Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Risk transmission between banks based on time-varying state network

Qiu Lu Huang Guo-Yan

Citation:

Risk transmission between banks based on time-varying state network

Qiu Lu, Huang Guo-Yan
PDF
HTML
Get Citation
  • Aiming at the state transition between bank networks, we propose a time-varying state network model. In this model, we classify the bank networks in each time period by the kmeans method, and use directed minimum spanning tree(DMST) method to describe the topological structure of each kind of bank network. We also construct a time-varying bank state network by the planar maximally filtered graph(PMFG) method. The state network can be used to find the source of bank risk and conduct the time-varying analysis. We put into the model the inter-bank lending data of 15 listed Chinese commercial banks from the fourth quarter of 2007 to the first quarter of 2019. The results show that the short-term continuity jump between the bank states can effectively describe the occurrence of financial crisis. For example, before and after the global financial crisis in 2008, there was a short-term jump between two states. From the “money shortage” in 2013 to the stock market crash in 2015, there were four short-term jumps between states. At the same time, the outgoing degree of each directed bank state network is directly proportional to the contagion effect, and the incoming degree is inversely proportional to the steady degree of the risk faced by the bank. The sequential bank state network has the memory characteristic, which can provide the central bank for decision basis to prevent the systematic risk.
      Corresponding author: Huang Guo-Yan, huanggy@shnu.edu.cn
    [1]

    Anand K, Lelyveld I, Banai Á, Friedrich S, Garratt R, Hałaj G, Fique J, Hansen I, Jaramillo S M, Lee H, Molina J L, Nobili S, Rajan S, Salakhova D, Silva T C, Silvestri L, Souza S 2018 J. Financ. Stabil. 35 107Google Scholar

    [2]

    唐文进, 苏帆 2017 经济研究 04 19

    Tang W J, Su F 2017 ERJ 04 19

    [3]

    Müller J 2006 J. Financ. Serv. Res. 29 37Google Scholar

    [4]

    Wells S 2004 B.E.Q. Bull. 3 331

    [5]

    Upper C, Worms A 2004 Eur. Econ. Rev. 48 827Google Scholar

    [6]

    Anand K, Craig B, Peter G 2015 Quant. Financ. 15 625Google Scholar

    [7]

    李守伟, 何建敏, 庄亚明 2010 系统工程 5 20

    Li S W, He J M, Zhuang Y M 2010 Syst. Eng. 5 20

    [8]

    范宏, 郑阳, 杨明明 2019 系统工程 37 101

    Fan H, Zheng Y, Yang M M 2019 Syst. Eng. 37 101

    [9]

    王明亮, 何建敏, 李守伟 2013 中国管理科学 S1 237

    Wang M L, He J M, Li S W 2013 Chin. J. Manage. Sci. S1 237

    [10]

    Zhou L, Qiu L, Gu C G, Yang H J 2018 EPL 121 48002Google Scholar

    [11]

    邓向荣, 曹红 2016 中央财经大学学报 3 52

    Deng X R, Cao H 2016 J. Central Univ. Financ. Econ. 3 52

    [12]

    胡利琴, 胡蝶, 彭红枫 2018 国际金融研究 06 53Google Scholar

    Hu L Q, Hu D, Peng H F 2018 Stud. Inter. Fin. 06 53Google Scholar

    [13]

    Constantin A, Peltonen T A, Sarlin P 2018 J. Financ. Stabil. 35 226Google Scholar

    [14]

    陈梦根, 赵雨涵 2019 经济研究 54 49

    Chen M G, Zhao Y H 2019 Econ. Res. J. 54 49

    [15]

    李智, 牛晓健 2018 大连理工大学学报(社会科学版) 2 19

    Li Z, Niu X J 2018 J. Dalian Univ. Technol. (Soc. Sci.) 2 19

    [16]

    李政, 刘淇, 梁琪 2019 统计研究 36 23

    Li Z, Liu Q, Liang Q 2019 Stat. Res. 36 23

    [17]

    Garratt R, Mahadeva L, Svirydzenka K 2012 SSRN Electron. J. 413 1

    [18]

    Spelta A and Araújo T 2012 Physica A 391 5572Google Scholar

    [19]

    Zhang J, Small M 2006 Phys. Rev. Lett. 96 238701Google Scholar

    [20]

    Xu X K, Zhang J, Small M 2008 PNAS 105 19601Google Scholar

    [21]

    Münnix M C, Shimada T, Schäfer R, Leyvraz F, Seligman T H, Guhr T, Stanley H E 2012 Sci. Rep. 2 644Google Scholar

    [22]

    Qiu L, Gu C G, Xiao Q, Yang H J, Wu G L 2018 Physica A 492 1120Google Scholar

    [23]

    Tumminello M, Aste T, Di Matteo T, Mantegna R N 2005 PNAS 102 10421Google Scholar

    [24]

    Holme P, Saramäki J 2012 Phys. Rep. 519 97Google Scholar

    [25]

    Blien U, Graef F 1998 Entropy Optimizing Methods for the Estimation of Tables (Germany: Springer) p3

    [26]

    Wilks D S 2004 Mon. Weather. Rev. 132 1329Google Scholar

    [27]

    Kwon O, Yang J S 2008 EPL 82 680031

    [28]

    Girvan M, Newman M E J 2002 PNAS 99 7821Google Scholar

    [29]

    蒋海, 张锦意 2018 财贸经济 39 50

    Jiang H, Zhang J Y 2018 Financ. Trad. Econ. 39 50

  • 图 1  主体方法和流程图

    Figure 1.  Main method and flow chart.

    图 2  距离比率与比率变化率

    Figure 2.  Distance ratio and rate of change.

    图 3  银行拆借矩阵状态演化图

    Figure 3.  State evolution of bank lending matrix.

    图 4  8类银行状态矩阵图

    Figure 4.  Bank matrix diagram of 8 states.

    图 5  各个银行状态之间的相关矩阵

    Figure 5.  Correlation matrix between Bank states.

    图 6  状态1—4的有向最小生成树 (a) 状态1的有向生成树; (b) 状态2的有向生成树; (c) 状态3的有向生成树; (d) 状态4的有向生成树

    Figure 6.  . Directed network diagram of state 1 to 4: (a) Directed network diagram of state 1 (b) directed network diagram of state 2; (c) directed network diagram of state 3; (d) directed network diagram of state 4.

    图 7  状态5—8的有向最小生成树 (a) 状态5的有向生成树; (b) 状态6的有向生成树; (c) 状态7的有向生成树; (d) 状态8的有向生成树

    Figure 7.  Directed network diagram of state 5 to 8: (a) Directed network diagram of state 5; (b) directed network diagram of state 6; (c) directed network diagram of state 7; (d) directed network diagram of state 8.

    图 8  各个时间状态下拆借矩阵关系

    Figure 8.  Lending matrix relationship in different time states.

    表 1  商业银行汇总

    Table 1.  Summary of commercial banks.

    编号银行类型编号银行类型
    1浦发银行股份制商业银行2民生银行股份制商业银行
    3华夏银行股份制商业银行4招商银行股份制商业银行
    5兴业银行股份制商业银行6北京银行地方商业银行
    7上海银行地方商业银行8中国农业银行国有商业银行
    9中国交通银行国有商业银行10中国工商银行国有商业银行
    11中国建设银行国有商业银行12中国银行国有商业银行
    13中信银行股份制商业银行14平安银行股份制商业银行
    15宁波银行地方商业银行
    DownLoad: CSV

    表 2  8个状态矩阵的相关矩阵

    Table 2.  Correlation matrix of eight state matrices.

    状态1状态2状态3状态4状态5状态6状态7状态8
    状态11.0000.9270.9180.9090.4100.9490.7140.708
    状态20.9271.0000.9680.8740.5490.9110.8810.819
    状态30.9180.9681.0000.8870.6300.9110.8930.875
    状态40.9090.8740.8871.0000.4810.9630.7570.767
    状态50.4100.5490.630.4811.0000.4220.7070.861
    状态60.9490.9110.9110.9630.4221.0000.750.734
    状态70.7140.8810.8930.7570.7070.7501.0000.884
    状态80.7080.8190.8750.7670.8610.7340.8841.000
    DownLoad: CSV

    表 3  8个状态矩阵的全局相似度

    Table 3.  Global similarity of eight state matrices.

    状态12345678
    全局相似度6.5366.9297.0826.6385.0606.6396.5876.647
    DownLoad: CSV

    表 4  银行状态网络拓扑特性统计

    Table 4.  Statistics of topological characteristics of banking state network.

    银行状态1出度状态2出度状态3出度状态4出度状态5出度状态6出度状态7出度状态8出度头节点数中心节点数
    浦发0000000000
    民生1110000030
    华夏0000000000
    招商0000000000
    兴业0000000000
    北京0000000000
    上海0000000000
    农业0510000001
    交通0001000000
    工商1305111120014
    建设0000000000
    中国0871131131305
    中信0001001130
    平安0000010010
    宁波0000000000
    DownLoad: CSV
    Baidu
  • [1]

    Anand K, Lelyveld I, Banai Á, Friedrich S, Garratt R, Hałaj G, Fique J, Hansen I, Jaramillo S M, Lee H, Molina J L, Nobili S, Rajan S, Salakhova D, Silva T C, Silvestri L, Souza S 2018 J. Financ. Stabil. 35 107Google Scholar

    [2]

    唐文进, 苏帆 2017 经济研究 04 19

    Tang W J, Su F 2017 ERJ 04 19

    [3]

    Müller J 2006 J. Financ. Serv. Res. 29 37Google Scholar

    [4]

    Wells S 2004 B.E.Q. Bull. 3 331

    [5]

    Upper C, Worms A 2004 Eur. Econ. Rev. 48 827Google Scholar

    [6]

    Anand K, Craig B, Peter G 2015 Quant. Financ. 15 625Google Scholar

    [7]

    李守伟, 何建敏, 庄亚明 2010 系统工程 5 20

    Li S W, He J M, Zhuang Y M 2010 Syst. Eng. 5 20

    [8]

    范宏, 郑阳, 杨明明 2019 系统工程 37 101

    Fan H, Zheng Y, Yang M M 2019 Syst. Eng. 37 101

    [9]

    王明亮, 何建敏, 李守伟 2013 中国管理科学 S1 237

    Wang M L, He J M, Li S W 2013 Chin. J. Manage. Sci. S1 237

    [10]

    Zhou L, Qiu L, Gu C G, Yang H J 2018 EPL 121 48002Google Scholar

    [11]

    邓向荣, 曹红 2016 中央财经大学学报 3 52

    Deng X R, Cao H 2016 J. Central Univ. Financ. Econ. 3 52

    [12]

    胡利琴, 胡蝶, 彭红枫 2018 国际金融研究 06 53Google Scholar

    Hu L Q, Hu D, Peng H F 2018 Stud. Inter. Fin. 06 53Google Scholar

    [13]

    Constantin A, Peltonen T A, Sarlin P 2018 J. Financ. Stabil. 35 226Google Scholar

    [14]

    陈梦根, 赵雨涵 2019 经济研究 54 49

    Chen M G, Zhao Y H 2019 Econ. Res. J. 54 49

    [15]

    李智, 牛晓健 2018 大连理工大学学报(社会科学版) 2 19

    Li Z, Niu X J 2018 J. Dalian Univ. Technol. (Soc. Sci.) 2 19

    [16]

    李政, 刘淇, 梁琪 2019 统计研究 36 23

    Li Z, Liu Q, Liang Q 2019 Stat. Res. 36 23

    [17]

    Garratt R, Mahadeva L, Svirydzenka K 2012 SSRN Electron. J. 413 1

    [18]

    Spelta A and Araújo T 2012 Physica A 391 5572Google Scholar

    [19]

    Zhang J, Small M 2006 Phys. Rev. Lett. 96 238701Google Scholar

    [20]

    Xu X K, Zhang J, Small M 2008 PNAS 105 19601Google Scholar

    [21]

    Münnix M C, Shimada T, Schäfer R, Leyvraz F, Seligman T H, Guhr T, Stanley H E 2012 Sci. Rep. 2 644Google Scholar

    [22]

    Qiu L, Gu C G, Xiao Q, Yang H J, Wu G L 2018 Physica A 492 1120Google Scholar

    [23]

    Tumminello M, Aste T, Di Matteo T, Mantegna R N 2005 PNAS 102 10421Google Scholar

    [24]

    Holme P, Saramäki J 2012 Phys. Rep. 519 97Google Scholar

    [25]

    Blien U, Graef F 1998 Entropy Optimizing Methods for the Estimation of Tables (Germany: Springer) p3

    [26]

    Wilks D S 2004 Mon. Weather. Rev. 132 1329Google Scholar

    [27]

    Kwon O, Yang J S 2008 EPL 82 680031

    [28]

    Girvan M, Newman M E J 2002 PNAS 99 7821Google Scholar

    [29]

    蒋海, 张锦意 2018 财贸经济 39 50

    Jiang H, Zhang J Y 2018 Financ. Trad. Econ. 39 50

  • [1] Ma Jin-Long, Du Chang-Feng, Sui Wei, Xu Xiang-Yang. Data traffic capability of double-layer network based on coupling strength. Acta Physica Sinica, 2020, 69(18): 188901. doi: 10.7498/aps.69.20200181
    [2] Huang Zhi-Jing, Li Qian-Yun, Bai Jing, Tang Guo-Ning. Entropy measurement of ordered patterns in neuronal network with repulsive coupling. Acta Physica Sinica, 2019, 68(11): 110503. doi: 10.7498/aps.68.20190231
    [3] He Chang-Chun, Liao Ji-Hai, Yang Xiao-Bao. Monte-Carlo tree search for stable structures of planar clusters. Acta Physica Sinica, 2017, 66(16): 163601. doi: 10.7498/aps.66.163601
    [4] Luo Shi-Long, Gong Kai, Tang Chao-Sheng, Zhou Jing. A ranking approach based on k-shell decomposition method by filtering out redundant link in weighted networks. Acta Physica Sinica, 2017, 66(18): 188902. doi: 10.7498/aps.66.188902
    [5] Wang Yu, Guo Jin-Li. Evaluation method of node importance in directed-weighted complex network based on multiple influence matrix. Acta Physica Sinica, 2017, 66(5): 050201. doi: 10.7498/aps.66.050201
    [6] Zeng Ming, Wang Er-Hong, Zhao Ming-Yuan, Meng Qing-Hao. Directed weighted complex networks based on time series symbolic pattern representation. Acta Physica Sinica, 2017, 66(21): 210502. doi: 10.7498/aps.66.210502
    [7] Luo Xiao-Yuan, Li Hao, Ma Ju-Hai. Topology optimization algorithm for wireless networks based on the algebraic properties of minimum rigid graph. Acta Physica Sinica, 2016, 65(24): 240201. doi: 10.7498/aps.65.240201
    [8] Wang Xiao-Juan, Song Mei, Guo Shi-Ze, Yang Zi-Long. Information spreading in correlated microblog reposting network based on directed percolation theory. Acta Physica Sinica, 2015, 64(4): 044502. doi: 10.7498/aps.64.044502
    [9] Cai Meng, Du Hai-Feng, Marcus W Feldman. A new network structure entropy based on maximum flow. Acta Physica Sinica, 2014, 63(6): 060504. doi: 10.7498/aps.63.060504
    [10] Peng Hai-Xia, Zhao Hai, Li Da-Zhou, Lin Chuan. Data fusaggregation algorithm based on dynamic minimal spanning tree routing protocol. Acta Physica Sinica, 2014, 63(9): 090206. doi: 10.7498/aps.63.090206
    [11] Fan Hong. Calculation of system risk in a dynamical bank network system. Acta Physica Sinica, 2014, 63(3): 038902. doi: 10.7498/aps.63.038902
    [12] Deng Qi-Xiang, Jia Zhen, Xie Meng-Shu, Chen Yan-Fei. Study of directed networks-based Email virus propagation model and its concussion attractor. Acta Physica Sinica, 2013, 62(2): 020203. doi: 10.7498/aps.62.020203
    [13] Xiao Yan-Dong, Lao Song-Yang, Hou Lü-Lin, Bai Liang. A navigation search model based on subnet of maximum controllability. Acta Physica Sinica, 2013, 62(24): 248901. doi: 10.7498/aps.62.248901
    [14] Tian Chang-Hai, Deng Min-Yi, Kong Ling-Jiang, Liu Mu-Ren. Cellular automaton simulation with directed small-world networks for the dynamical behaviors of spiral waves. Acta Physica Sinica, 2011, 60(8): 080505. doi: 10.7498/aps.60.080505
    [15] Feng Ai-Xia, Gong Zhi-Qiang, Zhi Rong, Zhou Lei. Topological analysis of temperature networks using bipartite graph model. Acta Physica Sinica, 2010, 59(9): 6689-6696. doi: 10.7498/aps.59.6689
    [16] Wang Ya-Qi, Jiang Guo-Ping. Spreading of epidemics in complex networks with infective medium and spreading delay. Acta Physica Sinica, 2010, 59(10): 6725-6733. doi: 10.7498/aps.59.6725
    [17] Ni Shun-Jiang, Weng Wen-Guo, Fan Wei-Cheng. Spread dynamics of infectious disease in growing scale-free networks. Acta Physica Sinica, 2009, 58(6): 3707-3713. doi: 10.7498/aps.58.3707
    [18] Pei Wei-Dong, Liu Zhong-Xin, Chen Zeng-Qiang, Yuan Zhu-Zhi. Study of epidemic spreading on scale-free networks with finite maximum dissemination. Acta Physica Sinica, 2008, 57(11): 6777-6785. doi: 10.7498/aps.57.6777
    [19] BAD KE-DA, XIONG JIA-JIONG. INVESTIGATION OF THE LARGEST CURRENT IN A RANDOM RESISTOR NETWORK. Acta Physica Sinica, 1990, 39(8): 121-127. doi: 10.7498/aps.39.121
    [20] . Acta Physica Sinica, 1965, 21(11): 1913-1914. doi: 10.7498/aps.21.1913
Metrics
  • Abstract views:  6454
  • PDF Downloads:  85
  • Cited By: 0
Publishing process
  • Received Date:  14 February 2020
  • Accepted Date:  07 April 2020
  • Available Online:  09 May 2020
  • Published Online:  05 July 2020

/

返回文章
返回
Baidu
map