Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Topological invariant in quench dynamics

Yang Chao Chen Shu

Citation:

Topological invariant in quench dynamics

Yang Chao, Chen Shu
PDF
HTML
Get Citation
  • In this review, we give a brief review on the recent progress in the theoretical research of quench dynamics in topological band systems. Beginning with two band models, we introduce conception of dynamical Chern number and give the connection between the dynamical Chern number and topological invariant in the corresponding equilibrium systems. Then by studying the 1 + 1 dimensional parent Hamiltonian, we show the complete dynamical classification of Altland-Zirnbauer classes, and show the crossing of entanglement spectrum as a feature of dynamical bulk edge correspondence. Furthermore, we consider the impact of the disorder and band dispersion. At last, we show the experimental simulation of dynamical Chern number by a superconducting qubit system.
      Corresponding author: Yang Chao, yangchao@iphy.ac.cn ; Chen Shu, schen@iphy.ac.cn
    • Funds: Project supported by the State Key Development Program for Basic Research of China (Grant No. 2016YFA0300600) and the National Natural Science Foundation of China (Grant Nos. 11425419, 11974413)
    [1]

    Klitzing K V, Dorda G, Pepper M 1980 Phys. Rev. Lett. 45 494Google Scholar

    [2]

    Thouless D J, Kohmoto M, Nightingale M P, Nijs M den Nijs 1982 Phys. Rev. Lett. 49 405Google Scholar

    [3]

    Hasan M Z, Kane C L 2010 Rev. Mod. Phys. 82 3045Google Scholar

    [4]

    Qi X, Zhang S 2011 Rev. Mod. Phys. 83 1057Google Scholar

    [5]

    Chiu C, Teo J C Y, Schnyder A P, Ryu S 2016 Rev. Mod. Phys. 88 035005Google Scholar

    [6]

    Atala M, Aidelsburger M, Barreiro J T, Abanin D, Kitagawa T, Demler E, Bloch I 2013 Nat. Phys. 9 795Google Scholar

    [7]

    Jotzu G, Messer M, Desbuquois R, Lebrat M, Uehlinger T, Greif D, Esslinger T 2014 Nature (London) 515 237Google Scholar

    [8]

    Wu Z, Zhang L, Sun W, Xu X T, Wang B Z, Ji S C, Deng Y, Chen S, Liu X J, Pan J W 2016 Science 354 83Google Scholar

    [9]

    Aidelsburger M, Atala M, Lohse M, Barreiro J T, Paredes B, Bloch I 2013 Phys. Rev. Lett. 111 185301Google Scholar

    [10]

    Aidelsburger M, Lohse M, Schweizer C, Atala M, Barreiro J T, Nascimbne S, Cooper N R, Bloch I, Goldman N 2015 Nat. Phys. 11 162Google Scholar

    [11]

    Miyake H, Siviloglou G A, Kennedy C J, Burton W C, Ketterle W 2013 Phys. Rev. Lett. 111 185302Google Scholar

    [12]

    Caio M D, Cooper N R, Bhaseen M J 2015 Phys. Rev. Lett. 115 236403Google Scholar

    [13]

    Alessio L D, Rigol M 2015 Nat. Commun. 6 8336Google Scholar

    [14]

    Hu Y, Zoller P, Budich J C 2016 Phys. Rev. Lett. 117 126083

    [15]

    Wilson J H, Song J C W, Refael G 2016 Phys. Rev. Lett. 117 235032

    [16]

    McGinley M, Cooper N R 2018 Phys. Rev. Lett. 121 090401Google Scholar

    [17]

    McGinley M, Cooper N R 2019 Phys. Rev. B 99 075418Google Scholar

    [18]

    Wang C, Zhang P, Chen X, Yu J, Zhai H 2017 Phys. Rev. Lett. 118 185701Google Scholar

    [19]

    Chen X, Wang C, Yu J 2019 arXiv: 1907.08840

    [20]

    Tarnowski M, Unal F N, Flaschner N, Rem B S, Eckardt A, Sengstock K, Weitenberg C 2019 Nat. Commun. 10 1728Google Scholar

    [21]

    Yang C, Li L, Chen S 2018 Phys. Rev. B(R) 97 060304Google Scholar

    [22]

    Guo X Y, Yang C, Zeng Y, Peng Y, Li H K, Deng H, Jin Y R, Chen S, Zheng D N, Fan H 2019 Phys. Rev. Applied 11 044080Google Scholar

    [23]

    Gong Z, Ueda M 2018 Phys. Rev. Lett. 121 250601Google Scholar

    [24]

    Zhang L, Zhang L, Niu S, Liu X J 2018 Science Bulletin 63 1385Google Scholar

    [25]

    Zhang L, Zhang L, Liu X J 2019 Phys. Rev. A 99 053606Google Scholar

    [26]

    Zhang L, Zhang L, Liu X J 2019 arXiv: 1907.08840

    [27]

    Sun W, Yi C R, Wang B Z, Zhang W W, Sanders B C, Xu X T, Wang Z Y, Schmiedmayer J, Deng Y J, Liu X J, Chen S, Pan J W 2019 Phys. Rev. Lett. 121 250403

    [28]

    Lieb E H, Robinson D W 1972 Commun. Math. Phys. 28 251Google Scholar

    [29]

    Gong Z, Kura N, Sato M, Ueda M 2019 arXiv: 1904.12464

    [30]

    Altland A, Zirnbauer M R 1997 Phys. Rev. B 55 1142Google Scholar

    [31]

    Schnyder A P, Ryu S, Furusaki A, Ludwig A W W 2008 Phys. Rev. B 78 2208

    [32]

    Kitaev A 2009 AIP Conf. Proc. 22 1134

    [33]

    Kitaev A 2001 Ann. Phys. (NY) 303 2

    [34]

    Su W P, Schrieffer J R, Heeger A J 1979 Phys. Rev. Lett. 42 1698Google Scholar

    [35]

    Li L, Yang C, Chen S 2016 Eur. Phys. J. B 89 195Google Scholar

    [36]

    Teo J C Y, Kane C L 2010 Phys. Rev. B 82 115120Google Scholar

    [37]

    Shiozaki K, Sato M 2014 Phys. Rev. B 90 165114Google Scholar

    [38]

    Chiu C K, Yao H, Ryu S 2013 Phys. Rev. B 88 075142Google Scholar

    [39]

    Fu L, Kane C 2006 Phys. Rev. B 74 195312Google Scholar

    [40]

    Moore J E, Balents L 2007 Phys. Rev. B(R) 75 121306Google Scholar

    [41]

    Wen X G 1992 Int. J. Mod. Phys. B 06 1711Google Scholar

    [42]

    Fidkowski L 2010 Phys. Rev. Lett. 104 130502Google Scholar

    [43]

    Peschel I 2002 J. Phys. A 36 L205

    [44]

    Hughes T L, Prodan E, Bernevig B A 2011 Phys. Rev. B 83 245132Google Scholar

    [45]

    Fu L, Kane C L 2009 Phys. Rev. B 79 161408Google Scholar

    [46]

    Lu S, Yu J 2019 Phys. Rev. A 99 033621Google Scholar

    [47]

    Turner A M, Zhang Y, Vishwanath A 2010 Phys. Rev. B 82 241102Google Scholar

    [48]

    Bansil A, Lin S, Das T 2016 Rev. Mod. Phys. 88 021004Google Scholar

    [49]

    Koch J, Yu T M, Gambetta J, Houck A A, Schuster D I, Majer J, Blais A, Devoret M H, Girvin S M, Schoelkopf R J 2007 Phys. Rev. A 76 042319Google Scholar

    [50]

    Barends R, Kelly J, Megrant A, Sank D, Jeffrey E, Chen Y, Yin Y, Chiaro B, Mutus J, Neill C, O'Malley P, Roushan P, Wenner J, White T C, Cleland A N, Martinis J M 2013 Phys. Rev. Lett. 111 080502Google Scholar

    [51]

    Barends R, Kelly J, Megrant A, Veitia A, Sank D, Jeffrey E, White T C, Mutus J, Fowler A G, Campbell B, Chen Y, Chen Z, Chiaro B, Dunsworth A, Neill C, O'Malley P, Roushan P, Vainsencher A, Wenner J, Korotkov A N, Cleland A N, Martinis J M 2016 Nature 508 500

    [52]

    Steffen M, Ansmann M, McDermott R, Katz N, Bialczak R C, Lucero E, Neeley M, Weig E M, Cleland A N, Martinis J M 2006 Phys. Rev. Lett. 97 050502Google Scholar

    [53]

    Dziarmaga J 2005 Phys. Rev. Lett. 95 245701Google Scholar

    [54]

    Ezawa M 2018 Phys. Rev. B 98 205406Google Scholar

    [55]

    Chang P Y 2018 Phys. Rev. B 97 224304Google Scholar

    [56]

    Qiu X, Deng T S, Hu Y, Xue P, Yi W 2018 arXiv: 1806.10268

    [57]

    Wang K, Qiu X, Xiao L, Zhan X, Bian Z, Sanders B C, Yi W, Xue P 2018 Nat. Commun. 10 2293

    [58]

    邓天舒, 易为 2019 68 040303Google Scholar

    Deng T S, Yi W 2019 Acta Phys. Sin. 68 040303Google Scholar

  • 图 1  (a) 每个截面对应固定动量, 截面内的极角对应于时间. 橘黄色的环代表$k=0$$2{\text{π}} $, 它们粘合起来组成了$T^2$; (b) 如果动量空间中存在一些不动点$k_1$, $k_2$, 截面的时间可连续收缩为一个点, 动量时间流形约化成一系列球面[21]

    Figure 1.  (a) For any fixed momentum k, the cross section can be viewed as a circle $S^1$ where the azimuthal angle represents the time t. After gluing $k=0$ and $k = 2{\text{π}} $ (saffron circles), the topology of the momentum-time manifold becomes $T^2$; (b) if there are two fixed points $k=k_1$ and $k_2$, the corresponding circle contracts to a point, then the momentum-time manifold reduces to a series of spheres $S^2$[21].

    图 2  (a) SSH模型, 初态$\delta^{\rm i}=1$为拓扑平庸的, 末态$\delta^{\rm f}$取不同的值. 仅当末态为拓扑非平庸时, 纠缠谱在$1/2$处有交叉; (b)扩展的SSH模型, 次次次近邻跃迁具有相位, 系统属于AIII类. 蓝色的线代表用平带化的哈密顿量进行动力学演化, 红色的线代表由真实末态哈密顿量进行演化. 可以看出能带的色散打开了纠缠谱的能隙

    Figure 2.  (a) In SSH model, the initial state of $\delta^{\rm i}=1$ is topologically trivial, evolution of entanglement spectrum for different post-quenched $\delta^{\rm f}{\rm{s}}$ are shown with different colors. If and only if the post-quenched Hamiltonian is topologically nontrivial, the entanglement spectrum can cross at $1/2$; (b) in Extended SSH model, the third-nearest-neighbor hopping carries a phase factor, and the Hamiltonian belongs to class AIII. The blue curve shows the dynamics of entanglement spectrum evolved by flattened Hamiltonian, and the red curve shows the dynamics evolved by entanglement spectrum of real Hamiltonian. It can be seen that the band dispersion opens the gap of entanglement spectrum.

    图 3  (a)实验过程序列示意图. 对每一个动量k, 初始时刻通过脉冲$A_0\cos(\omega t+\phi_0)$ 制备初态, 而后通过改变外加的脉冲的$A_k$$\phi_k$ 实现淬火动力学. (b), (c) 不同动量k对应的Bloch矢量的演化. 红色的星为实验的数据, 黄色的环为数值计算的数据. (b)初态$h^{\rm i}=0.2$, 末态$h^{\rm f}=1.5$. (c) 初态$h^{\rm i}=0.2$, 末态$h^{\rm f}=0.5$[22]

    Figure 3.  The scheme of experiment control sequence. The initial state is prepared at the state-initialization period by control quantity $A_0\cos(\omega t+\phi_0)$ for a fixed momentum k. Then for a quantum quench, by controlling $A_k$ and $\phi_k$, we adjust the direction of the rotation axis. (b), (c) the evolution of Bloch vectors for different momenta. The red points and yellow rings are experimental and numerical datas. (b) pre-quenched parameter $h^{\rm i}=0.2$, post-quench parameter $h^{\rm f}=1.5$. (c) pre-quenched parameter $h^{\rm i}=0.2$, post-quench parameter $h^{\rm f}=0.5$.

    表 1  母哈密顿量$\tilde{h}(k, t)$的拓扑分类. TRS、PHS、CS分别是时间反演对称性, 粒子空穴对称性和手征对称性. s, t, d, $d_{//}$, 额外对称性P参见文献[37]; original class是没有额外对称性时系统的拓扑分类. $K_{\rm C}^{\rm U/A}(K_{\rm R}^{\rm U/A})$是系统的K群. Dynamical realization表示在淬火动力学中存在的拓扑分类. Stable against dispersion指能带存在色散时纠缠谱交叉能够稳定存在的拓扑分类

    Table 1.  Topological classification of parent Hamiltonian. TRS, PHS and CS represent the time reversal symmetry, particle hole symmetry and chorial symmetry, respectively. The definition of s, t, d, $d_{//}$ and additional symmetry P can be found in Ref.[37]. Original class represents the topological classification without additional symmetry. $K_{\rm C}^{\rm U/A}(K_{\rm R}^{\rm U/A})$ is the K group. Dynamical realization means the topological classes which can be realized in quench dynamics. Stable against dispersion means entanglement spectrum crossing which is stable against band dispersion.

    AZ class TRS PHS CS $(s, t, d, d_{//}, \text{original~class,} P)$ $K_{\rm C}^{\rm U/A}(K_{\rm R}^{\rm U/A})$ Dynamical realization Stable against dispersion
    A 0 0 0 $(\sim, \sim, 2, \sim, A, \sim)$ ${\mathbb Z}$ 0 0
    AIII 0 0 1 $(0, 1, 2, 1, A, \bar{U})$ ${\mathbb Z}\bigoplus{\mathbb Z}$ ${\mathbb Z}$ 0
    AI 1 0 0 $(\sim, \sim, 2, \sim, AI, \sim)$ 0 0 0
    BDI 1 1 1 $(0, 3, 2, 1, AI, \bar{A}_{+}^{+})$ ${\mathbb Z}$ ${\mathbb Z}$ ${\mathbb Z}_2$
    D 0 1 0 $(2, \sim, 2, 1, A, \bar{A}^{+})$ ${\mathbb Z}_2$ ${\mathbb Z}_2$ ${\mathbb Z}_2$
    DIII –1 1 1 $(4, 1, 2, 1, AII, \bar{A}_{+}^{+})$ ${\mathbb Z}_2\bigoplus{\mathbb Z}_2$ ${\mathbb Z}_2$ 0
    AII –1 0 0 $(\sim, \sim, 2, \sim, AII, \sim)$ ${\mathbb Z}_2$ 0 0
    CII –1 –1 1 $(4, 3, 2, 1, AII, \bar{A}_{+}^{-})$ ${\mathbb Z}$ ${\mathbb Z}$ 0
    C 0 –1 0 $(6, \sim, 2, 1, A, \bar{A}^{-})$ 0 0 0
    CI 1 –1 1 $(0, 1, 2, \sim, AI, \bar{A}_{+}^{-})$ 0 0 0
    DownLoad: CSV
    Baidu
  • [1]

    Klitzing K V, Dorda G, Pepper M 1980 Phys. Rev. Lett. 45 494Google Scholar

    [2]

    Thouless D J, Kohmoto M, Nightingale M P, Nijs M den Nijs 1982 Phys. Rev. Lett. 49 405Google Scholar

    [3]

    Hasan M Z, Kane C L 2010 Rev. Mod. Phys. 82 3045Google Scholar

    [4]

    Qi X, Zhang S 2011 Rev. Mod. Phys. 83 1057Google Scholar

    [5]

    Chiu C, Teo J C Y, Schnyder A P, Ryu S 2016 Rev. Mod. Phys. 88 035005Google Scholar

    [6]

    Atala M, Aidelsburger M, Barreiro J T, Abanin D, Kitagawa T, Demler E, Bloch I 2013 Nat. Phys. 9 795Google Scholar

    [7]

    Jotzu G, Messer M, Desbuquois R, Lebrat M, Uehlinger T, Greif D, Esslinger T 2014 Nature (London) 515 237Google Scholar

    [8]

    Wu Z, Zhang L, Sun W, Xu X T, Wang B Z, Ji S C, Deng Y, Chen S, Liu X J, Pan J W 2016 Science 354 83Google Scholar

    [9]

    Aidelsburger M, Atala M, Lohse M, Barreiro J T, Paredes B, Bloch I 2013 Phys. Rev. Lett. 111 185301Google Scholar

    [10]

    Aidelsburger M, Lohse M, Schweizer C, Atala M, Barreiro J T, Nascimbne S, Cooper N R, Bloch I, Goldman N 2015 Nat. Phys. 11 162Google Scholar

    [11]

    Miyake H, Siviloglou G A, Kennedy C J, Burton W C, Ketterle W 2013 Phys. Rev. Lett. 111 185302Google Scholar

    [12]

    Caio M D, Cooper N R, Bhaseen M J 2015 Phys. Rev. Lett. 115 236403Google Scholar

    [13]

    Alessio L D, Rigol M 2015 Nat. Commun. 6 8336Google Scholar

    [14]

    Hu Y, Zoller P, Budich J C 2016 Phys. Rev. Lett. 117 126083

    [15]

    Wilson J H, Song J C W, Refael G 2016 Phys. Rev. Lett. 117 235032

    [16]

    McGinley M, Cooper N R 2018 Phys. Rev. Lett. 121 090401Google Scholar

    [17]

    McGinley M, Cooper N R 2019 Phys. Rev. B 99 075418Google Scholar

    [18]

    Wang C, Zhang P, Chen X, Yu J, Zhai H 2017 Phys. Rev. Lett. 118 185701Google Scholar

    [19]

    Chen X, Wang C, Yu J 2019 arXiv: 1907.08840

    [20]

    Tarnowski M, Unal F N, Flaschner N, Rem B S, Eckardt A, Sengstock K, Weitenberg C 2019 Nat. Commun. 10 1728Google Scholar

    [21]

    Yang C, Li L, Chen S 2018 Phys. Rev. B(R) 97 060304Google Scholar

    [22]

    Guo X Y, Yang C, Zeng Y, Peng Y, Li H K, Deng H, Jin Y R, Chen S, Zheng D N, Fan H 2019 Phys. Rev. Applied 11 044080Google Scholar

    [23]

    Gong Z, Ueda M 2018 Phys. Rev. Lett. 121 250601Google Scholar

    [24]

    Zhang L, Zhang L, Niu S, Liu X J 2018 Science Bulletin 63 1385Google Scholar

    [25]

    Zhang L, Zhang L, Liu X J 2019 Phys. Rev. A 99 053606Google Scholar

    [26]

    Zhang L, Zhang L, Liu X J 2019 arXiv: 1907.08840

    [27]

    Sun W, Yi C R, Wang B Z, Zhang W W, Sanders B C, Xu X T, Wang Z Y, Schmiedmayer J, Deng Y J, Liu X J, Chen S, Pan J W 2019 Phys. Rev. Lett. 121 250403

    [28]

    Lieb E H, Robinson D W 1972 Commun. Math. Phys. 28 251Google Scholar

    [29]

    Gong Z, Kura N, Sato M, Ueda M 2019 arXiv: 1904.12464

    [30]

    Altland A, Zirnbauer M R 1997 Phys. Rev. B 55 1142Google Scholar

    [31]

    Schnyder A P, Ryu S, Furusaki A, Ludwig A W W 2008 Phys. Rev. B 78 2208

    [32]

    Kitaev A 2009 AIP Conf. Proc. 22 1134

    [33]

    Kitaev A 2001 Ann. Phys. (NY) 303 2

    [34]

    Su W P, Schrieffer J R, Heeger A J 1979 Phys. Rev. Lett. 42 1698Google Scholar

    [35]

    Li L, Yang C, Chen S 2016 Eur. Phys. J. B 89 195Google Scholar

    [36]

    Teo J C Y, Kane C L 2010 Phys. Rev. B 82 115120Google Scholar

    [37]

    Shiozaki K, Sato M 2014 Phys. Rev. B 90 165114Google Scholar

    [38]

    Chiu C K, Yao H, Ryu S 2013 Phys. Rev. B 88 075142Google Scholar

    [39]

    Fu L, Kane C 2006 Phys. Rev. B 74 195312Google Scholar

    [40]

    Moore J E, Balents L 2007 Phys. Rev. B(R) 75 121306Google Scholar

    [41]

    Wen X G 1992 Int. J. Mod. Phys. B 06 1711Google Scholar

    [42]

    Fidkowski L 2010 Phys. Rev. Lett. 104 130502Google Scholar

    [43]

    Peschel I 2002 J. Phys. A 36 L205

    [44]

    Hughes T L, Prodan E, Bernevig B A 2011 Phys. Rev. B 83 245132Google Scholar

    [45]

    Fu L, Kane C L 2009 Phys. Rev. B 79 161408Google Scholar

    [46]

    Lu S, Yu J 2019 Phys. Rev. A 99 033621Google Scholar

    [47]

    Turner A M, Zhang Y, Vishwanath A 2010 Phys. Rev. B 82 241102Google Scholar

    [48]

    Bansil A, Lin S, Das T 2016 Rev. Mod. Phys. 88 021004Google Scholar

    [49]

    Koch J, Yu T M, Gambetta J, Houck A A, Schuster D I, Majer J, Blais A, Devoret M H, Girvin S M, Schoelkopf R J 2007 Phys. Rev. A 76 042319Google Scholar

    [50]

    Barends R, Kelly J, Megrant A, Sank D, Jeffrey E, Chen Y, Yin Y, Chiaro B, Mutus J, Neill C, O'Malley P, Roushan P, Wenner J, White T C, Cleland A N, Martinis J M 2013 Phys. Rev. Lett. 111 080502Google Scholar

    [51]

    Barends R, Kelly J, Megrant A, Veitia A, Sank D, Jeffrey E, White T C, Mutus J, Fowler A G, Campbell B, Chen Y, Chen Z, Chiaro B, Dunsworth A, Neill C, O'Malley P, Roushan P, Vainsencher A, Wenner J, Korotkov A N, Cleland A N, Martinis J M 2016 Nature 508 500

    [52]

    Steffen M, Ansmann M, McDermott R, Katz N, Bialczak R C, Lucero E, Neeley M, Weig E M, Cleland A N, Martinis J M 2006 Phys. Rev. Lett. 97 050502Google Scholar

    [53]

    Dziarmaga J 2005 Phys. Rev. Lett. 95 245701Google Scholar

    [54]

    Ezawa M 2018 Phys. Rev. B 98 205406Google Scholar

    [55]

    Chang P Y 2018 Phys. Rev. B 97 224304Google Scholar

    [56]

    Qiu X, Deng T S, Hu Y, Xue P, Yi W 2018 arXiv: 1806.10268

    [57]

    Wang K, Qiu X, Xiao L, Zhan X, Bian Z, Sanders B C, Yi W, Xue P 2018 Nat. Commun. 10 2293

    [58]

    邓天舒, 易为 2019 68 040303Google Scholar

    Deng T S, Yi W 2019 Acta Phys. Sin. 68 040303Google Scholar

  • [1] Yin Xiang-Guo, Yu Hai-Ru, Hao Ya-Jiang, Zhang Yun-Bo. Properties of ground state and quench dynamics of one-dimensional contact repulsive single-spin flipped Fermi gases. Acta Physica Sinica, 2024, 73(2): 020302. doi: 10.7498/aps.73.20231425
    [2] Liu Xiang-Lian, Li Kai-Zhou, Li Xiao-Qiong, Zhang Qiang. Coexistence of quantum spin and valley hall effect in two-dimensional dielectric photonic crystals. Acta Physica Sinica, 2023, 72(7): 074205. doi: 10.7498/aps.72.20221814
    [3] Liu Chang, Wang Ya-Yu. Quantum transport phenomena in magnetic topological insulators. Acta Physica Sinica, 2023, 72(17): 177301. doi: 10.7498/aps.72.20230690
    [4] Xu Shi-Lin, Hu Yue-Fang, Yuan Dan-Wen, Chen Wei, Zhang Wei. Topological phase transitions in Tl2Ta2O7 under strain regulation. Acta Physica Sinica, 2023, 72(12): 127102. doi: 10.7498/aps.72.20230043
    [5] Guo Si-Jia, Li Yu-Zeng, Li Tian-Zi, Fan Xi-Ying, Qiu Chun-Yin. Topological properties of non-isotropic two-dimensional SSH model. Acta Physica Sinica, 2022, 71(7): 070201. doi: 10.7498/aps.71.20211967
    [6] Li Jia-Rui, Wang Zi-An, Xu Tong-Tong, Zhang Lian-Lian, Gong Wei-Jiang. Topological properties of the one-dimensional ${\cal {PT}}$-symmetric non-Hermitian spin-orbit-coupled Su-Schrieffer-Heeger model. Acta Physica Sinica, 2022, 71(17): 177302. doi: 10.7498/aps.71.20220796
    [7] Fu Hao, Cao Kai-Yuan, Zhong Ming, Tong Pei-Qing. Dynamical quantum phase transitions in transverse field XY chain after a double quench. Acta Physica Sinica, 2021, 70(18): 180502. doi: 10.7498/aps.70.20210728
    [8] Sun Kong-Hao, Yi Wei. Dynamics of non-Hermitian local topological marker. Acta Physica Sinica, 2021, 70(23): 230309. doi: 10.7498/aps.70.20211576
    [9] Pei Dong-Liang, Yang Tao, Chen Meng, Liu Yu, Xu Wen-Shuai, Zhang Man-Gong, Jiang Heng, Wang Yu-Ren. Broadband periodic and aperiodic acoustic topological insulator based on composite honeycomb structure. Acta Physica Sinica, 2020, 69(2): 024302. doi: 10.7498/aps.69.20191454
    [10] Zheng Zhou-Fu, Yin Jian-Fei, Wen Ji-Hong, Yu Dian-Long. Topologically protected edge states of elastic waves in phononic crystal plates. Acta Physica Sinica, 2020, 69(15): 156201. doi: 10.7498/aps.69.20200542
    [11] Wang Yan-Lan, Li Yan. Pseudospin states and topological phase transitions in two-dimensional photonic crystals made of dielectric materials. Acta Physica Sinica, 2020, 69(9): 094206. doi: 10.7498/aps.69.20191962
    [12] Fang Yun-Tuan, Wang Zhang-Xin, Fan Er-Pan, Li Xiao-Xue, Wang Hong-Jin. Topological phase transition based on structure reversal of two-dimensional photonic crystals and construction of topological edge states. Acta Physica Sinica, 2020, 69(18): 184101. doi: 10.7498/aps.69.20200415
    [13] Deng Tian-Shu, Yi Wei. Fixed points and dynamic topological phenomena in quench dynamics. Acta Physica Sinica, 2019, 68(4): 040303. doi: 10.7498/aps.68.20181928
    [14] Hao Ning, Hu Jiang-Ping. Research progress of topological quantum states in iron-based superconductor. Acta Physica Sinica, 2018, 67(20): 207101. doi: 10.7498/aps.67.20181455
    [15] Yu Xiang-Min, Tan Xin-Sheng, Yu Hai-Feng, Yu Yang. Topological quantum material simulated with superconducting quantum circuits. Acta Physica Sinica, 2018, 67(22): 220302. doi: 10.7498/aps.67.20181857
    [16] Yang Yuan,  Chen Shuai,  Li Xiao-Bing. Topological phase transitions in square-octagon lattice with Rashba spin-orbit coupling. Acta Physica Sinica, 2018, 67(23): 237101. doi: 10.7498/aps.67.20180624
    [17] Long Yang, Ren Jie, Jiang Hai-Tao, Sun Yong, Chen Hong. Quantum spin Hall effect in metamaterials. Acta Physica Sinica, 2017, 66(22): 227803. doi: 10.7498/aps.66.227803
    [18] Shen Qing-Wei, Xu Lin, Jiang Jian-Hua. Topological phase transitions in core-shell gyromagnetic photonic crystal. Acta Physica Sinica, 2017, 66(22): 224102. doi: 10.7498/aps.66.224102
    [19] Wang Jian, Wu Shi-Qiao, Mei Jun. Topological phase transitions caused by a simple rotational operation in two-dimensional acoustic crystals. Acta Physica Sinica, 2017, 66(22): 224301. doi: 10.7498/aps.66.224301
    [20] Wang Qing-Hai, Li Feng, Huang Xue-Qin, Lu Jiu-Yang, Liu Zheng-You. The topological phase transition and the tunable interface states in granular crystal. Acta Physica Sinica, 2017, 66(22): 224502. doi: 10.7498/aps.66.224502
Metrics
  • Abstract views:  11925
  • PDF Downloads:  422
  • Cited By: 0
Publishing process
  • Received Date:  16 September 2019
  • Accepted Date:  11 November 2019
  • Available Online:  19 November 2019
  • Published Online:  20 November 2019

/

返回文章
返回
Baidu
map