搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

在具有排斥耦合的神经元网络中有序斑图的熵测量

黄志精 李倩昀 白婧 唐国宁

引用本文:
Citation:

在具有排斥耦合的神经元网络中有序斑图的熵测量

黄志精, 李倩昀, 白婧, 唐国宁

Entropy measurement of ordered patterns in neuronal network with repulsive coupling

Huang Zhi-Jing, Li Qian-Yun, Bai Jing, Tang Guo-Ning
PDF
HTML
导出引用
  • 脑神经网络在一定条件下可以自发出现行波、驻波、螺旋波, 这些有序时空斑图的出现往往与某种神经疾病有关, 但是其产生的机制尚未完全清楚, 如何定量描述这些时空斑图的性质仍需要探索, 为了解决这些问题, 本文采用Hindmarsh-Rose神经元模型研究了具有排斥耦合的二维双耦合层神经元网络从混沌初相位开始演化的动力学行为, 并用改进的集团熵来描述神经元网络的时空斑图. 数值模拟结果表明: 排斥耦合既可以促进有序斑图的形成, 也可以抑制有序斑图的形成. 适当选择排斥和兴奋性耦合强度, 排斥耦合可导致单螺旋波、多螺旋波、行波、螺旋波和靶波与其他态共存、行波与驻波共存等有序斑图出现, 螺旋波、行波出现概率分别达到0.4555和0.1667. 靶波与其他态共存和行波与驻波共存出现概率分别达到0.0389和0.1056, 我们提出的集团熵可以较好区分这些有序斑图和混沌态. 当排斥耦合强度足够大时, 网络一般处于混沌态. 当网络处于弱耦合状态时, 通过计算集团熵发现网络可以出现很大集团, 这些结果有助于理解在实验中观察到的现象, 从而能为神经疾病治疗提供帮助.
    Traveling waves, standing waves, and spiral waves occur spontaneously in the brain neural network in some brain states. The occurrence of these ordered spatiotemporal patterns is often related to some neurological diseases. However, the mechanisms behind the generation of the ordered pattern are not fully understood. How to quantitatively describe the nature of these spatiotemporal patterns still needs further exploring. In order to solve these problems, the Hindmarsh-Rose neuron model is used to study the dynamic behavior of the two-dimensional (2D) neuronal network with double-coupling layer, which is composed of nearest-neighbor excitatory coupling and long-range repulsive coupling layers and evolves from an initial state with a random phase distribution. An improved cluster entropy is proposed to describe the spatiotemporal pattern of the neuronal network. The numerical simulation results show that the repulsive coupling can either promote the formation of ordered patterns or suppress the formation of ordered patterns. When the repulsive coupling strength and excitatory coupling strength are appropriately selected, the chaotic network can spontaneously generate single spiral wave, multiple spiral wave, traveling wave, the coexistence of spiral wave and others wave state, the coexistence of target wave and others wave state, the coexistence of traveling wave and standing wave, etc. The probability with which spiral wave and traveling wave occur reach 0.4555 and 0.1667 respectively. The probability with which target wave and other states co-occur, and the probability with which the traveling wave and the standing wave co-occur, are 0.0389 and 0.1056, respectively. These ordered wave patterns and chaotic states can be distinguished by using the proposed cluster entropy. When the repulsive coupling strength is large enough, the neuronal network is generally in chaotic state. It is found by calculating cluster entropy that a large cluster can appear in the neuronal network when the excitatory coupling strength and repulsive coupling strength are both weak. These results can conduce to understanding the self-organization phenomena occurring in the experiments and also to treating various neurological diseases.
      通信作者: 唐国宁, tngguoning@sohu.com
    • 基金项目: 国家自然科学基金(批准号: 11565005, 11847317)资助的课题.
      Corresponding author: Tang Guo-Ning, tngguoning@sohu.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11565005, 11847317).
    [1]

    Larionova Y, Egorov O, Cabrera-Granado E, Esteban-Martin A 2005 Phys. Rev. A 72 033825Google Scholar

    [2]

    Plapp B P, Egolf D A, Bodenschatz E, Pesch W 1998 Phys. Rev. Lett. 81 5334Google Scholar

    [3]

    Bär M, Gottschalk N, Eiswirth M, Ertl G 1994 J. Phys. Chem. B 100 1202Google Scholar

    [4]

    Müller S C, Plesser T, Hess B 1985 Science 230 661Google Scholar

    [5]

    Vanag V K, Epstein I R 2001 Science 294 835Google Scholar

    [6]

    Davidenko J M, Pertsov A V, Salomonsz R, Baxter W, Jalife J 1992 Nature 355 349Google Scholar

    [7]

    Huang X Y, Xu W F, Liang J M, Takagaki K, Gao X, Wu J Y 2010 Neuron 68 978Google Scholar

    [8]

    Huang X Y, Troy W C, Yang Q, Ma H T, Laing C R, Schiff S J, Wu J Y 2004 J. Neurosci. 24 9897Google Scholar

    [9]

    Viventi J, Kim D H, Vigeland L, Frechette E S, Blanco J A, Kim Y S, Avrin A E, et al. 2011 Nat. Neurosci. 14 1599

    [10]

    Perc M 2007 Chaos, Solitons Fractals 31 280Google Scholar

    [11]

    Qin H X, Ma J, Wang C N, Chu R T 2014 Sci. China: Phys. Mech. Astron. 57 1918Google Scholar

    [12]

    汪芃, 李倩昀, 黄志精, 唐国宁 2018 67 170501Google Scholar

    Wang P, Li Q Y, Huang Z J, Tang G N 2018 Acta Phys. Sin. 67 170501Google Scholar

    [13]

    Lip G Y H, Fauchier L, Freedman S B, Gelder V I, Natale A, Gianni C, et al. 2016 Nat. Rev. Dis. Primers 2 16016Google Scholar

    [14]

    Yengi D, Tinsley M R, Showalter K 2018 Chaos 28 045114Google Scholar

    [15]

    Wang Q Y, Chen G R, Perc M 2011 PloS One 6 e15851Google Scholar

    [16]

    Vreeswijk C V, Abbott L F, Ermentrout G B 1994 J. Comput. Neurosci. 1 313Google Scholar

    [17]

    Leyva I, Sendiña-Nadal I, Almendral J A, Sanjuán M A F 2006 Phys. Rev. E 74 056112Google Scholar

    [18]

    Scholkmann F 2015 J. Integr. Neurosci. 14 135Google Scholar

    [19]

    Veeraraghavan R, Lin J, Hoeker G S, Keener J P, Robert G. Gourdie R G, Poelzing S 2015 Pflug. Arch Eur. J. Physiol. 467 2093Google Scholar

    [20]

    Copene E D, Keener J P 2008 J. Math. Biol. 57 265Google Scholar

    [21]

    Shen J, Zhang J H, Xiao H, Wu J M, He K M, Lv Z Z, Li Z J, Xu M, Zhang Y Y 2018 Cell Death and Dis. 9 81Google Scholar

    [22]

    Ma J, Tang J 2017 Nonlinear Dyn. 89 1569Google Scholar

    [23]

    Weinberg S H 2017 Chaos 27 093908Google Scholar

    [24]

    Shlens J, Field G D, Gauthier J L, Grivich M I, Petrusca D, Sher A, Litke A M, Chichilnisky E J 2006 J. Neurosci. 26 8254Google Scholar

    [25]

    Marre O, Boustani S E, Frégnac Y, Destexhe A 2009 Phys. Rev. Lett. 102 138101Google Scholar

    [26]

    Nghiem T A, Telenczuk B, Marre O, Destexhe A, Ferrari U 2018 Phys. Rev. E 98 012402Google Scholar

    [27]

    Jung P, Wang J, Wackerbauer R, Showalter K 2000 Phys. Rev. E 61 2095Google Scholar

    [28]

    Hindmarsh J L, Rose R M 1984 Pro. R. Soc. Lond. B 221 87Google Scholar

    [29]

    Adhikari B M, Prasad A, Dhamala M 2011 Chaos 21 023116Google Scholar

    [30]

    Nunez P L, Srinivasan R 2006 Clin. Neurophysiol. 117 2424Google Scholar

    [31]

    Müller M F, Rummel C, Goodfellow M, Schindler K 2014 Brain Connectivity 4 131Google Scholar

    [32]

    Schneidman E, Berry M J, Segev R, Bialek W 2006 Nature 440 1007Google Scholar

  • 图 1  不同耦合强度下的神经元${x_{i,j}}$变量斑图, 每一个图下方为相应斑图的熵值 (a) $w = 0,\;g = {\rm{0}}$; (b) $w = 0.{\rm{17}},\;g = {\rm{0}}.{\rm{3}}$; (c) $w = 0.05,\;g = 1.2$; (d) $w = 0.05,\;g = 1.1 $; (e) $w = 0.07,\;g = 1.3$; (f) $w = 0.0{\rm{9}},\;g = 1.{\rm{9}}$; (g) w = 0.05, $g = 1.0$; (h) $w = 0.01,\;g = 0.1$; (i) $w = 0,\;g = {\rm{0}}.{\rm{1}}$; (j) $w = 0.03,\;g = 1.0$; (k) $w = 0.07,\;g = 0.4$; (l) w = 0.05, $g = 0.4$

    Fig. 1.  Pattern of the variable ${x_{i,j}}$ for different values of coupling strength. Entropy of the corresponding pattern is given underneath each panel: (a) $w = 0,\;g = {\rm{0}}$; (b) $w = 0.{\rm{17}},\;g = {\rm{0}}.{\rm{3}}$; (c) $w = 0.05,\;g = 1.2$; (d) $w = 0.05,\;g = 1.1 $; (e) $w = 0.07,\;g = 1.3$; (f) $w = 0.0{\rm{9}},\;g = 1.{\rm{9}}$; (g) $w = 0.05,\;g = 1.0$; (h) $w = 0.01,\;g = 0.1$; (i) $w = 0,\;g = {\rm{0}}.{\rm{1}}$; (j) $w = 0.03,\;g = 1.0$; (k) w$ = 0.07,\;g = 0.4$; (l) $w = 0.05,\;g = 0.4$.

    图 2  不同耦合强度下一行和一列格点的${x_{i,j}}$变量时空斑图 (a) $w = 0.05,\;g = 1.0$; (b) $w = 0.05,\;g = 1.0$; (c) w =$ 0.01,\;g = 0.1$; (d) $w = 0.01,\;g = 0.1$

    Fig. 2.  Spatiotemporal pattern of the variable ${x_{i,j}}$ of a row and a column of grid points for different values of coupling strength: (a) $w = 0.05,\;g = 1.0$; (b) $w = 0.05,\;g = 1.0$; (c) $w = 0.01,\;g = 0.1$; (d) $w = 0.01,\;g = 0.1$.

    图 3  不同耦合强度下网络的集团熵随时间变化 (a) $w = 0.05,\;g = 1.2$; (b) $w = 0.05,\;g = 1.1$; (c) $w = 0.07,\;g = 1.3$; (d) $w = 0.05,\;g = 1.0$; (e) $w = 0.01,\;g = 0.1$; (f) $w = 0.05,\;g = 0.4$.

    Fig. 3.  Time evolution of the cluster entropy of the network for different values of coupling strength: (a) $w = 0.05,\;g = 1.2$; (b) $w = 0.05,\;g = 1.1$; (c) $w = 0.07,\;g = 1.3$; (d) $w = 0.05,\;g = 1.0$; (e) $w = 0.01,\;g = 0.1$; (f) $w = 0.05,\;g = 0.4$.

    图 4  g -w参量平面上的相图 

    Fig. 4.  Phase diagram in the g -w parameter plane.

    图 5  g -w参量平面上的熵分布

    Fig. 5.  Entropy distribution in the g -w parameter plane.

    图 6  $g = 1.2$和不同耦合强度w下不同时刻的${x_{i,j}}$变量斑图 (a) $w = - 0.15$, $t = 0$; (b) $w = - 0.15$, $t = 1000$; (c) $w = - 0.15$, $t = 2000$; (d) $w = - 0.15$, $t = 4000$; (e) $w = - 0.15$, $t = 6000$; (f) $w = - 0.15$, $t = 8000$; (g) $w = - 0.15$, $t = 10000$; (h) $w = 0.05$, $t = 12000$; (i) $w = 0.05$, $t = 14000$; (j) $w = 0.05$, $t = 16000$; (k) $w = 0.05$, $t = 18000$; (l) $w = 0.05$, $t = 20000$.

    Fig. 6.  Pattern of the ${x_{i,j}}$ variable at different time moments for g = 1.2 and different values of coupling strength w: (a) $w = - 0.15$, $t = 0$; (b) $w = - 0.15$, $t = 1000$; (c) $w = - 0.15$, $t = 2000$; (d) $w = - 0.15$, $t = 4000$; (e) $w = - 0.15$, $t = 6000$; (f) w = –0.15, $t = 8000$; (g) $w = - 0.15$, $t = 10000$; (h) $w = 0.05$, $t = 12000$; (i) $w = 0.05$, $t = 14000$; (j) $w = 0.05$, $t = 16000$; (k) $w = 0.05$, $t = 18000$; (l) $w = 0.05$, $t = 20000$.

    Baidu
  • [1]

    Larionova Y, Egorov O, Cabrera-Granado E, Esteban-Martin A 2005 Phys. Rev. A 72 033825Google Scholar

    [2]

    Plapp B P, Egolf D A, Bodenschatz E, Pesch W 1998 Phys. Rev. Lett. 81 5334Google Scholar

    [3]

    Bär M, Gottschalk N, Eiswirth M, Ertl G 1994 J. Phys. Chem. B 100 1202Google Scholar

    [4]

    Müller S C, Plesser T, Hess B 1985 Science 230 661Google Scholar

    [5]

    Vanag V K, Epstein I R 2001 Science 294 835Google Scholar

    [6]

    Davidenko J M, Pertsov A V, Salomonsz R, Baxter W, Jalife J 1992 Nature 355 349Google Scholar

    [7]

    Huang X Y, Xu W F, Liang J M, Takagaki K, Gao X, Wu J Y 2010 Neuron 68 978Google Scholar

    [8]

    Huang X Y, Troy W C, Yang Q, Ma H T, Laing C R, Schiff S J, Wu J Y 2004 J. Neurosci. 24 9897Google Scholar

    [9]

    Viventi J, Kim D H, Vigeland L, Frechette E S, Blanco J A, Kim Y S, Avrin A E, et al. 2011 Nat. Neurosci. 14 1599

    [10]

    Perc M 2007 Chaos, Solitons Fractals 31 280Google Scholar

    [11]

    Qin H X, Ma J, Wang C N, Chu R T 2014 Sci. China: Phys. Mech. Astron. 57 1918Google Scholar

    [12]

    汪芃, 李倩昀, 黄志精, 唐国宁 2018 67 170501Google Scholar

    Wang P, Li Q Y, Huang Z J, Tang G N 2018 Acta Phys. Sin. 67 170501Google Scholar

    [13]

    Lip G Y H, Fauchier L, Freedman S B, Gelder V I, Natale A, Gianni C, et al. 2016 Nat. Rev. Dis. Primers 2 16016Google Scholar

    [14]

    Yengi D, Tinsley M R, Showalter K 2018 Chaos 28 045114Google Scholar

    [15]

    Wang Q Y, Chen G R, Perc M 2011 PloS One 6 e15851Google Scholar

    [16]

    Vreeswijk C V, Abbott L F, Ermentrout G B 1994 J. Comput. Neurosci. 1 313Google Scholar

    [17]

    Leyva I, Sendiña-Nadal I, Almendral J A, Sanjuán M A F 2006 Phys. Rev. E 74 056112Google Scholar

    [18]

    Scholkmann F 2015 J. Integr. Neurosci. 14 135Google Scholar

    [19]

    Veeraraghavan R, Lin J, Hoeker G S, Keener J P, Robert G. Gourdie R G, Poelzing S 2015 Pflug. Arch Eur. J. Physiol. 467 2093Google Scholar

    [20]

    Copene E D, Keener J P 2008 J. Math. Biol. 57 265Google Scholar

    [21]

    Shen J, Zhang J H, Xiao H, Wu J M, He K M, Lv Z Z, Li Z J, Xu M, Zhang Y Y 2018 Cell Death and Dis. 9 81Google Scholar

    [22]

    Ma J, Tang J 2017 Nonlinear Dyn. 89 1569Google Scholar

    [23]

    Weinberg S H 2017 Chaos 27 093908Google Scholar

    [24]

    Shlens J, Field G D, Gauthier J L, Grivich M I, Petrusca D, Sher A, Litke A M, Chichilnisky E J 2006 J. Neurosci. 26 8254Google Scholar

    [25]

    Marre O, Boustani S E, Frégnac Y, Destexhe A 2009 Phys. Rev. Lett. 102 138101Google Scholar

    [26]

    Nghiem T A, Telenczuk B, Marre O, Destexhe A, Ferrari U 2018 Phys. Rev. E 98 012402Google Scholar

    [27]

    Jung P, Wang J, Wackerbauer R, Showalter K 2000 Phys. Rev. E 61 2095Google Scholar

    [28]

    Hindmarsh J L, Rose R M 1984 Pro. R. Soc. Lond. B 221 87Google Scholar

    [29]

    Adhikari B M, Prasad A, Dhamala M 2011 Chaos 21 023116Google Scholar

    [30]

    Nunez P L, Srinivasan R 2006 Clin. Neurophysiol. 117 2424Google Scholar

    [31]

    Müller M F, Rummel C, Goodfellow M, Schindler K 2014 Brain Connectivity 4 131Google Scholar

    [32]

    Schneidman E, Berry M J, Segev R, Bialek W 2006 Nature 440 1007Google Scholar

  • [1] 屈广宁, 凡凤仙, 张斯宏, 苏明旭. 驻波声场中单分散细颗粒的相互作用特性.  , 2020, 69(6): 064704. doi: 10.7498/aps.69.20191681
    [2] 汪芃, 李倩昀, 黄志精, 唐国宁. 在兴奋-抑制混沌神经元网络中有序波的自发形成.  , 2018, 67(17): 170501. doi: 10.7498/aps.67.20180506
    [3] 汪芃, 李倩昀, 唐国宁. Hindmarsh-Rose神经元阵列自发产生螺旋波的研究.  , 2018, 67(3): 030502. doi: 10.7498/aps.67.20172140
    [4] 牛晨, 刘忠伟, 杨丽珍, 陈强. 低磁场下驻波对螺旋波等离子体均匀性的影响.  , 2017, 66(4): 045201. doi: 10.7498/aps.66.045201
    [5] 李伟恒, 潘飞, 黎维新, 唐国宁. 非对称耦合两层可激发介质中的螺旋波动力学.  , 2015, 64(19): 198201. doi: 10.7498/aps.64.198201
    [6] 徐莹, 王春妮, 靳伍银, 马军. 梯度耦合下神经元网络中靶波和螺旋波的诱发研究.  , 2015, 64(19): 198701. doi: 10.7498/aps.64.198701
    [7] 李伟恒, 黎维新, 潘飞, 唐国宁. 两层耦合可激发介质中螺旋波转变为平面波.  , 2014, 63(20): 208201. doi: 10.7498/aps.63.208201
    [8] 乔成功, 王利利, 李伟恒, 唐国宁. 钾扩散耦合引起的心脏中螺旋波的变化.  , 2013, 62(19): 198201. doi: 10.7498/aps.62.198201
    [9] 陈醒基, 乔成功, 王利利, 周振玮, 田涛涛, 唐国宁. 间接延迟耦合可激发介质中螺旋波的演化.  , 2013, 62(12): 128201. doi: 10.7498/aps.62.128201
    [10] 赵龙, 杨继平, 郑艳红. 神经元网络螺旋波诱发机理研究.  , 2013, 62(2): 028701. doi: 10.7498/aps.62.028701
    [11] 邱克强, 刘正坤, 徐向东, 刘颖, 洪义麟, 付绍军. 全息光刻中的驻波效应研究.  , 2012, 61(1): 014204. doi: 10.7498/aps.61.014204
    [12] 黎广钊, 陈永淇, 唐国宁. 三层弱循环耦合可激发介质中螺旋波动力学.  , 2012, 61(2): 020502. doi: 10.7498/aps.61.020502
    [13] 高继华, 谢伟苗, 高加振, 杨海朋, 戈早川. 耦合复金兹堡-朗道(Ginzburg-Landau)方程中的模螺旋波.  , 2012, 61(13): 130506. doi: 10.7498/aps.61.130506
    [14] 马军, 谢振博, 陈江星. 热敏神经元网络中螺旋波死亡和破裂的数值模拟.  , 2012, 61(3): 038701. doi: 10.7498/aps.61.038701
    [15] 陈醒基, 田涛涛, 周振玮, 胡一博, 唐国宁. 通过被动介质耦合的两螺旋波的同步.  , 2012, 61(21): 210509. doi: 10.7498/aps.61.210509
    [16] 周振玮, 陈醒基, 田涛涛, 唐国宁. 耦合可激发介质中螺旋波的控制研究.  , 2012, 61(21): 210506. doi: 10.7498/aps.61.210506
    [17] 吴望生, 唐国宁. 不同耦合下混沌神经元网络的同步.  , 2012, 61(7): 070505. doi: 10.7498/aps.61.070505
    [18] 田昌海, 邓敏艺, 孔令江, 刘慕仁. 螺旋波动力学性质的元胞自动机有向小世界网络研究.  , 2011, 60(8): 080505. doi: 10.7498/aps.60.080505
    [19] 牟宗信, 牟晓东, 贾莉, 王春, 董闯. 非平衡磁控溅射双势阱静电波动及其共振耦合.  , 2010, 59(10): 7164-7169. doi: 10.7498/aps.59.7164
    [20] 黄虎. 经典三阶驻波、短峰波的有效匹配解.  , 2009, 58(10): 6761-6763. doi: 10.7498/aps.58.6761
计量
  • 文章访问数:  7908
  • PDF下载量:  63
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-02-21
  • 修回日期:  2019-03-18
  • 上网日期:  2019-06-01
  • 刊出日期:  2019-06-05

/

返回文章
返回
Baidu
map