-
The gamma-ray spectrum analysis is an important method for quantitative analysis of radionuclide. Although widely used, the weak peak identification and overlapping peaks resolution are still difficult for gamma-ray spectrum analysis. To solve the problem, a new method based on compressed sensing is proposed for improving gamma-ray spectrum analysis in this paper. The proposed method models physical modulation of gamma spectrometer as a linear equation, and formulates the gamma-ray spectrum analysis as a corresponding inverse problem. The true gamma spectrum is obtained by solving the inverse problem by applying sparsity constraint under the framework of compressed sensing. The feasibility of the proposed method is demonstrated by both numerical simulation and Monte Carlo simulation experiments. Results demonstrate that the proposed method can simultaneously resolve overlapped peaks and reduce the fluctuations of gamma-ray spectrum, effectively improving the accuracy of gamma-ray spectrum analysis.
-
Keywords:
- gamma-ray spectrum analysis /
- compressed sensing /
- non-linear /
- inverse problem
[1] Hao F H, Hu G C, Liu S P, Gong J, Xiang Y C, Huang R L 2005 Acta Phys. Sin. 54 3523 (in Chinese) [郝樊华, 胡广春, 刘素萍, 龚建, 向永春, 黄瑞良 2005 54 3523]
[2] Zhao H F, Du L, He L, Bao J L 2011 Acta Phys. Sin. 60 028501 (in Chinese) [赵鸿飞, 杜磊, 何亮, 包军林 2011 60 028501]
[3] Wang C J, Bao D M, Cheng S, Zhang A L 2008 Acta Phys. Sin. 57 5361 (in Chinese) [王崇杰, 包东敏, 程松, 张爱莲 2008 57 5361]
[4] Grenier G, Poussier C 1970 Nuclear Instruments and Methods 89 199
[5] Sun B, Jiang J J 2011 Acta Phys. Sin. 60 110701 (in Chinese) [孙彪, 江建军 2011 60 11701]
[6] Bai X, Li Y Q, Zhao S M 2013 Acta Phys. Sin. 62 044209 (in Chinese) [白旭, 李永强, 赵生妹 2013 62 044209]
[7] Lustig M, Donoho D, Pauly J M 2007 Magnetic Resonance in Medicine 58 1182
[8] Yu S W, Khwaja A S, Ma J W 2012 Signal Process. 92 357
[9] Ma J W, Hussaini M Y 2011 IEEE. T. Instrum. Meas. 60 3128
[10] Ma J W 2010 IEEE. T. Instrum. Meas. 59 1600
[11] Ma J W, Plonka G, Hussaini M Y 2012 IEEE. T. Circ. Syst. Vid. 22 1354
[12] Hou Q W, Cao B Y, Guo Z Y 2009 Acta Phys. Sin. 58 7809 (in Chinese) [侯泉文, 曹炳阳, 过增元 2009 58 7809]
[13] Briesmeister J F 1997 MCNP-A General Monte Carlo N-Particle Transport Code Version 4B, LA-12625-M. Los Alamos National Laboratory
[14] Candes E J, Tao T 2005 IEEE. T. Inform. Theory. 24 118
[15] Donoho D L, Elad M, Temlyakov V N 2006 IEEE. T. Inform. Theory. 52 6
[16] Candes E J, Romberg J, Tao T 2006 IEEE. T. Inform. Theory. 52 489
[17] Donoho D L 2006 IEEE. T. Inform. Theory. 52 1289
[18] Candes E J, Romberg J, Tao T 2006 Commun. Pur. Appl. Math. 59 1207
[19] Candes E J, Wakin M B 2008 IEEE. Signal Proc. Mag. 25 21
[20] Xu M H, Liang T J, Zhang J 2006 Acta Phys. Sin. 55 2357 (in Chinese) [徐妙华, 梁天骄, 张杰 2006 55 2357]
[21] Xu H B, Peng X K, Chen C B 2010 Chin. Phys. B 19 062901
-
[1] Hao F H, Hu G C, Liu S P, Gong J, Xiang Y C, Huang R L 2005 Acta Phys. Sin. 54 3523 (in Chinese) [郝樊华, 胡广春, 刘素萍, 龚建, 向永春, 黄瑞良 2005 54 3523]
[2] Zhao H F, Du L, He L, Bao J L 2011 Acta Phys. Sin. 60 028501 (in Chinese) [赵鸿飞, 杜磊, 何亮, 包军林 2011 60 028501]
[3] Wang C J, Bao D M, Cheng S, Zhang A L 2008 Acta Phys. Sin. 57 5361 (in Chinese) [王崇杰, 包东敏, 程松, 张爱莲 2008 57 5361]
[4] Grenier G, Poussier C 1970 Nuclear Instruments and Methods 89 199
[5] Sun B, Jiang J J 2011 Acta Phys. Sin. 60 110701 (in Chinese) [孙彪, 江建军 2011 60 11701]
[6] Bai X, Li Y Q, Zhao S M 2013 Acta Phys. Sin. 62 044209 (in Chinese) [白旭, 李永强, 赵生妹 2013 62 044209]
[7] Lustig M, Donoho D, Pauly J M 2007 Magnetic Resonance in Medicine 58 1182
[8] Yu S W, Khwaja A S, Ma J W 2012 Signal Process. 92 357
[9] Ma J W, Hussaini M Y 2011 IEEE. T. Instrum. Meas. 60 3128
[10] Ma J W 2010 IEEE. T. Instrum. Meas. 59 1600
[11] Ma J W, Plonka G, Hussaini M Y 2012 IEEE. T. Circ. Syst. Vid. 22 1354
[12] Hou Q W, Cao B Y, Guo Z Y 2009 Acta Phys. Sin. 58 7809 (in Chinese) [侯泉文, 曹炳阳, 过增元 2009 58 7809]
[13] Briesmeister J F 1997 MCNP-A General Monte Carlo N-Particle Transport Code Version 4B, LA-12625-M. Los Alamos National Laboratory
[14] Candes E J, Tao T 2005 IEEE. T. Inform. Theory. 24 118
[15] Donoho D L, Elad M, Temlyakov V N 2006 IEEE. T. Inform. Theory. 52 6
[16] Candes E J, Romberg J, Tao T 2006 IEEE. T. Inform. Theory. 52 489
[17] Donoho D L 2006 IEEE. T. Inform. Theory. 52 1289
[18] Candes E J, Romberg J, Tao T 2006 Commun. Pur. Appl. Math. 59 1207
[19] Candes E J, Wakin M B 2008 IEEE. Signal Proc. Mag. 25 21
[20] Xu M H, Liang T J, Zhang J 2006 Acta Phys. Sin. 55 2357 (in Chinese) [徐妙华, 梁天骄, 张杰 2006 55 2357]
[21] Xu H B, Peng X K, Chen C B 2010 Chin. Phys. B 19 062901
计量
- 文章访问数: 6823
- PDF下载量: 904
- 被引次数: 0