne J A, Sweatlock L A, Atwater H A 2006 Phys. Rev. B 73 035407Google Scholar

    [31]

    Wu T S, Liu Y M, Yu Z Y, Peng Y W, Shu C G, He H F 2014 Opt. Commun. 323 44Google Scholar

    [32]

    Cheng Q Q, Li T, Li L, Wang S M, Zhu S N 2014 Opt. Lett. 39 3900Google Scholar

    [33]

    Ren M X, Pan C P, Li Q Q, Cai W 2013 Opt. Lett. 38 3133Google Scholar

  • [1] Chen Zhao, Ma Xin-Xin, Li Tong, Wang Yi-Lin. Optical pressure sensor based on Fano resonance in a coupled resonator system. Acta Physica Sinica, 2024, 73(8): 084205. doi: 10.7498/aps.73.20232025
    [2] Zhang Cai-Xia, Ma Xiang-Chao, Zhang Jian-Qi. Theoretical study on surface plasmon and hot carrier transport properties of Au(111) films. Acta Physica Sinica, 2022, 71(22): 227801. doi: 10.7498/aps.71.20221166
    [3] Qi Yun-Ping, Jia Ying-Jun, Zhang Ting, Ding Jing-Hui, Wei Jing-Wen, Wang Xiang-Xian. Dynamically tunable refractive index sensor based on Fano resonance with metal-insulator-metal-graphene nanotube hybrid structure. Acta Physica Sinica, 2022, 71(17): 178101. doi: 10.7498/aps.71.20220652
    [4] Chu Pei-Xin, Zhang Yu-Bin, Chen Jun-Xue. Surface plasmon induced transparency in coupled microcavities assisted by slits. Acta Physica Sinica, 2020, 69(13): 134205. doi: 10.7498/aps.69.20200369
    [5] Wu Han, Wu Jing-Yu, Chen Zhuo. Strong coupling between metasurface based Tamm plasmon microcavity and exciton. Acta Physica Sinica, 2020, 69(1): 010201. doi: 10.7498/aps.69.20191225
    [6] Zhang Duo-Duo, Liu Xiao-Feng, Qiu Jian-Rong. Ultrafast optical switches and pulse lasers based on strong nonlinear optical response of plasmon nanostructures. Acta Physica Sinica, 2020, 69(18): 189101. doi: 10.7498/aps.69.20200456
    [7] Liu Xu-Yang, Zhang He-Qiu, Li Bing-Bing, Liu Jun, Xue Dong-Yang, Wang Heng-Shan, Liang Hong-Wei, Xia Xiao-Chuan. Characteristics of AlGaN/GaN high electron mobility transistor temperature sensor. Acta Physica Sinica, 2020, 69(4): 047201. doi: 10.7498/aps.69.20190640
    [8] Yan De-Xian, Li Jiu-Sheng, Wang Yi. High sensitivity terahertz refractive index sensor based on sunflower-shaped circular photonic crystal. Acta Physica Sinica, 2019, 68(20): 207801. doi: 10.7498/aps.68.20191024
    [9] Wang Dong, Xu Jun, Chen Yi-Hang. Broadband absorption caused by coupling of epsilon-near-zero mode with plasmon mode. Acta Physica Sinica, 2018, 67(20): 207301. doi: 10.7498/aps.67.20181106
    [10] Qi Yun-Ping, Zhang Xue-Wei, Zhou Pei-Yang, Hu Bing-Bing, Wang Xiang-Xian. Refractive index sensor and filter of metal-insulator-metal waveguide based on ring resonator embedded by cross structure. Acta Physica Sinica, 2018, 67(19): 197301. doi: 10.7498/aps.67.20180758
    [11] Li Zi-Liang, Liao Chang-Rui, Liu Shen, Wang Yi-Ping. Research progress of in-fiber Fabry-Perot interferometric temperature and pressure sensors. Acta Physica Sinica, 2017, 66(7): 070708. doi: 10.7498/aps.66.070708
    [12] Deng Hong-Mei, Huang Lei, Li Jing, Lu Ye, Li Chuan-Qi. Tunable unidirectional surface plasmon polariton coupler utilizing graphene-based asymmetric nanoantenna pairs. Acta Physica Sinica, 2017, 66(14): 145201. doi: 10.7498/aps.66.145201
    [13] Yang Jie, Liu Qing-Quan, Dai Wei, Mao Xiao-Li, Zhang Jia-Hong, Li Min. Fluid dynamic analysis and experimental study of a temperature sensor array used in meteorological observation. Acta Physica Sinica, 2016, 65(9): 094209. doi: 10.7498/aps.65.094209
    [14] Fu Xing-Hu, Xie Hai-Yang, Yang Chuan-Qing, Zhang Shun-Yang, Fu Guang-Wei, Bi Wei-Hong. Research on the temperature sensing characteristics of triple cladding quartz specialty fiber based on cladding mode resonance. Acta Physica Sinica, 2016, 65(2): 024211. doi: 10.7498/aps.65.024211
    [15] Sheng Shi-Wei, Li Kang, Kong Fan-Min, Yue Qing-Yang, Zhuang Hua-Wei, Zhao Jia. Tooth-shaped plasmonic filter based on graphene nanoribbon. Acta Physica Sinica, 2015, 64(10): 108402. doi: 10.7498/aps.64.108402
    [16] Li Xin, Wang Lu-Na, Guo Shi-Liang, Li Zhi-Quan, Yang Ming. Doubled temperature measurement range for a single micro-ring sensor. Acta Physica Sinica, 2014, 63(15): 154209. doi: 10.7498/aps.63.154209
    [17] Chen Ying, Fan Hui-Qing, Lu Bo. Tamm state of semi-infinite photonic crystal based on surface defect cavity with porous silicon and its refractive index sensing mechanism. Acta Physica Sinica, 2014, 63(24): 244207. doi: 10.7498/aps.63.244207
    [18] Zeng Zhi-Wen, Liu Hai-Tao, Zhang Si-Wen. Design of extraordinary-optical-transimission refractive-index sensor of subwavelength metallic slit array based on a Fabry-Perot model. Acta Physica Sinica, 2012, 61(20): 200701. doi: 10.7498/aps.61.200701
    [19] Chen Jian-Jun, Li Zhi, Zhang Jia-Sen, Gong Qi-Huang. Surface plasmon polariton modulator based on electro-optic polymer. Acta Physica Sinica, 2008, 57(9): 5893-5898. doi: 10.7498/aps.57.5893
    [20] Wang Yi-Ping, Rao Yun-Jiang, Ran Zeng-Ling, Zhu Tao. Unique characteristics of long-period fibre gratings fabricated by high-freque ncy CO2 laser pulses. Acta Physica Sinica, 2003, 52(6): 1432-1437. doi: 10.7498/aps.52.1432
Metrics
  • Abstract views:  6938
  • PDF Downloads:  78
  • Cited By: 0
Publishing process
  • Received Date:  17 March 2020
  • Accepted Date:  11 May 2020
  • Available Online:  18 May 2020
  • Published Online:  20 August 2020

/

返回文章
返回
Baidu
map