Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Application of compressive sensing based on multimode fiber specklegram in optical image encryption

Hu Yao-Hua Liu Yan Mu Ge Qin Qi Tan Zhong-Wei Wang Mu-Guang Yan Feng-Ping

Citation:

Application of compressive sensing based on multimode fiber specklegram in optical image encryption

Hu Yao-Hua, Liu Yan, Mu Ge, Qin Qi, Tan Zhong-Wei, Wang Mu-Guang, Yan Feng-Ping
PDF
HTML
Get Citation
  • In order to ensure the secure and effective transmission of image information, a new method of optical image encryption using the multimode fiber (MMF) specklegram based compressive sensing combined with the double random phase encoding (DRPE) is proposed in this paper. The specklegrams obtained from the facet of the multimode fiber are used as the measurement matrix of compressive sensing (CS), and the compression and the first-stage encryption of the image are completed by compressive sensing, in which the specklegram also functions as the first secret key. Then, the second-stage encryption is implemented by using the double random phase encoding technology, in which the random phase mask acts as the second secret key. All of the specklegrams used in this paper are obtained from the facet of a 5 m-long and 105-μm-diameter-MMF and offset launching technique. Then the fiber specklegrams are proposed in several steps to provide the measurement matrix in CS. By performing an encryption and decryption test on a standard Lena image of 256 × 256 size, it is found that the decrypted image and the original image are visually consistent, and the encryption is also realized in the process of compression, which indicates the method proposed in this paper is feasible. Furthermore, the comparison studies of the performances of specklegram based measurement matrix and some classic measurement matrices show that the decrypted image quality using the specklegram matrix is better. And at the same time, comparing with the high hardware implementation complexity and high cost of other measurement matrices, specklegram based matrix can be easily realized by simple optical device, and the corresponding secret key can be easily changed by the working wavelength, which is helpful for enlarging the secret key space. It is further proved that the encryption method be able to effectively resist the statistical analysis attacks, cropping attacks and noise interference, and also have high sensitivity to the secret key, which shows good robustness and high security. Therefore, the image encryption method combined with the specklegram matrix based compression sensing with the optical DRPE can obtain good encryption effect and has a great secret key space, which may provide a good candidate scheme for the pure optical realization of image encryption.
      Corresponding author: Liu Yan, yanliu@bjtu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61975009, 61827818, 61775015)
    [1]

    Javidi B 2005 Optical and Digital Techniques for Information Security (New York: Springer Business Media) pp36–40

    [2]

    Refregier P, Javidi B 1995 Opt. Lett. 20 767Google Scholar

    [3]

    Javidi B 1997 Phys. Today 50 27Google Scholar

    [4]

    Unnikrishnan G, Joseph J, Singh K 2000 Opt. Lett. 25 887Google Scholar

    [5]

    Zhu B, Liu S, Ran Q 2000 Opt. Lett. 25 1159Google Scholar

    [6]

    Situ G H, Zhang J J 2004 Opt. Lett. 29 1584

    [7]

    Chen L F, Zhao D M 2005 Opt. Commun. 254 361Google Scholar

    [8]

    Peng X, Zhang P, Wei H, Yu B 2006 Opt. Lett. 31 1044Google Scholar

    [9]

    Guo C, Liu S, Sheridan J T 2015 Appl. Opt. 54 4709Google Scholar

    [10]

    Li G W, Yang W Q, Li D Y, Situ G H 2017 Opt. Express 25 8690Google Scholar

    [11]

    Candes E, Romberg J, Tao T 2006 Commun. Pur. Appl. Math. 59 1207Google Scholar

    [12]

    Donoho D L 2006 IEEE Trans. Inform. Theory 52 1289Google Scholar

    [13]

    肖迪, 谢沂均 2013 62 240508Google Scholar

    Xiao D, Xie Y J 2013 Acta Phys. Sin. 62 240508Google Scholar

    [14]

    杨华千, 廖晓峰, Kwok-Wo Wong, 张伟, 韦鹏程 2012 61 040505Google Scholar

    Yang H Q, Liao X F, Kwok W W, Zhang W, Wang P C 2012 Acta Phys. Sin. 61 040505Google Scholar

    [15]

    Deepan B, Quan C, Wang Y, Tay C J 2014 Appl. Opt. 53 4539Google Scholar

    [16]

    Rawat N, Kim B, Muniraj I, Situ G, Lee B G 2015 Appl. Opt. 54 1782Google Scholar

    [17]

    Zhou N R, Li H L, Wang D, Pan S M, Zhou Z H 2015 Opt. Commun. 343 10Google Scholar

    [18]

    Lu P, Xu Z Y, Lu X, Liu X Y 2013 Optik 124 2514Google Scholar

    [19]

    Liu X Y, Cao Y P, Lu P, Li Y 2013 Optik 124 6590Google Scholar

    [20]

    Zhou N R, Zhang A D, Zheng F, Gong L H 2014 Opt. Laser Technol. 62 152

    [21]

    Liu H, Xiao D, Liu Y B, Zhang Y S 2015 Optik 126 2663Google Scholar

    [22]

    Candès E J, Wakin M B 2008 IEEE Signal Proc. Mag. 25 21Google Scholar

    [23]

    Amphawan A, Payne F, O'Brien D, Shah N 2010 J. Lightwave Technol. 28 861Google Scholar

  • 图 1  多模光斑产生装置(LD, 半导体波长可调激光器; SMF, 单模光纤; MMF, 直径为105 μm的多模光纤, 长度为5 m; IR, 近红外相机)

    Figure 1.  Multimode specklegram generator (LD, laser diode; SMF, single mode fiber; MMF, multimode fiber; IR, infrared camera).

    图 2  光斑矩阵构造流程示意图

    Figure 2.  Flow chart of the construction method of the fiber specklegram based measurement matrix.

    图 3  基于4f的光学DRPE系统

    Figure 3.  Optical DRPE system based on 4f.

    图 4  基于多模光纤散斑的压缩感知光学图像加密解密过程流程图

    Figure 4.  Flow chart of compressive sensing optical image encryption and decryption based on multimode fiber specklegram.

    图 5  光斑矩阵和高斯矩阵对比分析 (a)−(d)使用光斑矩阵在压缩比为0.3, 0.5, 0.7, 0.9时的解密图像; (a')−(d')使用高斯矩阵在压缩比为0.3, 0.5, 0.7, 0.9时的解密图像; (e)使用不同测量矩阵时对应解密图像的PSNR随压缩比的变化

    Figure 5.  Comparative analysis of specklegram matrix and Gaussian matrix: (a)−(d) The decrypted image using specklegram matrix at compression ratio of 0.3, 0.5, 0.7, 0.9; (a')−(d') the decrypted image using Gaussian matrix at compression ratio of 0.3, 0.5, 0.7, 0.9; (e) comparison between the PSNRs of the decrypted images varying with the compression ratio when using different measurement matrices.

    图 6  直方图分析 (a)原始图像; (b)原始图像对应的直方图; (c)密文的相位直方图; (d)密文的幅值直方图

    Figure 6.  Histogram analysis: (a) Original image; (b) histogram corresponding to original image; (c) phase histogram of ciphertext; (d) amplitude histogram of ciphertext.

    图 7  相关性分析 (a)−(c)分别为明文图像在水平、垂直和对角方向上的像素相关性分布; (d)−(f)分别为密文图像在水平、垂直和对角方向上的像素相关性分布

    Figure 7.  Correlation analysis: (a)−(c) Pixel correlation distributions of plaintext images in horizontal, vertical and diagonal directions; (d)−(f) pixel correlation distributions of ciphertext images in horizontal, vertical and diagonal directions.

    图 8  抗噪声分析 (a)−(d)在密文图像中分别加入方差为0, 0.1, 0.3和0.5的噪声时的解密图像; (e)密文图像中加入噪声后的解密图像PSNR随相应噪声方差的变化

    Figure 8.  Anti-noise analysis: (a)−(d) Decrypted images with noise of 0, 0.1, 0.3 and 0.5 variances added to ciphertext image respectively; (e) curves of relationship between noise variance and the PSNR of decrypted image with noise in ciphertext mage

    图 9  水平、垂直、中心和边角方向不同程度的剪切攻击和剪切攻击后的解密图像 (a)垂直剪切10%; (b)垂直剪切50%; (c)水平剪切10%; (d)水平剪切50%; (e)中心剪切; (f)边角剪切; (a')垂直剪切10%解密图; (b')垂直剪切50%解密图; (c')水平剪切10%解密图; (d')水平剪切50%解密图; (e')中心剪切解密图; (f')边角剪切解密图

    Figure 9.  Cropping attack of different degrees in horizontal, vertical, central, corner directions and decrypted image after cropping attack: (a) Vertical cropping 10%; (b) vertical cropping 50%; (c) horizontal cropping 10%; (d) horizontal cropping 50%; (e) central cropping; (f) corner cropping; (a') decrypted image after vertical cropping 10%; (b') decrypted image after vertical cropping 50%; (c') decrypted image after horizontal cropping 10%; (d') decrypted image after horizontal cropping 50%; (e') decrypted image after central cropping; (f') decrypted image after corner cropping.

    图 10  光斑密钥敏感性分析 (a)原始的光斑密钥; (b)修改后的光斑密钥; (c)与(a)相对应的解密图像; (d)与(b)相对应的解密图像; (e)使用1550−1551.9 nm (间隔为0.1 nm)工作波长产生的光斑进行解密的MSE曲线; (f)对应于(e)中使用的实验测得的不同工作波长光斑

    Figure 10.  Specklegram key sensitivity analysis: (a) Original specklegram key; (b) modified specklegram key; (c) decrypted image corresponding to (a); (d) decrypted image corresponding to (b); (e) MSE curve for decryption using specklegram generated at different wavelengths; (f) the corresponding specklegram at 1550−1551.9 nm with a wavelength interval of 0.1 nm.

    表 1  解密图像质量分析

    Table 1.  Decrypted image quality analysis.

    不同方法
    本文文献[15]文献[18]文献[20]
    PSNR/dB35.9431.4830.8834.19
    DownLoad: CSV

    表 2  相邻像素的相关系数

    Table 2.  Correlation coefficient of adjacent pixels.

    图像水平方向垂直方向对角方向
    明文图像0.93590.96870.9262
    密文图像0.00180.00340.0010
    明文图像0.93550.95810.9161
    密文图像0.00710.00520.0009
    明文图像0.96810.95620.9398
    密文图像0.00230.00940.0005
    DownLoad: CSV

    表 3  加密图像像素相关系数

    Table 3.  Correlation coefficient of encrypted image pixels.

    方法水平方向垂直方向对角方向
    本方法0.00180.00340.0010
    文献[17]方法0.01010.02990.0062
    文献[20]方法0.08460.05830.0931
    DownLoad: CSV
    Baidu
  • [1]

    Javidi B 2005 Optical and Digital Techniques for Information Security (New York: Springer Business Media) pp36–40

    [2]

    Refregier P, Javidi B 1995 Opt. Lett. 20 767Google Scholar

    [3]

    Javidi B 1997 Phys. Today 50 27Google Scholar

    [4]

    Unnikrishnan G, Joseph J, Singh K 2000 Opt. Lett. 25 887Google Scholar

    [5]

    Zhu B, Liu S, Ran Q 2000 Opt. Lett. 25 1159Google Scholar

    [6]

    Situ G H, Zhang J J 2004 Opt. Lett. 29 1584

    [7]

    Chen L F, Zhao D M 2005 Opt. Commun. 254 361Google Scholar

    [8]

    Peng X, Zhang P, Wei H, Yu B 2006 Opt. Lett. 31 1044Google Scholar

    [9]

    Guo C, Liu S, Sheridan J T 2015 Appl. Opt. 54 4709Google Scholar

    [10]

    Li G W, Yang W Q, Li D Y, Situ G H 2017 Opt. Express 25 8690Google Scholar

    [11]

    Candes E, Romberg J, Tao T 2006 Commun. Pur. Appl. Math. 59 1207Google Scholar

    [12]

    Donoho D L 2006 IEEE Trans. Inform. Theory 52 1289Google Scholar

    [13]

    肖迪, 谢沂均 2013 62 240508Google Scholar

    Xiao D, Xie Y J 2013 Acta Phys. Sin. 62 240508Google Scholar

    [14]

    杨华千, 廖晓峰, Kwok-Wo Wong, 张伟, 韦鹏程 2012 61 040505Google Scholar

    Yang H Q, Liao X F, Kwok W W, Zhang W, Wang P C 2012 Acta Phys. Sin. 61 040505Google Scholar

    [15]

    Deepan B, Quan C, Wang Y, Tay C J 2014 Appl. Opt. 53 4539Google Scholar

    [16]

    Rawat N, Kim B, Muniraj I, Situ G, Lee B G 2015 Appl. Opt. 54 1782Google Scholar

    [17]

    Zhou N R, Li H L, Wang D, Pan S M, Zhou Z H 2015 Opt. Commun. 343 10Google Scholar

    [18]

    Lu P, Xu Z Y, Lu X, Liu X Y 2013 Optik 124 2514Google Scholar

    [19]

    Liu X Y, Cao Y P, Lu P, Li Y 2013 Optik 124 6590Google Scholar

    [20]

    Zhou N R, Zhang A D, Zheng F, Gong L H 2014 Opt. Laser Technol. 62 152

    [21]

    Liu H, Xiao D, Liu Y B, Zhang Y S 2015 Optik 126 2663Google Scholar

    [22]

    Candès E J, Wakin M B 2008 IEEE Signal Proc. Mag. 25 21Google Scholar

    [23]

    Amphawan A, Payne F, O'Brien D, Shah N 2010 J. Lightwave Technol. 28 861Google Scholar

  • [1] Wang Pan, Wang Zhong-Gen, Sun Yu-Fa, Nie Wen-Yan. Novel compressive sensing computing model used for analyzing electromagnetic scattering characteristics of three-dimensional electrically large objects. Acta Physica Sinica, 2023, 72(3): 030202. doi: 10.7498/aps.72.20221532
    [2] Gan Hong-Ping, Zhang Tao, Hua Yi, Shu Jun, He Li-Jun. Toeplitz-block sensing matrix based on bipolar chaotic sequence. Acta Physica Sinica, 2021, 70(3): 038402. doi: 10.7498/aps.70.20201475
    [3] Lang Li-Ying, Lu Jia-Lei, Yu Na-Na, Xi Si-Xing, Wang Xue-Guang, Zhang Lei, Jiao Xiao-Xue. In depth learning based method of denoising joint transform correlator optical image encryption system. Acta Physica Sinica, 2020, 69(24): 244204. doi: 10.7498/aps.69.20200805
    [4] Chen Wei, Guo Yuan, Jing Shi-Wei. General image encryption algorithm based on deep learning compressed sensing and compound chaotic system. Acta Physica Sinica, 2020, 69(24): 240502. doi: 10.7498/aps.69.20201019
    [5] Xu Xiang-Xin, Chang Jun, Wu Chu-Han, Song Da-Lin. Local hybrid optical encryption system based on double random phase encoding. Acta Physica Sinica, 2020, 69(20): 204201. doi: 10.7498/aps.69.20200478
    [6] Shi Hang, Wang Li-Dan. Multi-process image encryption scheme based on compressed sensing and multi-dimensional chaotic system. Acta Physica Sinica, 2019, 68(20): 200501. doi: 10.7498/aps.68.20190553
    [7] Shi Jie, Yang De-Sen, Shi Sheng-Guo, Hu Bo, Zhu Zhong-Rui. Compressive focused beamforming based on vector sensor array. Acta Physica Sinica, 2016, 65(2): 024302. doi: 10.7498/aps.65.024302
    [8] Zhuang Jia-Yan, Chen Qian, He Wei-Ji, Mao Tian-Yi. Imaging through dynamic scattering media with compressed sensing. Acta Physica Sinica, 2016, 65(4): 040501. doi: 10.7498/aps.65.040501
    [9] Guo Jing-Bo, Wang Ren. Constructing circulant measurement matrix through alternating optimizing amplitudes together with chaotic stochastic phases of the matrix generating elements. Acta Physica Sinica, 2015, 64(13): 130702. doi: 10.7498/aps.64.130702
    [10] Li Guang-Ming, Lü Shan-Xiang. Chaotic signal denoising in a compressed sensing perspective. Acta Physica Sinica, 2015, 64(16): 160502. doi: 10.7498/aps.64.160502
    [11] Zhong Ya-Jun, Liu Jiao, Liang Wen-Qiang, Zhao Sheng-Mei. Multiple speckle patterns differential compressive ghost imaging. Acta Physica Sinica, 2015, 64(1): 014202. doi: 10.7498/aps.64.014202
    [12] Chen Ming-Sheng, Wang Shi-Wen, Ma Tao, Wu Xian-Liang. Fast analysis of electromagnetic scattering characteristics in spatial and frequency domains based on compressive sensing. Acta Physica Sinica, 2014, 63(17): 170301. doi: 10.7498/aps.63.170301
    [13] Zhang Xin-Peng, Hu Niao-Qing, Cheng Zhe, Zhong Hua. Vibration data recovery based on compressed sensing. Acta Physica Sinica, 2014, 63(20): 200506. doi: 10.7498/aps.63.200506
    [14] Wang Zhe, Wang Bing-Zhong. Application of compressed sensing theory in the method of moments. Acta Physica Sinica, 2014, 63(12): 120202. doi: 10.7498/aps.63.120202
    [15] Li Long-Zhen, Yao Xu-Ri, Liu Xue-Feng, Yu Wen-Kai, Zhai Guang-Jie. Super-resolution ghost imaging via compressed sensing. Acta Physica Sinica, 2014, 63(22): 224201. doi: 10.7498/aps.63.224201
    [16] Feng Bing-Chen, Fang Sheng, Zhang Li-Guo, Li Hong, Tong Jie-Juan, Li Wen-Qian. A non-linear analysis for gamma-ray spectrum based on compressed sensing. Acta Physica Sinica, 2013, 62(11): 112901. doi: 10.7498/aps.62.112901
    [17] Bai Xu, Li Yong-Qiang, Zhao Sheng-Mei. Differential compressive correlated imaging. Acta Physica Sinica, 2013, 62(4): 044209. doi: 10.7498/aps.62.044209
    [18] Ning Fang-Li, He Bi-Jing, Wei Juan. An algorithm for image reconstruction based on lp norm. Acta Physica Sinica, 2013, 62(17): 174212. doi: 10.7498/aps.62.174212
    [19] Peng Xiang, Tang Hong-Qiao, Tian Jin-Dong. Ciphertext-only attack on double random phase encoding optical encryption system. Acta Physica Sinica, 2007, 56(5): 2629-2636. doi: 10.7498/aps.56.2629
    [20] Liu Fu-Min, Zhai Hong-Chen, Yang Xiao-Ping. Kinoform-based iterative random phase encryption. Acta Physica Sinica, 2003, 52(10): 2462-2465. doi: 10.7498/aps.52.2462
Metrics
  • Abstract views:  10906
  • PDF Downloads:  181
  • Cited By: 0
Publishing process
  • Received Date:  25 July 2019
  • Accepted Date:  19 November 2019
  • Published Online:  05 February 2020

/

返回文章
返回
Baidu
map