搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于时间序列符号化模式表征的有向加权复杂网络

曾明 王二红 赵明愿 孟庆浩

引用本文:
Citation:

基于时间序列符号化模式表征的有向加权复杂网络

曾明, 王二红, 赵明愿, 孟庆浩

Directed weighted complex networks based on time series symbolic pattern representation

Zeng Ming, Wang Er-Hong, Zhao Ming-Yuan, Meng Qing-Hao
PDF
导出引用
  • 时间序列复杂网络分析近些年已发展成为非线性信号分析领域的一个国际热点课题.为了能更有效地挖掘时间序列(特别是非线性时间序列)中的结构特征,同时简化时间序列分析的复杂度,提出了一种新的基于时间序列符号化结合滑窗技术模式表征的有向加权复杂网络建网方法.该方法首先按照等概率区段划分的方式将时间序列做符号化处理,结合滑窗技术确定不同时刻的符号化模式作为网络的节点;然后将待分析时间序列符号化模式的转换频次和方向作为网络连边的权重和方向,从而建立时间序列有向加权复杂网络.通过对Logistic系统不同参数设置对应的时间序列复杂网络建网测试结果表明,相比经典的可视图建网方法,本文方法的网络拓扑能更简洁、直观地展示时间序列的结构特征.进而,将本文方法应用于规则排列采集的自然风场信号分析,其网络特性指标能较准确地预测采集信号的排布规律,而可视图建网方法的网络特性指标没有任何规律性的结果.
    Complex networks are capable of modeling different kinds of complex systems in nature and technology, which contain a large number of components interacting with each other in a complicated manner. Quite recently, various approaches to analyzing time series by means of complex networks have been proposed, and their great potentials for uncovering valuable information embedded in time series, especially when nonlinear dynamical systems are incapable of being described by theoretical models have been proven. Despite the existing contributions, up to now, mapping time series into complex networks is still a challenging problem. In order to more effectively dig out the structural characteristics of time series (especially the nonlinear time series) and simplify the computational complexity of time series analysis, in this paper we present a novel method of constructing a directed weighted complex network based on time series symbolic pattern representation combined with sliding window technique. The proposed method firstly implements symbolic procession according to the equal probability segment division and then combines with the sliding window technique to determine the symbolic patterns at different times as nodes of the network. Next, the transition frequency and direction of symbolic patterns are set as the weights and directions of the network edges, thus establishing the directed weighted complex network of the analyzed time series. The results of test using the Logistic system with different parameter settings show that the topological structures of the directed weighted complex network can not only intuitively distinguish the periodic time series and chaotic time series, but also accurately reflect the subtle changes of two types of time series. These results are superior to those from the classical visibility graph method which can be only roughly classified as two types of signals. Finally, the proposed technique is used to investigate the natural wind field signals collected at an outdoor open space in which nine high precision two-dimensional (2D) ultrasonic anemometers are deployed in line with 1 m interval. The topological parameters of the network analysis include the network size, weighted clustering coefficient, and average path length. The corresponding results of our approach indicate that the values of three network parameters show consistent increase or decrease trend with the spatial regular arrangement of the nine anemometers. While the results of the visibility graph network parameters are irregular, and cannot accurately predict the spatial deployment relationship of nine 2D ultrasonic anemometers. These interesting findings suggest that topological features of the directed weighted complex network are potentially valuable characteristics of wind signals, which will have broad applications in researches such as wind power prediction, wind pattern classification and wind field dynamic analysis.
      通信作者: 曾明, zengming@tju.edu.cn
    • 基金项目: 国家自然科学基金(批准号:61271321,61573253)资助的课题.
      Corresponding author: Zeng Ming, zengming@tju.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61271321, 61573253).
    [1]

    Watts D J, Strogatz S H 1998 Nature 393 440

    [2]

    Barabasi A L, Albert R 1999 Science 286 509

    [3]

    Albert R, Barabsi A L 2002 Rev. Mod. Phys. 74 47

    [4]

    Buldyrev S V, Parshani R, Paul G, Stanley H E, Havlin S 2010 Nature 464 1025

    [5]

    Rubinov M, Sporns O 2010 Neuroimage 52 1059

    [6]

    Zhuang E, Small M, Feng G 2014 Physica A 410 483

    [7]

    Hao X, An H, Qi H, Gao X Zhou L, Gong Z Q, Zhi R, Feng G L 2008 Acta Phys. Sin. 57 7380 (in Chinese) [周磊, 龚志强, 支蓉, 封国林 2008 57 7380]

    [8]

    Zhou L, Gong Z Q, Zhi R, Feng G L 2008 Acta Phys.Sin. 57 7380 (in Chinese) [周磊, 龚志强, 支蓉, 封国林 2008 57 7380]

    [9]

    Lacasa L, Toral R 2010 Phys. Rev. E 82 036120

    [10]

    Xu X, Zhang J, Small M 2008 Proc. Natl. Acad. Sci. USA 105 19601

    [11]

    Donges J F, Donner R V, Kurths J 2013 Europhys. Lett. 102 10004

    [12]

    Zou Y, Small M, Liu Z 2014 New J. Phys. 16 013051

    [13]

    Huang X, An H, Gao X 2015 Physica A 428 493

    [14]

    Zhang J, Small M 2006 Phys. Rev. Lett. 96 238701

    [15]

    Gao Z K, Fang P C, Ding M S, Jin N D 2015 Exp. Therm. Fluid Sci. 60 157

    [16]

    Takens F 1981 Dynamical Systems and Turbulence, Warwick 1980 898 366

    [17]

    Yang Y, Yang H 2008 Physica A 387 1381

    [18]

    Gao Z, Jin N 2009 Chaos 19 033137

    [19]

    Tang J, Liu F, Zhang W, Zhang S, Wang Y 2016 Physica A 450 635

    [20]

    Webber C L, Zbilut J P 1994 J. Appl. Phys. 76 965

    [21]

    Lacasa L, Luque B, Ballesteros F, Luque J, Nuno J C 2008 Proc. Natl. Acad. Sci. USA 105 13

    [22]

    Gao Z K, Hu L D, Zhou T T, Jin N D 2013 Acta Phys. Sin. 62 110507 (in Chinese) [高忠科, 胡沥丹, 周婷婷, 金宁德 2013 62 110507]

    [23]

    Liu C, Zhou W X, Yuan W K 2010 Physica A 389 2675

    [24]

    Lin J, Keogh E, Lonardi S, Chiu B 2003 Proceedings of the 8th ACM SIGMOD workshop on Research Issues in Data Mining and Knowledge Discovery San Diego, USA, June 13, 2003 p2

    [25]

    Lin J, Keogh E, Li W, Lonardi S 2007 Data Mining and Knowledge Discovery 15 107

    [26]

    L J H, Lu J A, Chen S H 2001 Chaotic Time Series Analysis and Application (Wuhan: Wuhan University Press) p12 (in Chinese) [吕金虎, 陆君安, 陈士华 2001 混沌时间序列分析及其应用 (武汉: 武汉大学出版社)第12页]

    [27]

    Shirazi A H, Jafari G R, Davoudi J, Peinke J, Tabar M R R, Sahimi M 2009 J. Statist. Mech.: Theory and Experiment 2009 P07046

    [28]

    Antoniou I E, Tsompa E T 2008 Discrete Dyn. Nat. Soc. 2008 1

    [29]

    Li J G, Meng Q H, Wang Y, Zeng M 2011 Autonomous Robots 30 281

  • [1]

    Watts D J, Strogatz S H 1998 Nature 393 440

    [2]

    Barabasi A L, Albert R 1999 Science 286 509

    [3]

    Albert R, Barabsi A L 2002 Rev. Mod. Phys. 74 47

    [4]

    Buldyrev S V, Parshani R, Paul G, Stanley H E, Havlin S 2010 Nature 464 1025

    [5]

    Rubinov M, Sporns O 2010 Neuroimage 52 1059

    [6]

    Zhuang E, Small M, Feng G 2014 Physica A 410 483

    [7]

    Hao X, An H, Qi H, Gao X Zhou L, Gong Z Q, Zhi R, Feng G L 2008 Acta Phys. Sin. 57 7380 (in Chinese) [周磊, 龚志强, 支蓉, 封国林 2008 57 7380]

    [8]

    Zhou L, Gong Z Q, Zhi R, Feng G L 2008 Acta Phys.Sin. 57 7380 (in Chinese) [周磊, 龚志强, 支蓉, 封国林 2008 57 7380]

    [9]

    Lacasa L, Toral R 2010 Phys. Rev. E 82 036120

    [10]

    Xu X, Zhang J, Small M 2008 Proc. Natl. Acad. Sci. USA 105 19601

    [11]

    Donges J F, Donner R V, Kurths J 2013 Europhys. Lett. 102 10004

    [12]

    Zou Y, Small M, Liu Z 2014 New J. Phys. 16 013051

    [13]

    Huang X, An H, Gao X 2015 Physica A 428 493

    [14]

    Zhang J, Small M 2006 Phys. Rev. Lett. 96 238701

    [15]

    Gao Z K, Fang P C, Ding M S, Jin N D 2015 Exp. Therm. Fluid Sci. 60 157

    [16]

    Takens F 1981 Dynamical Systems and Turbulence, Warwick 1980 898 366

    [17]

    Yang Y, Yang H 2008 Physica A 387 1381

    [18]

    Gao Z, Jin N 2009 Chaos 19 033137

    [19]

    Tang J, Liu F, Zhang W, Zhang S, Wang Y 2016 Physica A 450 635

    [20]

    Webber C L, Zbilut J P 1994 J. Appl. Phys. 76 965

    [21]

    Lacasa L, Luque B, Ballesteros F, Luque J, Nuno J C 2008 Proc. Natl. Acad. Sci. USA 105 13

    [22]

    Gao Z K, Hu L D, Zhou T T, Jin N D 2013 Acta Phys. Sin. 62 110507 (in Chinese) [高忠科, 胡沥丹, 周婷婷, 金宁德 2013 62 110507]

    [23]

    Liu C, Zhou W X, Yuan W K 2010 Physica A 389 2675

    [24]

    Lin J, Keogh E, Lonardi S, Chiu B 2003 Proceedings of the 8th ACM SIGMOD workshop on Research Issues in Data Mining and Knowledge Discovery San Diego, USA, June 13, 2003 p2

    [25]

    Lin J, Keogh E, Li W, Lonardi S 2007 Data Mining and Knowledge Discovery 15 107

    [26]

    L J H, Lu J A, Chen S H 2001 Chaotic Time Series Analysis and Application (Wuhan: Wuhan University Press) p12 (in Chinese) [吕金虎, 陆君安, 陈士华 2001 混沌时间序列分析及其应用 (武汉: 武汉大学出版社)第12页]

    [27]

    Shirazi A H, Jafari G R, Davoudi J, Peinke J, Tabar M R R, Sahimi M 2009 J. Statist. Mech.: Theory and Experiment 2009 P07046

    [28]

    Antoniou I E, Tsompa E T 2008 Discrete Dyn. Nat. Soc. 2008 1

    [29]

    Li J G, Meng Q H, Wang Y, Zeng M 2011 Autonomous Robots 30 281

  • [1] 马志怡, 杨小冬, 何爱军, 马璐, 王俊. 基于多路可视图的健康与心梗患者心电图信号复杂网络识别.  , 2022, 71(5): 050501. doi: 10.7498/aps.71.20211656
    [2] 马志怡, 杨小冬, 何爱军, 马璐, 王俊. 基于多路可视图的健康与心梗患者ECG信号复杂网络识别.  , 2021, (): . doi: 10.7498/aps.70.20211656
    [3] 霍铖宇, 马小飞, 宁新宝. 基于有限穿越水平可视图的短时睡眠心率变异性研究.  , 2017, 66(16): 160502. doi: 10.7498/aps.66.160502
    [4] 邢雪, 于德新, 田秀娟, 王世广. 结合可视图的多状态交通流时间序列特性分析.  , 2017, 66(23): 230501. doi: 10.7498/aps.66.230501
    [5] 高忠科, 胡沥丹, 周婷婷, 金宁德. 两相流有限穿越可视图演化动力学研究.  , 2013, 62(11): 110507. doi: 10.7498/aps.62.110507
    [6] 杨林静, 戴祖诚. 噪声相互关联时间对Logistic系统亚稳态稳定性的影响.  , 2012, 61(10): 100509. doi: 10.7498/aps.61.100509
    [7] 吕天阳, 谢文艳, 郑纬民, 朴秀峰. 加权复杂网络社团的评价指标及其发现算法分析.  , 2012, 61(21): 210511. doi: 10.7498/aps.61.210511
    [8] 颜鹏程, 侯威, 胡经国. 基于Logistic模型的均值突变时间序列临界预警研究.  , 2012, 61(18): 189202. doi: 10.7498/aps.61.189202
    [9] 高忠科, 金宁德, 杨丹, 翟路生, 杜萌. 多元时间序列复杂网络流型动力学分析.  , 2012, 61(12): 120510. doi: 10.7498/aps.61.120510
    [10] 周婷婷, 金宁德, 高忠科, 罗跃斌. 基于有限穿越可视图的时间序列网络模型.  , 2012, 61(3): 030506. doi: 10.7498/aps.61.030506
    [11] 潘欣裕, 赵鹤鸣. Logistic混沌系统的熵特性研究.  , 2012, 61(20): 200504. doi: 10.7498/aps.61.200504
    [12] 杨林静. Logistic系统跃迁率的时间延迟效应.  , 2011, 60(5): 050502. doi: 10.7498/aps.60.050502
    [13] 杨汝, 张波, 赵寿柏, 劳裕锦. 基于符号时间序列方法的开关变换器离散映射算法复杂度分析.  , 2010, 59(6): 3756-3762. doi: 10.7498/aps.59.3756
    [14] 董昭, 李翔. 离散时间序列的网络模体分析.  , 2010, 59(3): 1600-1607. doi: 10.7498/aps.59.1600
    [15] 宋伟, 侯建军, 李赵红, 黄亮. 一种基于Logistic混沌系统和奇异值分解的零水印算法.  , 2009, 58(7): 4449-4456. doi: 10.7498/aps.58.4449
    [16] 郭永峰, 徐 伟. 关联白噪声驱动的具有时间延迟的Logistic系统.  , 2008, 57(10): 6081-6085. doi: 10.7498/aps.57.6081
    [17] 侯 威, 封国林, 高新全, 丑纪范. 基于复杂度分析冰芯和石笋代用资料时间序列的研究.  , 2005, 54(5): 2441-2447. doi: 10.7498/aps.54.2441
    [18] 谢 鲲, 雷 敏, 冯正进. 一种超混沌系统的加密特性分析.  , 2005, 54(3): 1267-1272. doi: 10.7498/aps.54.1267
    [19] 刘耀宗, 温熙森, 胡茑庆. 非最小相位线性非高斯序列的替代数据检验.  , 2001, 50(4): 633-637. doi: 10.7498/aps.50.633
    [20] 杨志安, 陈式刚, 王光瑞. 动力系统的时间序列重构分析.  , 1996, 45(6): 904-911. doi: 10.7498/aps.45.904
计量
  • 文章访问数:  7139
  • PDF下载量:  424
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-05-19
  • 修回日期:  2017-07-03
  • 刊出日期:  2017-11-05

/

返回文章
返回
Baidu
map