-
Pulse-modulated discharge is an effective way to improve the stability of radio-frequency (rf) discharges. Previous studies have shown that with the power frequency increasing to the ultra-high frequency (UHF) band, the introduction of pulse modulation in rf discharges will bring about new discharge behaviors. In this paper, the fluid model is adopted to numerically investigate the new discharge characteristics in dielectric barrier discharges (DBDs) with the rf frequency larger than 500 MHz. A very large current peak occurs in the first positive and negative half cycle during the power-on phase, respectively. The spatial structure of electric field is given to further understand the underpinning physics of the large current peaks. Furthermore, the effects of duty cycle, modulation frequency and voltage modulation rates on the large current peaks are examined based on the computational data. This numerical study will deepen the understanding of DBDs modulated by pulses in the UHF band.
-
Keywords:
- atmospheric plasmas /
- dielectric barrier discharge /
- fluid model /
- pulse modulation /
- sheath structure
[1] Park J, Henins I, Herrmann H W, Selwyn G S 2001 J. Appl. Phys. 89 15
Google Scholar
[2] Iza F, Kim G J, Lee S M, Lee J K, Walsh J L, Zhang Y T, Kong M G 2008 Plasma Processes Polym. 5 322
Google Scholar
[3] Walsh J L, Zhang Y T, Iza F, Kong M G 2008 Appl. Phys. Lett. 93 221505
Google Scholar
[4] Zhang Y T, Li Q Q, Lou J, Li Q M 2010 Appl. Phys. Lett. 97 141504
Google Scholar
[5] Massines F, Rabehi A, Decomps P, Gadri R B, Ségur P, Mayoux C 1998 J. Appl. Phys. 83 2950
Google Scholar
[6] Lou J, Zhang Y T T 2013 IEEE Trans. Plasma Sci. 41 274
Google Scholar
[7] Balcon N, Hagelaar G J M, Boeuf J P 2008 IEEE Trans. Plasma Sci. 36 2782
Google Scholar
[8] Fridman G, Friedman G, Gutsol A, Shekhter A B, Vasilets V N, Fridman A 2008 Plasma Processes Polym. 5 503
Google Scholar
[9] Laroussi M 2005 Plasma Processes Polym. 2 391
Google Scholar
[10] Sousa J S, Niemi K, Cox L J, Algwari Q T, Gans T, O’connell D 2011 J. Appl. Phys. 109 123302
Google Scholar
[11] Waskoenig J, Niemi K, Knake N, Graham L M, Reuter S, Schulz-von der Gathen V, Gans T 2010 Plasma Sources Sci. Technol. 19 045018
Google Scholar
[12] Zhang Y T, Chi Y Y, He J 2014 Plasma Processes Polym. 11 639
Google Scholar
[13] Moravej M, Babayan S E, Nowling G R, Yang X, Hicks R F 2004 Plasma Sources Sci. Technol. 13 8
Google Scholar
[14] Boeuf J P, Pitchford L C 2005 J. Appl. Phys. 97 103307
Google Scholar
[15] Farouk T, Farouk B, Gutsol A, Fridman A 2008 Plasma Sources Sci. Technol. 17 035015
Google Scholar
[16] Zhang Y T, He J 2013 Phys. Plasmas 20 013502
Google Scholar
[17] Kwon H C, Jung S Y, Kim H Y, Won I H, Lee J K 2014 Phys. Plasmas 21 033511
Google Scholar
[18] He J, Hu J, Liu D W, Zhang Y T 2013 Plasma Sources Sci. Technol. 22 035008
Google Scholar
[19] Huang X, Sun L Q, Bao Y, Zhang J, Shi J J 2011 Phys. Plasmas 18 033503
Google Scholar
[20] Huo W G, Jian S J, Yao J, Ding Z F 2014 Phys. Plasmas 21 053505
Google Scholar
[21] Hu J T, Liu X Y, Liu J H, Xiong Z L, Liu D W, Lu X P, Iza F, Kong M G 2012 Phys. Plasmas 19 063505
Google Scholar
[22] Zhang Y T, Liu Y, Liu B 2017 Plasma Sci. Technol. 19 085402
Google Scholar
[23] Lee M U, Lee J K, Yun G S 2018 Plasma Processes Polym. 15 1700124
Google Scholar
[24] Wang G, Kuang Y, Zhang Y T 2020 Plasma Sci. Technol. 22 015404
[25] Liu X Y, Hu J T, Liu J H, Xiong Z L, Liu D W, Lu X P, Shi J J 2012 Appl. Phys. Lett. 101 043705
Google Scholar
[26] Leins M, Kopecki J, Gaiser S, Schulz A, Walker M, Schumacher U, Stroth U, Hirth T 2014 Contrib. Plasma Phys. 54 14
Google Scholar
[27] 王艳辉, 王德真 2003 52 1694
Google Scholar
Wang Y H, Wang D Z 2003 Acta Phys. Sin. 52 1694
Google Scholar
[28] Zhang Y T, Wang D Z, Wang Y H 2005 Phys. Plasmas 12 103508
Google Scholar
[29] 徐学基, 诸定昌 1996 气体放电物理 (上海: 复旦大学出版社) 第277页
Xu X J, Zhu D C 1996 Discharge Physics of Gas (Shanghai: Fudan University Press) p277 (in Chinese)
[30] 张远涛, 王德真, 王艳辉 2005 54 4808
Google Scholar
Zhang Y T, Wang D Z, Wang Y H 2005 Acta Phys. Sin. 54 4808
Google Scholar
[31] Lee D, Park J M, Hong S H, Kim Y 2005 IEEE Trans. Plasma Sci. 33 949
Google Scholar
[32] Zhang Y, Gu B A, Peng X W, Wang D Z, Wang W C 2008 Thin Solid Films 516 7547
Google Scholar
[33] Lee H W, Park G Y, Seo Y S, Im Y H, Shim S B, Lee H J 2011 J. Phys. D: Appl. Phys. 44 053001
Google Scholar
[34] Yuan X H, Raja L L 2003 IEEE Trans. Plasma Sci. 31 495
Google Scholar
[35] Zhang Y T, Wang D Z, Kong M G 2006 J. Appl. Phys. 100 063304
Google Scholar
-
-
[1] Park J, Henins I, Herrmann H W, Selwyn G S 2001 J. Appl. Phys. 89 15
Google Scholar
[2] Iza F, Kim G J, Lee S M, Lee J K, Walsh J L, Zhang Y T, Kong M G 2008 Plasma Processes Polym. 5 322
Google Scholar
[3] Walsh J L, Zhang Y T, Iza F, Kong M G 2008 Appl. Phys. Lett. 93 221505
Google Scholar
[4] Zhang Y T, Li Q Q, Lou J, Li Q M 2010 Appl. Phys. Lett. 97 141504
Google Scholar
[5] Massines F, Rabehi A, Decomps P, Gadri R B, Ségur P, Mayoux C 1998 J. Appl. Phys. 83 2950
Google Scholar
[6] Lou J, Zhang Y T T 2013 IEEE Trans. Plasma Sci. 41 274
Google Scholar
[7] Balcon N, Hagelaar G J M, Boeuf J P 2008 IEEE Trans. Plasma Sci. 36 2782
Google Scholar
[8] Fridman G, Friedman G, Gutsol A, Shekhter A B, Vasilets V N, Fridman A 2008 Plasma Processes Polym. 5 503
Google Scholar
[9] Laroussi M 2005 Plasma Processes Polym. 2 391
Google Scholar
[10] Sousa J S, Niemi K, Cox L J, Algwari Q T, Gans T, O’connell D 2011 J. Appl. Phys. 109 123302
Google Scholar
[11] Waskoenig J, Niemi K, Knake N, Graham L M, Reuter S, Schulz-von der Gathen V, Gans T 2010 Plasma Sources Sci. Technol. 19 045018
Google Scholar
[12] Zhang Y T, Chi Y Y, He J 2014 Plasma Processes Polym. 11 639
Google Scholar
[13] Moravej M, Babayan S E, Nowling G R, Yang X, Hicks R F 2004 Plasma Sources Sci. Technol. 13 8
Google Scholar
[14] Boeuf J P, Pitchford L C 2005 J. Appl. Phys. 97 103307
Google Scholar
[15] Farouk T, Farouk B, Gutsol A, Fridman A 2008 Plasma Sources Sci. Technol. 17 035015
Google Scholar
[16] Zhang Y T, He J 2013 Phys. Plasmas 20 013502
Google Scholar
[17] Kwon H C, Jung S Y, Kim H Y, Won I H, Lee J K 2014 Phys. Plasmas 21 033511
Google Scholar
[18] He J, Hu J, Liu D W, Zhang Y T 2013 Plasma Sources Sci. Technol. 22 035008
Google Scholar
[19] Huang X, Sun L Q, Bao Y, Zhang J, Shi J J 2011 Phys. Plasmas 18 033503
Google Scholar
[20] Huo W G, Jian S J, Yao J, Ding Z F 2014 Phys. Plasmas 21 053505
Google Scholar
[21] Hu J T, Liu X Y, Liu J H, Xiong Z L, Liu D W, Lu X P, Iza F, Kong M G 2012 Phys. Plasmas 19 063505
Google Scholar
[22] Zhang Y T, Liu Y, Liu B 2017 Plasma Sci. Technol. 19 085402
Google Scholar
[23] Lee M U, Lee J K, Yun G S 2018 Plasma Processes Polym. 15 1700124
Google Scholar
[24] Wang G, Kuang Y, Zhang Y T 2020 Plasma Sci. Technol. 22 015404
[25] Liu X Y, Hu J T, Liu J H, Xiong Z L, Liu D W, Lu X P, Shi J J 2012 Appl. Phys. Lett. 101 043705
Google Scholar
[26] Leins M, Kopecki J, Gaiser S, Schulz A, Walker M, Schumacher U, Stroth U, Hirth T 2014 Contrib. Plasma Phys. 54 14
Google Scholar
[27] 王艳辉, 王德真 2003 52 1694
Google Scholar
Wang Y H, Wang D Z 2003 Acta Phys. Sin. 52 1694
Google Scholar
[28] Zhang Y T, Wang D Z, Wang Y H 2005 Phys. Plasmas 12 103508
Google Scholar
[29] 徐学基, 诸定昌 1996 气体放电物理 (上海: 复旦大学出版社) 第277页
Xu X J, Zhu D C 1996 Discharge Physics of Gas (Shanghai: Fudan University Press) p277 (in Chinese)
[30] 张远涛, 王德真, 王艳辉 2005 54 4808
Google Scholar
Zhang Y T, Wang D Z, Wang Y H 2005 Acta Phys. Sin. 54 4808
Google Scholar
[31] Lee D, Park J M, Hong S H, Kim Y 2005 IEEE Trans. Plasma Sci. 33 949
Google Scholar
[32] Zhang Y, Gu B A, Peng X W, Wang D Z, Wang W C 2008 Thin Solid Films 516 7547
Google Scholar
[33] Lee H W, Park G Y, Seo Y S, Im Y H, Shim S B, Lee H J 2011 J. Phys. D: Appl. Phys. 44 053001
Google Scholar
[34] Yuan X H, Raja L L 2003 IEEE Trans. Plasma Sci. 31 495
Google Scholar
[35] Zhang Y T, Wang D Z, Kong M G 2006 J. Appl. Phys. 100 063304
Google Scholar
Catalog
Metrics
- Abstract views: 7038
- PDF Downloads: 81
- Cited By: 0