搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于压缩感知的矢量阵聚焦定位方法

时洁 杨德森 时胜国 胡博 朱中锐

引用本文:
Citation:

基于压缩感知的矢量阵聚焦定位方法

时洁, 杨德森, 时胜国, 胡博, 朱中锐

Compressive focused beamforming based on vector sensor array

Shi Jie, Yang De-Sen, Shi Sheng-Guo, Hu Bo, Zhu Zhong-Rui
PDF
导出引用
  • 本文针对噪声源近场定位识别问题, 利用声源分布在空间域具有稀疏性, 在压缩感知理论框架下建立了新体系下的矢量阵聚焦波束形成方法, 用于解决同频相干声源的定位识别问题. 新方法可在小快拍下准确获得噪声源的空间位置, 且不损失对噪声源贡献相对大小的评价能力. 通过详细的理论推导、仿真分析和试验验证, 证明了基于压缩感知的矢量阵聚焦定位新方法本质上实现了l1 范数正则化求解下的波形恢复和空间谱估计, 因此具有较高的定位精度, 较强的相干声源分辨能力、准确的声源贡献相对大小评价能力以及较高的背景压制能力, 可应用于水下复杂噪声源的定位识别.
    With the rapid development of the theory and algorithms for sparse recovery in finite dimension, compressive sensing (CS) has become an exciting field that has attracted considerable attention in signal processing, such as sub-Nyquist sampling systems, sound imaging and reconstruction, wavelet denoising, compressive sensor networks, and so on. Moreover, the broad applicability of CS framework has already inspired some notable investigation in the context of array processing. The problem of acoustic source identification can be investigated from a limited number of measurements delivered by a microphone array as a basis pursuit problem, which has been developed in the context of compressive sensing, and the CS beamforming can be proved to be better than the conventional beamforming even in its near-field focusing version based on spherical waves. Focused beamforming is a typical method used to localize the position of acoustic sound sources in the near field of the measurement array, and can be a jointly reconstructed source powers and positions. Many super-resolution focused beamforming approaches have been developed to overcome the Rayleigh resolution limit of conventional focused beamforming. Especially, turning to the compressive sensing (CS) framework, we are able to exploit the inherent sparsity of the underlying signal in space domains to achieve super-resolution for the focused beamforming even in a noisy and coherent environment with few snapshots.Prior research has established CS as a valuable tool for array signal processing, but it is mainly from a theoretical point of view, and its application to underwater acoustic sources localization has been developed only for very limited scenarios. In this paper, we present an underwater noise sound source near-field localization method based on a sparse representation of vector sensor array measurements. By utilizing the sparsity approach, the new localization methods can jointly reconstruct source powers and positions, and enforce sparsity by imposing penalties, based on the l1-norm, to improve the integrated performance. By comparing with other source localization methods, such as the conventional focused beamforming, MVDR focused beamforming, and the maximum likelihood focused beamforming, the performance of compressive focused beamforming and the typical focused beamforming using pressure or vector sensor array is analyzed in detail, especially under noisy conditions, and coherent sources. Simulation and experimental results demonstrate that this new approach has a number of advantages over other source localization techniques, e.g. increased resolution, improved robustness to noise, limitations in data quantity and correlation of the sources, as well as lower levels of background interference. It is feasible to apply the proposed approach for effectively localizing and identifying underwater noise sound sources.
      通信作者: 时胜国, shishengguo@hrbeu.edu.cn
    • 基金项目: 长江学者和创新团队发展计划(批准号: IRT1228)、高等学校博士学科点专项科研基金(批准号: 20122304120023, 20122304120011)和国家自然科学基金青年基金(批准号: 11204050, 11204049)资助的课题.
      Corresponding author: Shi Sheng-Guo, shishengguo@hrbeu.edu.cn
    • Funds: Project supported by the Program for Changjiang Scholars and Innovative Research Team in University of Ministry of Education of China (Grant No. IRT1228), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant Nos. 20122304120023, 20122304120011), and the Young Scientists Fund of the National Natural Science Foundation of China (Grant Nos. 11204050, 11204049).
    [1]

    Shi J, Yang D S, Shi S G 2011 Acta Phys. Sin. 60 064301 (in Chinese) [时洁, 杨德森, 时胜国 2011 60 064301]

    [2]

    Shi J, Yang D S, Shi S G 2012 Acta Phys. Sin. 61 124302 (in Chinese) [时洁, 杨德森, 时胜国 2012 61 124302]

    [3]

    Cho Y T, Roan M J 2009 J. Acoust. Soc. Am. 125 944

    [4]

    Levin D, Habets Emanuel A P, Gannot S 2012 J. Acoust. Soc. Am. 131 1240

    [5]

    Candes E J, Wakin M B 2008 IEEE Signal Proc. Mag. 25 21

    [6]

    Baraniuk R G 2007 IEEE Signal Proc. Mag. 24 118

    [7]

    Gorodnitsky I F, Rao B D 1997 IEEE Trans. Signal Process. 45 600

    [8]

    Malioutov D, Cetin M, Willsky A S 2005 IEEE Trans. Signal Process. 53 3010

    [9]

    Simard P, Antoni J 2013 Appl. Acoust. 74 974

    [10]

    Chu N, Picheral J, Mohammad-djafari A, Gac N 2014 Appl. Acoust. 76 197

    [11]

    Edelmann G F, Gaumond C F 2011 J. Acoust. Soc. Am. 130 232

    [12]

    Xenaki A, Gerstoft P 2014 J. Acoust. Soc. Am. 136 260

    [13]

    Li X, Ma X C, Yan S F 2013 Appl. Acoust. 74 926

    [14]

    Zhong S Y, Wei Q K, Huang X 2013 J. Acoust. Soc. Am. 134 445

    [15]

    Lei Z X, Yang K D, Duan R, Xiao P 2015 J. Acoust. Soc. Am. 137 255

    [16]

    Liang G L, Ma W, Fan Z, Wang Y L 2013 Acta Phys. Sin. 62 144302 (in Chinese) [梁国龙, 马巍, 范展, 王逸林 2013 62 144302]

    [17]

    Boyd S, Vandenberghe L 2004 Convex Optimization (Cambridge University Press, New York) 120

  • [1]

    Shi J, Yang D S, Shi S G 2011 Acta Phys. Sin. 60 064301 (in Chinese) [时洁, 杨德森, 时胜国 2011 60 064301]

    [2]

    Shi J, Yang D S, Shi S G 2012 Acta Phys. Sin. 61 124302 (in Chinese) [时洁, 杨德森, 时胜国 2012 61 124302]

    [3]

    Cho Y T, Roan M J 2009 J. Acoust. Soc. Am. 125 944

    [4]

    Levin D, Habets Emanuel A P, Gannot S 2012 J. Acoust. Soc. Am. 131 1240

    [5]

    Candes E J, Wakin M B 2008 IEEE Signal Proc. Mag. 25 21

    [6]

    Baraniuk R G 2007 IEEE Signal Proc. Mag. 24 118

    [7]

    Gorodnitsky I F, Rao B D 1997 IEEE Trans. Signal Process. 45 600

    [8]

    Malioutov D, Cetin M, Willsky A S 2005 IEEE Trans. Signal Process. 53 3010

    [9]

    Simard P, Antoni J 2013 Appl. Acoust. 74 974

    [10]

    Chu N, Picheral J, Mohammad-djafari A, Gac N 2014 Appl. Acoust. 76 197

    [11]

    Edelmann G F, Gaumond C F 2011 J. Acoust. Soc. Am. 130 232

    [12]

    Xenaki A, Gerstoft P 2014 J. Acoust. Soc. Am. 136 260

    [13]

    Li X, Ma X C, Yan S F 2013 Appl. Acoust. 74 926

    [14]

    Zhong S Y, Wei Q K, Huang X 2013 J. Acoust. Soc. Am. 134 445

    [15]

    Lei Z X, Yang K D, Duan R, Xiao P 2015 J. Acoust. Soc. Am. 137 255

    [16]

    Liang G L, Ma W, Fan Z, Wang Y L 2013 Acta Phys. Sin. 62 144302 (in Chinese) [梁国龙, 马巍, 范展, 王逸林 2013 62 144302]

    [17]

    Boyd S, Vandenberghe L 2004 Convex Optimization (Cambridge University Press, New York) 120

  • [1] 王攀, 王仲根, 孙玉发, 聂文艳. 新型压缩感知计算模型分析三维电大目标电磁散射特性.  , 2023, 72(3): 030202. doi: 10.7498/aps.72.20221532
    [2] 陈炜, 郭媛, 敬世伟. 基于深度学习压缩感知与复合混沌系统的通用图像加密算法.  , 2020, 69(24): 240502. doi: 10.7498/aps.69.20201019
    [3] 康志伟, 吴春艳, 刘劲, 马辛, 桂明臻. 基于两级压缩感知的脉冲星时延估计方法.  , 2018, 67(9): 099701. doi: 10.7498/aps.67.20172100
    [4] 李少东, 陈永彬, 刘润华, 马晓岩. 基于压缩感知的窄带高速自旋目标超分辨成像物理机理分析.  , 2017, 66(3): 038401. doi: 10.7498/aps.66.038401
    [5] 冷雪冬, 王大鸣, 巴斌, 王建辉. 基于渐进添边的准循环压缩感知时延估计算法.  , 2017, 66(9): 090703. doi: 10.7498/aps.66.090703
    [6] 李慧, 赵琳, 李亮. 基于贝叶斯压缩感知的周跳探测与修复方法.  , 2016, 65(24): 249101. doi: 10.7498/aps.65.249101
    [7] 庄佳衍, 陈钱, 何伟基, 冒添逸. 基于压缩感知的动态散射成像.  , 2016, 65(4): 040501. doi: 10.7498/aps.65.040501
    [8] 李广明, 吕善翔. 混沌信号的压缩感知去噪.  , 2015, 64(16): 160502. doi: 10.7498/aps.64.160502
    [9] 王燕, 邹男, 梁国龙. 强多途环境下水听器阵列位置近场有源校正方法.  , 2015, 64(2): 024304. doi: 10.7498/aps.64.024304
    [10] 康荣宗, 田鹏武, 于宏毅. 一种基于选择性测量的自适应压缩感知方法.  , 2014, 63(20): 200701. doi: 10.7498/aps.63.200701
    [11] 陈明生, 王时文, 马韬, 吴先良. 基于压缩感知的目标频空电磁散射特性快速分析.  , 2014, 63(17): 170301. doi: 10.7498/aps.63.170301
    [12] 张新鹏, 胡茑庆, 程哲, 钟华. 基于压缩感知的振动数据修复方法.  , 2014, 63(20): 200506. doi: 10.7498/aps.63.200506
    [13] 王哲, 王秉中. 压缩感知理论在矩量法中的应用.  , 2014, 63(12): 120202. doi: 10.7498/aps.63.120202
    [14] 李龙珍, 姚旭日, 刘雪峰, 俞文凯, 翟光杰. 基于压缩感知超分辨鬼成像.  , 2014, 63(22): 224201. doi: 10.7498/aps.63.224201
    [15] 宁方立, 何碧静, 韦娟. 基于lp范数的压缩感知图像重建算法研究.  , 2013, 62(17): 174212. doi: 10.7498/aps.62.174212
    [16] 冯丙辰, 方晟, 张立国, 李红, 童节娟, 李文茜. 基于压缩感知理论的非线性γ谱分析方法.  , 2013, 62(11): 112901. doi: 10.7498/aps.62.112901
    [17] 白旭, 李永强, 赵生妹. 基于压缩感知的差分关联成像方案研究.  , 2013, 62(4): 044209. doi: 10.7498/aps.62.044209
    [18] 焦重庆, 牛帅. 开孔矩形腔体的近场电磁屏蔽效能研究.  , 2013, 62(11): 114102. doi: 10.7498/aps.62.114102
    [19] 杨勇, 孙伟强, 庄虔伟, 冯涛, 许胜勇, 解思深. 近场宽带电场耦合天线的高频结构模拟器软件仿真及性能分析.  , 2012, 61(20): 208401. doi: 10.7498/aps.61.208401
    [20] 陈志敏, 朱海潮, 毛荣富. 循环平稳声场的声源定位研究.  , 2011, 60(10): 104304. doi: 10.7498/aps.60.104304
计量
  • 文章访问数:  7339
  • PDF下载量:  533
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-07-31
  • 修回日期:  2015-10-13
  • 刊出日期:  2016-01-20

/

返回文章
返回
Baidu
map